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This study is centered around the COVID-19 pandemic which has posed a global health concern for over three years. It emphasizes the
importance of effectively utilizing epidemic simulationmodels for informed decision-making concerning epidemic control. The challenge
lies in appropriately choosing, adapting, and interpreting these models. The research constructs three statistical machine learning models
to predict the spread of COVID-19 in specific regions and evaluates their performance using real COVID-19 incidence data. The paper
presents short-term (3, 7, 14, 21, and 30 days) forecasts of COVID-19 morbidity and mortality for Germany, Japan, South Korea, and
Ukraine. The precision of each model was scrutinized based on the type of input data used. Recommendations are provided on how
various data sources can enhance the interpretation quality of machine learning models predicting infectious disease dynamics. The
initial findings suggest the need for the comprehensive utilization of all available data, favoring cumulative data during holiday-rich
periods and daily data otherwise. Tominimize the absolute error, databases should be compiled using dailymorbidity andmortality rates.

1. Introduction

The COVID-19 pandemic, caused by the spread of the
SARS-CoV-2 coronavirus, has been a threat to global public
health for almost three years. At the end of 2022, more than
640 million cases were registered worldwide, of which more
than 6.6 million were fatal [1].

The global crisis caused by the pandemic has shown
the critical role of information technology. The world
has accelerated the digitalization of most areas of activity,
including healthcare systems [2]. Research related to data-
driven medicine is aimed at solving such problems as
automated diagnostics [3], analysis of medical [4] and
nonmedical interventions [5] to reduce the dynamics of

morbidity, analysis of medical images [6], analysis of med-
ical data [7], and modeling the dynamics of the epidemic
process [8].

One of the essential tools for controlling the COVID-19
pandemic and other infectious diseases is modeling its dynam-
ics, including forecasting. Forecasting the epidemic process
dynamics allows us to predict how the incidence will develop
and to conduct experimental studies to evaluate the effective-
ness of various preventive measures.

Therefore, this study is aimed at building three statistical
machine learning models for predicting the dynamics of
COVID-19 in certain areas and at studying the performance
of these models using experiments with actual COVID-19
incidence data.
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To achieve the goal, the following tasks were formulated:

(1) To analyze models and methods for modeling the
epidemic process of COVID-19

(2) To develop a predictive model for COVID-19
dynamics based on the logistic regression method

(3) To develop a predictive model of COVID-19 dynam-
ics based on the decision tree method

(4) To develop a predictive model for COVID-19
dynamics based on the support vector regression
method

(5) To evaluate the results of predicting the dynamics of
COVID-19 using the developed models for data in
various territories

(6) To compare the accuracy and adequacy of the devel-
oped models performed with the databases of differ-
ent countries

(7) To analyze the performance of the developed models

The promising contribution of the research is twofold.
Firstly, developing predictive models based on statistical
machine learning methods will make it possible to analyze
their effectiveness for modeling the epidemic process of
COVID-19 and other infectious diseases. Secondly, develop-
ing predictive models based on statistical machine learning
methods will make it possible to use them in public health
practice in resource-limited settings to support decision-
making on control measures to contain the dynamics of
the COVID-19 pandemic. Thirdly, the analysis of models
in terms of input data on morbidity will allow future
research to be adjusted to model epidemic processes and
apply models more effectively.

The further structure of the paper is the following:
Section 2 provides an overview of models and methods of
COVID-19 epidemic process simulation. Section 3 describes
three regression approaches to COVID-19 morbidity fore-
casting, logistic regression, decision tree, and support vector
regression, and describes the metrics used for models’
performance evaluation. Section 4 describes the results of
models’ performance, estimation of developed models’ ade-
quacy, and forecasting accuracy. Section 5 discusses the per-
spective use of models and their limitations and analyzes the
effectiveness of using different input data for forecasting.
The conclusion describes the outcomes of the research.

Research is part of a complex intelligent information sys-
tem for epidemiological diagnostics, the concept of which is
discussed in [9].

Preliminary research has been done for other statistical
machine learning methods for modeling COVID-19: linear
regression, lasso regression, ridge regression [10], random
forest, K-nearest neighbors, and gradient boosting [11]. This
study also explores the problem of input data in modeling
epidemic processes.

2. Current Research Analysis

Epidemic process models have been used for over a century
to control infectious disease dynamics, study disease behav-
ior, and develop effective interventions to prevent epidemics.
The global COVID-19 pandemic has stimulated a new
round of research in this direction.

Compartmental models of the dynamics of the new coro-
navirus remain the most popular for practical application.

The authors of [12] study the theoretical foundations of
the simplest SIR (susceptible-infected-recovered) model for
modeling a new coronavirus. The authors explore the tem-
poral evolution of different populations and track various
significant parameters of the spread of the disease in differ-
ent communities. However, the forecasts obtained in work
are not sufficiently accurate. The work [13] presents a model
for early prediction of COVID-19 based on the SIR struc-
ture, which allows predicting the situation for 700 days.
The authors model the outbreak and possible scenarios for
its termination with various types of control measures. The
forecast presented by the authors can be retrospectively
assessed as unreliable. However, the authors are investigat-
ing a scenario with a specialized treatment for COVID-19
that does not exist to date.

The study [14] is devoted to modeling COVID-19 in
Canada using various models, including the SIR model.
The constructed model does not assume the presence of
asymptomatic cases, which is not valid and is an important
characteristic that stimulates the spread of infectious dis-
eases. The work [15] presents the SIR model for modeling
the dynamics of COVID-19. The study calculates disease-
free and endemic equilibrium, with global persistence calcu-
lated using the construction of the Lyapunov function and
local persistence determined using the Jacobian matrix.
The authors conclude that the nature of COVID-19 coin-
cides with SARS, which is not valid.

The article’s authors [16] explore the dynamics of the
classical SIR model concerning COVID-19. The model con-
siders the nonlinear removal rate, which depends on the
number of hospital bed ratio. The authors conclude that
the epidemic declines when the value of the basic reproduc-
tive number is less than one, but this is an epidemiological
rule. In the study [17], the authors apply a modified SIR
model to study the spread of COVID-19 in China. As a
result, the authors argue that the increase in the number of
control measures by the state has a positive effect on reduc-
ing the dynamics of COVID-19. However, the presented
model does not allow us to draw such conclusions since
social factors and the impact of such state control on other
external factors that influence the development of the dis-
ease are not investigated.

In [18], the authors apply an implicit time-discrete SIR
model that tracks transmission and recovery rates to predict
the dynamics of COVID-19 in Fiji. The model does not take
into account many factors that play an important role in the
dynamics of infectious diseases, including the incubation
period, the impact of control measures already taken, and
the heterogeneity and openness of the population, as well
as the difference between registered and real cases of the
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disease. The authors of the article [19] extend the standard
SIR model with the global dynamics of the COVID-19
pandemic. The proposed model was parameterized using a
two-stage model fitting algorithm on data from six randomly
selected US cities. Despite the increase in the accuracy of the
model compared to the classical SIR model, it does not con-
sider many factors that affect the dynamics of morbidity.

The study [20] discusses the numerical solution of the
SIR model of the spread of COVID-19 using the Taylor
matrix and the collocation method for Turkey. The model
does not consider the dynamics of external factors, so the
solutions obtained using the model are difficult to update
to a changing situation. The paper [21] proposes an exten-
sion of the classical SIR model, the adaptive susceptible-
infected-removed-vaccinated model with time-dependent
transmission and removal rates. The authors propose a
numerical solution to the inverse problem using the varia-
tional embedding method, which reduces the inverse prob-
lem to the problem of minimizing a well-formed functional
to obtain the desired values. The model and its numerical
solution are complex, making it difficult to introduce actual
changes in disease dynamics into the model, such as changes
in virulence and control measures.

Some researchers have extended the classic SIR model
for modeling COVID-19 by adding new compartments.
The authors of [22] extend the model with the exposed com-
partment. The model was applied to the early phase of the
pandemic in Italy and was analyzed for sensitivity to deter-
mine the most critical parameters that have the most signif-
icant impact on the basic reproduction number. The article
[23] describes the SEIAR model of COVID-19 with five
compartments (susceptible-exposed-symptomatic-asymp-
tomatic-recovered/removed). As a result, the authors con-
clude that the virus is highly contagious for people after
the age of 45 years and has low susceptibility to the virus
up to 14 years of age. The authors of [24] expand the SEIR
model by introducing the characteristics of age groups,
symptomatic and asymptomatic disease development, and
vaccinated and unvaccinated population. The results show
that, despite the high level of detail, the model cannot pre-
dict changes in epidemic dynamics caused by the emergence
of new strains or the introduction of new control measures.

The work [25] proposes an extended specialized SEIR
model for COVID-19 modeling called SEAHIR (susceptible-
exposed-asymptomatic-hospitalized-isolated-removed). In the
proposed model, the “infected” compartment is divided into
“asymptomatic,” “isolated,” and “hospitalized.” The model also
considers the impact of nonpharmaceutical interventions such
as physical distancing and different testing strategies. The paper
[26] presents a hybrid compartmental model for studying the
evolution of the COVID-19 pandemic in Italy. The model pro-
posed by SEIRDV includes six compartments, considering the
vaccinated population. At the same time, the representation of
infection is presented both as a linear and as an exponential
piecewise continuous function. The results show that different
levels of vaccination give similar infection curves.

All the models described using the compartmental
approach have several disadvantages, including modeling
for homogeneous and closed populations, the impossibility

of taking into account all the factors influencing the dynam-
ics of the epidemic process and the complexity of systems of
differential equations describing the system, and the diffi-
culty of making changes to the model, adapting it to reality.
These shortcomings affect the adequacy and accuracy of the
model, which does not simulate the actual situation with the
incidence of COVID-19 effectively.

Higher accuracy is shown by predictive models based on
machine learning methods.

The paper [27] presents a predictive model for COVID-
19 in India based on an artificial neural network with a long
short-term memory (LSTM) architecture. The model pre-
dicts the total number of cases, recoveries, and deaths of
COVID-19 over 80 days. The model showed an accuracy
of 95.46%. The authors of [28] propose models based on
recurrent neural networks such as LSTM, bidirectional
LSTM, and encoder-decoder LSTM models for multistep
(short term) COVID-19 infection forecasting. Using the pre-
sented models, a forecast for two months ahead is built
based on data on the first and second waves of incidence.
However, the authors note the difficulties with modeling
associated with the unreliability of the data and the difficulty
of considering factors such as population density, logistics,
social aspects, and lifestyle of the studied population.

The authors of [29] proposed a deep learning approach
that includes recurrent neural networks and LSTM networks
for predicting the probable numbers of COVID-19 cases.
For a pilot study, data from the European Centre for Disease
Prevention and Control on the incidence of COVID-19 in
Malaysia, Morocco, and Saudi Arabia were used. The results
showed an accuracy of 98.58% for the LSTM model and
93.45% for the RNN model in predicting new COVID-19
cases over seven days.

The authors of [30] employed Bayesian optimization to
tune the Gaussian process regression (GPR) hyperparameters
to develop an efficient GPR-based model for forecasting the
recovered and confirmed COVID-19 cases. The authors show
the superiority of the proposed approach in comparison with
other time series forecasting models. However, only one data-
set was used for forecasting, so the model’s performance may
differ depending on the area where the simulation is carried
out. The authors of [31] propose three deep learning models,
including CNN, LSTM, and the CNN-LSTM, to predict the
dynamics of COVID-19 in Brazil, India, and Russia. The
authors note that various socioeconomic, geographic, and
political reasons may influence public policy in implementing
control measures to contain the epidemic dynamics.

Despite the high accuracy of COVID-19 predictive
models based on deep learning, they cannot always be
applied in resource-limited settings. The requirements for
high computing power that such models impose are difficult
to meet directly in public health institutions. Therefore, this
paper proposes an analysis of COVID-19 predictive models
based on statistical machine learning methods.

3. Materials and Methods

As part of this study, three machine learning models were
built to predict the dynamics of COVID-19. The models
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are based on regression methods: logistic regression, deci-
sion tree, and support vector regression.

Regression analysis is an analytical method of statistical
machine learning that calculates the estimated relationship
between a dependent variable and one or more independent
variables [32]. Regression analysis finds the model relation-
ships between selected variables and model-based predictive
values. Regression analysis uses the chosen estimation
method, the dependent variable, and one or more indepen-
dent variables to create an equation that estimates the values
of the dependent variable.

3.1. Logistic Regression. Logistic regression is a data analysis
technique that allows finding the relationship between two
data factors [33]. This relationship is used to predict the
value of one of these factors based on the other. To do this,
a dependent variable y is introduced, which takes the values
0 and 1, and a set of independent variables x1,⋯, xn. Based
on these values, it is necessary to calculate the probability of
accepting one or another value of the dependent variable.

Let objects be defined by n numerical features:

f i X⟶ R, j = 1 n, 1

and the space for feature descriptions, in this case

X = Rn 2

Y is a finite set of class labels, and a training set of
“object-factor” pairs is given as follows:

Xm = x1, y1 ,⋯, xm, ym 3

Consider the case of two classes: Y = −1,+1 . In logistic
regression, a linear classification algorithm is built:

α X⟶ Y 4
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Figure 1: Forecasting of COVID-19 cumulative new cases by logistic regression model.
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The following kind is shown:

α x,w = sign 〠
n

j=1
wjf j x −w0 = sign x,w , 5

where wj is the weight of the jth feature, w0 is the decision
threshold, w = w0,⋯,wn is the weight vector, and x,w
is the scalar product of the feature description of the object
and the weight vector. At the same time, it is assumed that
a zero sign is artificially introduced:

f0 x = −1 6

The task of training a linear classifier is to adjust the
weight vector w based on the Xm sample. In logistic regres-
sion, for this, the problem of minimizing empirical risk with
a loss function of a special type is solved:

Q w = 〠
m

i=1
ln 1 + exp −yi xi,w ⟶minw 7

After finding the solution w, it becomes possible to
estimate the posterior probabilities of its belonging to the
classes:

ℙ y x = σ y x,w , y ∈ Y , 8

where

σ z = 1
1 + e−z

9

The following are the advantages of the logistic regres-
sion method:
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Figure 2: Forecasting of COVID-19 daily new cases by logistic regression model.
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(i) Logistic regression models are mathematically less
complex than other machine learning methods. It
also makes troubleshooting easier

(ii) Logistic regression models allow developers to better
understand internal processes than other machine
learning methods

(iii) Logistic regression models can process large amounts
of data at high speed because they require less com-
puting power

The following are the disadvantages of the logistic
regression method:

(i) The model handles a large number of categorical
variables poorly

(ii) For the model to work, it is necessary to transform
nonlinear functions

3.2. Decision Tree. Decision trees are a nonparametric super-
vised learning method used for classification and regression
[34]. The goal of the method is to create a model that predicts
the value of the target variable by learning simple decision rules
derived from the characteristics of the data. If the target vari-
able has continuous values, decision trees allow for establishing
the dependence of the target variable on independent variables.

A decision tree is a hierarchical tree structure consisting
of “if-then” decision rules that can be formulated in natural
language.

The method recursively divides the original dataset into
subsets that become more and more homogeneous concerning
certain features, resulting in a tree-like hierarchical structure.
The division is carried out based on traditional logical rules
in the form “If A, then B”, where A is some logical condition
and B is the procedure for dividing the subset into two parts,
for one of which conditionA is true, and for the other, it is false.

To construct a tree, it is necessary to set the quality func-
tional based on which the sample is split at each step. Let Rm
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Figure 3: Forecasting of COVID-19 cumulative fatal cases by logistic regression model.
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be the set of objects that fall into the vertex split at this step; Rt
andRr are the objects that fall into the left and right subtrees for
a given predicate. Then, we will use the following functionals:

Q Rm, j, s =H Rm −
Rl

Rm
H Rl −

Rr

Rm
H Rr , 10

where H R is the informativeness criterion that evaluates the
distribution quality of the target variable among the objects of
the set R. The smaller the diversity of the target variable, the
lower the value of the informativeness criterion should be.

In each leaf, the tree will produce a real number. Based
on this, it is possible to evaluate the quality of the set of R
topic objects:

H R =min
c∈Y

1
R

〠
xi ,yi ∈R

L yi, c , 11

where L y, c is some loss function.

To build a regression model, we choose the square of the
deviation as a loss function. In this case, the informativeness
criterion will look like this:

H R =min
c∈Y

1
R

〠
xi ,yi ∈R

yi − c 2 12

To build a regression model, we choose the square of the
deviation as a loss function. In this case, the informativeness
criterion will look like this:

H R = 1
R

〠
xi ,yi ∈R

yi −
1
R

〠
xj ,y j ∈R

yj

2

13

The following are the advantages of the decision tree
method:

(i) Easy interpretability and visualization capability
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Figure 4: Forecasting of COVID-19 daily fatal by logistic regression model.
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(ii) Only a little preparation is required

(iii) The cost of using a tree is logarithmic in the number
of data points used to train the tree

(iv) The decision tree model can handle both numerical
and categorical data

The following are the disadvantages of the decision tree
method:

(i) The model can create overly complex trees that do
not generalize well

(ii) Decision trees can be unstable, and small changes in
the data can lead to a completely different tree

(iii) The optimal decision tree learning problem is NP-
complete in terms of several aspects of optimality
and even for simple concepts. Therefore, practical
algorithms for learning decision trees are based on

heuristic algorithms, such as the greedy algorithm,
in which locally optimal decisions are made at each
node

(iv) It is recommended that the dataset be balanced
before fitting to the decision tree

3.3. Support Vector Regression. The basis of the support vec-
tor machine for regression problems is the search for a
hyperplane, in which the risk in a multidimensional space
will be minimal [35].

The support vector machine estimates the coefficients by
minimizing the quadratic loss. If the predicted value falls
within the hyperplane region, then the loss is zero. Other-
wise, the losses equal the difference between the predicted
and actual values.

In the support vector machine for the regression prob-
lem, it is necessary to evaluate the functional dependence
of the dependent variable y on the set of independent
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Figure 5: Forecasting of COVID-19 cumulative new cases by decision tree model.
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variables x. To do this, the relationship between the inde-
pendent and dependent variables is determined by a deter-
ministic function and the addition of additive noise:

y = f x + noise 14

In this case, it is necessary to find a functional form for f
that can correctly predict new values. Functional depen-
dence is sought by training the model on a sample popula-
tion. In this study, we determined the error function by the
formula:

1
2w

Tw − C vε + 1
N
〠
N

i=1
ξi + ξ∗i 15

The function is minimized under the condition:

wTφ xi + b − yi ≤ ε + ξi, 16

yi − wTφ xi + bi ≤ ε + ξ∗i , 17

ξi, ξ∗i ≥ 0, i = 1,⋯,N , ε ≥ 0 18

Advantages of the support vector machine are as follows:

(i) The principle of the optimal separating hyperplane
leads to the maximization of the width of the sepa-
rating strip

(ii) The support vector machine is equivalent to a two-
layer neural network in which the number of neu-
rons in the hidden layer is determined automatically
as the number of support vectors

(iii) The convex quadratic programming problem is
well-studied and has a unique solution

Disadvantages of the support vector machine are as
follows:
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Figure 6: Forecasting of COVID-19 daily new cases by decision tree model.
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(i) There is no feature selection in the method

(ii) The constant must be selected using cross-validation

(iii) Outliers in the initial data become reference objects-
violators and directly affect the construction of the
separating hyperplane

3.4. Models’ Performance Evaluation Metrics. We used the
following metrics to evaluate models’ performance.

Mean absolute error (MAE) is a measure of errors between
paired observations expressing the same phenomenon:

MAE = ∑n
i=1 yi − xi

n
, 19

where yi is the predicted value, xi is the observed value, and n
is the number of observations.

Relative absolute error (RAE) is expressed as a ratio,
comparing a mean error to errors produced by a trivial or
naïve model:

RAE = ∑n
i=1 yi − xi

∑n
i=1 yi − xi

, 20

where yi is the predicted value, xi is the observed value, yi is
the average of the predicted values, and n is the number of
observations.

Mean absolute percentage error is a measure of predic-
tion accuracy, which expresses the accuracy as a ratio
defined by formula:

MAPE = 100%
n

〠
n

i=1

xi − yi
xi

, 21

where yi is the predicted value, xi is the observed value, and
n is the number of observations.

As an accuracy metric, we used a difference of MAPE
from 100%:

Accuracy = 100% −MAPE 22
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Figure 7: Forecasting of COVID-19 cumulative fatal cases by decision tree model.
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4. Results

The program realization of the COVID-19 models was per-
formed using Python programming language. An experimen-
tal investigation of the models was carried out on four types of
data provided by World Health Organization Coronavirus
Dashboard [35]: daily new cases, daily fatal cases, cumulative
new cases, and cumulative fatal cases. We used data for
Germany, Japan, South Korea, and Ukraine. These countries
were selected due to the different nature of the dynamics of
the epidemic process, various control measures implemented
by governments, and various social factors influencing the
dynamics of COVID-19. The forecast was calculated for 3, 7,
14, 21, and 30 days. For Germany, Japan, and South Korea,
the forecasting period was from August 1, 2022, to August
30, 2022, and for Ukraine, from January 25, 2022, to February
23, 2022. This is due to the full-scale Russian invasion of
Ukraine, which affected the dynamics of the epidemic process
of infectious diseases, including COVID-19.

Historical morbidity and mortality data available before
the forecast periods were utilized to train the machine learn-

ing models. This ensured that the models were well-
acquainted with the past trends and patterns of the disease’s
spread in the respective countries. The forecast period, on
the other hand, was exclusively reserved for testing themodels’
predictions. This approach maintained a clear demarcation
between training and testing data, ensuring the integrity and
validity of the model evaluation process.

The forecasting results show the retrospective forecasted
dynamics of COVID-19 epidemic process dynamics in the
selected area.

4.1. Forecasting Results Using a Logistic Regression Model.
Figure 1 shows the results of forecasting of cumulative new
cases of COVID-19 in the selected areas with logistic regres-
sion model. Figure 2 shows the results of forecasting of daily
new cases of COVID-19 in the selected areas with logistic
regression model. Figure 3 shows the results of forecasting
of cumulative fatal cases of COVID-19 in the selected areas
with logistic regression model. Figure 4 shows the results
of forecasting of daily fatal cases of COVID-19 in the
selected areas with logistic regression model.
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Figure 8: Forecasting of COVID-19 daily fatal cases by decision tree model.
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4.2. Forecasting Results Using a Decision Tree Model.
Figure 5 shows the results of forecasting of cumulative new
cases of COVID-19 in the selected areas with decision tree
model. Figure 6 shows the results of forecasting of daily
new cases of COVID-19 in the selected areas with decision
tree model. Figure 7 shows the results of forecasting of
cumulative fatal cases of COVID-19 in the selected areas
with decision tree model. Figure 8 shows the results of fore-
casting of daily fatal cases of COVID-19 in the selected areas
with decision tree model.

4.3. Forecasting Results Using a Support Regression Model.
Figure 9 shows the results of forecasting of cumulative new
cases of COVID-19 in the selected areas with support vector
regression model. Figure 10 shows the results of forecasting
of daily new cases of COVID-19 in the selected areas with
support vector regression model. Figure 11 shows the results
of forecasting of cumulative fatal cases of COVID-19 in the
selected areas with support vector regression model.
Figure 12 shows the results of forecasting of daily fatal cases
of COVID-19 in the selected areas with support vector
regression model.

4.4. Performance of Logistic Regression Model. Table 1 shows
MAE values of logistic regression models for confirmed
cases of COVID-19 in selected territories.

Table 2 shows MAE values of logistic regression models
for fatal cases of COVID-19 in selected territories.

Table 3 shows RAE values of logistic regression models
for confirmed cases of COVID-19 in selected territories.

Table 4 shows RAE values of logistic regression models
for fatal cases of COVID-19 in selected territories.

Table 5 shows MAPE values of logistic regression models
for confirmed cases of COVID-19 in selected territories.

Table 6 shows MAPE values of logistic regression models
for fatal cases of COVID-19 in selected territories.

4.5. Performance of Decision Tree Model. Table 7 shows
MAE values of decision tree models for confirmed cases of
COVID-19 in selected territories.

Table 8 shows MAE values of decision tree models for
fatal cases of COVID-19 in selected territories.

Table 9 shows RAE values of decision tree models for
confirmed cases of COVID-19 in selected territories.
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Figure 9: Forecasting of COVID-19 cumulative new cases by support vector regression model.
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Table 10 shows RAE values of decision tree models for
fatal cases of COVID-19 in selected territories.

Table 11 shows MAPE values of decision tree models for
confirmed cases of COVID-19 in selected territories.

Table 12 shows MAPE values of decision tree models for
fatal cases of COVID-19 in selected territories.

4.6. Performance of Support Vector Regression Model.
Table 13 shows MAE values of support vector regression
models for confirmed cases of COVID-19 in selected
territories.

Table 14 shows MAE values of support vector regression
models for fatal cases of COVID-19 in selected territories.

Table 15 shows RAE values of support vector regression
models for confirmed cases of COVID-19 in selected
territories.

Table 16 shows RAE values of support vector regression
models for fatal cases of COVID-19 in selected territories.

Table 17 shows MAPE values of support vector regres-
sion models for confirmed cases of COVID-19 in selected
territories.

Table 18 shows MAPE values of support vector regression
models for fatal cases of COVID-19 in selected territories.

5. Discussion

The emerging virus SARS-CoV-2, which humanity learned
about in December 2019, quickly spread around the globe,
causing the COVID-19 pandemic. During the three years
of the pandemic, the disease has claimed more than 6.5 mil-
lion lives, and more than 663 billion cases have been regis-
tered worldwide. Each country has chosen its tactics in the
fight against COVID-19. The measures included isolation
and treatment of patients, wearing masks in crowded places,
and physical distancing. Effective vaccines produced using
various technologies were developed and implemented rela-
tively quickly and began to be implemented. However,
despite this, vaccination coverage against COVID-19 among
the population of different countries is still needed to reach
the required level. It did not allow for stopping the circula-
tion of the pathogen among the population. The proportion
of vaccines vaccinated with one, two, and three doses differ
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Figure 10: Forecasting of COVID-19 daily new cases by support vector regression model.
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significantly in different countries; low vaccination coverage
creates conditions for selecting new strains of the virus with
new mutations and makes it difficult to fight infection [36].

Mathematical models have become a good tool for pre-
dicting the development of the COVID-19 pandemic and
helping to make adequate management decisions to contain
the pandemic. Various models have been developed [37–39].
However, each of them had some drawbacks, such as the
impossibility of taking into account all the factors that neg-
atively or positively affect the development of the COVID-
19 epidemic process, that does not take into account the het-
erogeneity of the human population and differences in the
structure of the population in different territories, etc.

We have built three models based on machine learning to
predict the dynamics of the spread of COVID-19—logistic
regression, decision tree, and support vector regression. The
forecast was calculated for 3, 7, 14, 21, and 30 days. The timing
of the forecast was not chosen by chance. It is clear that if there
is a sharp deterioration in the epidemic situation, an increase
in morbidity and mortality from COVID-19 is predicted on
day 30; it is necessary to correct preventive measures as soon
as possible. Intermediate forecasts for 3, 7, 14, and 21 days
make it possible to control the adequacy of the tactics for pre-
venting the incidence and containing the pathogen’s spread.

In addition, the weekly interval makes it possible to smooth
out fluctuations in the number of registered cases associated
with a lower population seeking medical care on weekends
and holidays and a sharp increase in case registration immedi-
ately after the weekend. Forecasting for 3 days will show the
trend in the dynamics of the epidemic process but will not
reflect the changes associated with introducing additional pre-
ventive measures.

For the analysis ofmodels, countries with different cultures,
medical care organization, surveillance, chosen tactics to com-
bat the COVID-19 pandemic, and other factors influencing the
development of the pandemic were selected. We chose four
countries—Germany, Japan, South Korea, and Ukraine. For
the first three countries, the forecast was built for the period
fromAugust 1, 2022, to August 30, 2022, and for Ukraine, from
January 25, 2022, to February 23, 2022, because it is impossible
to check the accuracy of the forecast for August because full-
scale Russian invasion of Ukraine led to the destruction and
destruction of hospitals, a decrease in the number of medical
personnel, limited access to medical care for the population,
and part of the territory of Ukraine was occupied, which did
not allow registering the incidence in these territories.

In our analysis, a noteworthy discrepancy emerged in the
accuracy of the forecast data for Japan when juxtaposed with
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Figure 11: Forecasting of COVID-19 cumulative fatal cases by support vector regression model.
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that of Germany and South Korea. Several factors underpin
this observed variation.

Firstly, the healthcare infrastructure and reporting
mechanisms differ across countries. Germany and South

Korea have been globally recognized for their robust
healthcare systems and efficient disease surveillance mecha-
nisms. Their rapid response to the pandemic, extensive test-
ing, and meticulous data recording contributed to a more
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Figure 12: Forecasting of COVID-19 daily fatal cases by support vector regression model.

Table 1: MAE values of logistic regression models for confirmed cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 857718.6 286153.96 108432 55505.78 48276.21 18819.15 77411.48 5451.58

Test 3 772078.67 1587192 159047.67 33767.33 39960.33 31894.67 13655 14126

Train 7 1162616.09 445712.26 213582.58 136885.78 48782.19 20648.93 65870.27 5232.94

Test 7 988841.57 2865681.57 382687.57 94103.43 28426.29 23223.57 21234.43 15376.14

Train 14 1444834.85 551208.48 546825.8 241053.19 50805 22077.31 66760.47 6004.26

Test 14 1183490.57 3308088.5 1601407.64 279010.07 24988.43 27008.71 32216.71 15638.57

Train 21 1971303.35 607461.92 798955.03 291836.94 53295.33 23092.32 74409.74 6541.27

Test 21 1341054.1 3797773.29 2219878.71 421748.81 23132.67 30210.1 38164.95 14651.62

Train 30 1952622.63 688047.48 1134894.41 354217.3 53247.71 18295.2 74542.03 6966.61

Test 30 1534048 4897131.16 2920608.16 565430.74 24795.03 39843.06 32511.26 11527.39
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consistent and comprehensive dataset, facilitating more
accurate forecasting.

Conversely, Japan, while having a sophisticated healthcare
system, faced challenges in its initial response to the pandemic.
The country experienced periods of underreporting, poten-
tially due to limited testing capacities in the early stages and
specific administrative bottlenecks. Such inconsistencies in

data collection can introduce noise into the dataset, making
it more challenging for machine learning models to discern
underlying patterns and make accurate predictions.

Furthermore, sociocultural factors played a role. Japan’s
unique societal norms, including its densely populated
urban centers and specific public health communication
strategies, influenced the dynamics of the disease’s spread

Table 2: MAE values of logistic regression models for fatal cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 10594.46 4389.47 779.36 2137.49 93.7 37.72 43.5 186.8

Test 3 875 7401 60.33 221.33 68 59.33 7 22.67

Train 7 14431.7 5036.62 1455.71 4339.38 96.37 41.63 41.45 186.37

Test 7 1046.57 5552.86 129.57 511.43 53.29 67.86 14.43 27.29

Train 14 17803.87 6076.29 2126.05 6719.15 102.1 46 41.38 187.03

Test 14 1252.86 5299.07 275.21 1036.36 55.43 78.07 19.43 31.79

Train 21 18747.84 6258.6 2283.06 8983.12 109.16 49.14 43.62 183.2

Test 21 1413.81 6149.38 453.9 1665.52 45.05 76.19 21.86 44.38

Train 30 20143.5 6774.49 2284.55 11098.24 115.11 48.62 45.96 185.85

Test 30 1567.74 7479.45 762.58 2716.65 45.1 83.74 24.1 57.29

Table 3: RAE values of logistic regression models for confirmed cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.099456 0.096796 0.016089 0.097866 0.863515 0.728601 1.374757 1.029529

Test 3 13.738489 12.770641 2.036247 2.242518 1.178802 2.506698 0.431483 3.609915

Train 7 0.134811 0.150769 0.03169 0.241352 0.872565 0.799443 1.169796 0.98824

Test 7 9.055444 7.346437 1.996374 1.767298 1.159893 1.000194 1.29776 2.164758

Train 14 0.167535 0.186455 0.081135 0.425016 0.908747 0.854744 1.185605 1.133903

Test 14 7.280291 4.480851 3.934655 2.515279 1.140845 1.144672 1.592753 2.101503

Train 21 0.228582 0.205483 0.118545 0.514556 0.953292 0.894041 1.321449 1.235317

Test 21 5.813652 3.54859 3.493077 2.35823 1.10771 1.08358 1.494972 1.998267

Train 30 0.226416 0.232743 0.16839 0.624543 0.95244 0.708316 1.323798 1.315643

Test 30 5.064591 3.096156 3.140794 2.235595 1.251722 1.077815 1.263328 1.588201

Table 4: RAE values of logistic regression models for fatal cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.558983 0.748235 0.100892 0.130431 0.982956 0.946141 0.79988 1.233276

Test 3 10.019084 92.770195 3.992647 2.151188 1.450237 3.423077 2.1 0.607143

Train 7 0.761442 0.858548 0.188449 0.264792 1.010998 1.044404 0.76232 1.230431

Test 7 7.11657 19.883806 2.05869 2.056796 1.590134 2.022506 1.510684 0.964646

Train 14 0.939364 1.035772 0.275228 0.410008 1.071022 1.153797 0.760876 1.234803

Test 14 6.073407 7.771993 1.870907 1.948638 1.803453 1.303851 1.431579 0.887464

Train 21 0.98917 1.066849 0.295554 0.548156 1.145123 1.232673 0.802145 1.209536

Test 21 5.33746 5.418942 1.735014 1.822661 1.563513 1.045426 1.450346 0.879166

Train 30 1.062807 1.154789 0.295746 0.677223 1.207509 1.219678 0.84517 1.22699

Test 30 5.473092 4.012622 1.674963 1.726235 1.50333 1.227554 1.405158 0.911704
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in ways that diverged from patterns observed in Germany
and South Korea.

It is essential to consider the potential influence of viral
strains. Different regions might have been affected by vary-
ing strains of the virus at other times, each with its transmis-
sion dynamics. This could have introduced additional
variability into the predictions if Japan was predominantly

affected by a strain with varying transmission characteristics
during the forecast period.

Table 19 shows accuracy of all models of COVID-19 in
selected territories for 30 days regarding the character of
the input data.

The support vector regression model shows the highest
accuracy for all datasets. At the same time, it can be noted

Table 5: MAPE values of logistic regression models for confirmed cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.085625 0.082203 0.032775 0.022732 1.094825 2.063729 4.719072 3.102245

Test 3 0.0249 0.12132 0.007956 0.008657 0.514282 0.175681 0.157631 0.761792

Train 7 0.109693 0.118866 0.097656 0.055901 0.975737 1.726743 3.959241 3.220471

Test 7 0.031743 0.211901 0.018863 0.023588 0.51773 0.114646 0.20854 0.612907

Train 14 0.135223 0.140357 0.186165 0.095634 0.8972 1.279357 3.639863 3.812503

Test 14 0.037776 0.230585 0.076686 0.067183 0.474387 0.13922 0.279167 0.542086

Train 21 0.170498 0.158015 0.233285 0.113069 1.149452 1.549936 3.975037 4.335126

Test 21 0.042581 0.251713 0.10385 0.098062 0.479235 0.155378 0.312001 0.483003

Train 30 0.166786 0.190446 0.283616 0.133828 1.136176 1.408250 4.407955 4.867122

Test 30 0.048385 0.2997 0.132413 0.126256 0.587006 3.224258 0.276267 0.383016

Table 6: MAPE values of logistic regression models for fatal cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.077908 0.216183 0.28478 0.031407 4.302802 3.566545 4.780891 3.266033

Test 3 0.005978 0.226541 0.002404 0.002224 0.682114 0.650904 0.325321 0.156613

Train 7 0.107693 0.265915 0.397845 0.070797 8.605604 4.503600 9.561783 3.305931

Test 7 0.007141 0.168689 0.005143 0.00512 0.930147 0.528263 0.446618 0.188684

Train 14 0.135295 0.336248 0.479926 0.108925 8.605604 5.239857 4.780891 3.621599

Test 14 0.008536 0.157663 0.010831 0.0103 1.745331 0.437303 0.482487 0.210358

Train 21 0.143851 0.346251 0.481132 0.142261 7.649426 6.760180 4.780891 3.279957

Test 21 0.00962 0.177791 0.017679 0.016401 1.81934 2.702160 0.487855 0.246182

Train 30 0.153738 0.358279 0.460946 0.176627 1.147414 5.603205 4.780891 2.916246

Test 30 0.010656 0.207111 0.029169 0.026349 1.888606 1.830495 0.456813 0.291251

Table 7: MAE values of decision tree models for confirmed cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 118326.82 50614.35 83292.72 14470.19 13966.14 6129.43 12921.25 1787.4

Test 3 92206.67 373864.33 159047.67 33767.33 15383.67 25373 32482 5467.67

Train 7 210181.83 98095.02 159424.29 31352.4 14121.04 8610.34 14078.32 1799.26

Test 7 219605 819688.29 382687.57 94103.43 17714.57 19880.29 25214.43 8544.14

Train 14 411432.76 176243.54 296562.74 56438.12 18259.02 11183.94 24367.5 2139.05

Test 14 380742.29 1557960.64 787013.79 205029.5 16782.86 24695.79 36543.5 8752.71

Train 21 609247.27 245358.77 431184.05 80469.2 22295.56 12715.18 34615.07 2389.48

Test 21 527135.24 2260445.24 1210456.86 324242.62 18504.93 29095.67 41458 9037.81

Train 30 914462.41 345052.67 629787.46 113795.01 22851.02 14905.65 44442.16 3629.26

Test 30 712922.32 3288235.39 1799969.39 482712.19 20317.9 39667.35 41360.94 8159.19

17International Journal of Telemedicine and Applications



that all models for data from Germany and South Korea
show the highest accuracy. This indicates a more complete
testing and registration of a higher percentage of actual inci-
dence than in Japan and Ukraine.

The model analysis results showed that the use of cumu-
lative case and death data as input increased the accuracy of
the models, which at first glance is attractive and may lead to

the misconception of not using data on daily new cases and
deaths. However, the evaluation of models using MAE
shows a much smaller absolute error. Based on the data
obtained, it should be concluded that to build models. It is
necessary to use the entire set of available data, both daily
and cumulative, giving preference to cumulative data during
periods full of holidays and weekends and daily data in other

Table 8: MAE values of decision tree models for fatal cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 254.52 98.9 98.22 421.51 34.8 21.26 18.22 52.5

Test 3 146 192.33 40.33 221.33 16.67 18.67 9.67 15

Train 7 466.39 186.43 193.21 899.28 36.83 19.97 17.17 55.82

Test 7 317.57 505.86 109.57 511.43 15.14 19.43 11.71 20

Train 14 909.3 354.55 366.16 1640.46 53.07 24.1 23.57 69.55

Test 14 523.86 1183.71 255.21 1036.36 12.79 35.43 17.21 20.86

Train 21 1348.09 519.24 538.23 2351.47 56.39 27.8 32.1 85.5

Test 21 684.81 1937.67 433.9 1665.52 11.38 42.1 16.38 32.95

Train 30 2024.18 763.51 779.33 3369.01 90.04 34.75 40.28 104.06

Test 30 838.74 3183.81 742.58 2716.65 10.32 46.52 15.65 50

Table 9: RAE values of decision tree models for confirmed cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.013721 0.017121 0.012359 0.025513 0.249812 0.237307 0.22947 0.337549

Test 3 1.64074 3.008135 2.036247 2.242518 0.453807 1.99414 1.026396 1.397268

Train 7 0.024372 0.033182 0.023655 0.055279 0.252583 0.333357 0.250018 0.339791

Test 7 2.011061 2.101346 1.996374 1.767298 0.722817 0.856205 1.541001 1.202903

Train 14 0.047708 0.059617 0.044003 0.09951 0.326598 0.432997 0.432744 0.403959

Test 14 2.342152 2.110279 1.933691 1.848344 0.76622 1.046646 1.806664 1.176185

Train 21 0.070645 0.082996 0.063977 0.14188 0.3988 0.49228 0.614732 0.451253

Test 21 2.285203 2.112131 1.904707 1.813019 0.88611 1.043608 1.623965 1.232625

Train 30 0.106036 0.116719 0.093445 0.200639 0.408735 0.577086 0.789252 0.685385

Test 30 2.353681 2.07895 1.93567 1.908543 1.025704 1.073062 1.60721 1.124144

Table 10: RAE values of decision tree models for fatal cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.013429 0.016858 0.012715 0.025721 0.365092 0.533253 0.33507 0.346589

Test 3 1.671756 2.410864 2.669118 2.151188 0.35545 1.076923 2.9 0.401786

Train 7 0.024607 0.031779 0.025012 0.054875 0.386407 0.500952 0.315743 0.36852

Test 7 2.15945 1.811386 1.740921 2.056796 0.451888 0.579075 1.226496 0.707071

Train 14 0.047976 0.060438 0.047401 0.100102 0.556737 0.604513 0.433459 0.459151

Test 14 2.539474 1.736119 1.734947 1.948638 0.416003 0.591684 1.268421 0.582336

Train 21 0.071128 0.08851 0.069676 0.143488 0.591582 0.697237 0.590335 0.564496

Test 21 2.585315 1.707506 1.658565 1.822661 0.39501 0.577598 1.08697 0.652772

Train 30 0.1068 0.13015 0.100888 0.20558 0.944503 0.871579 0.740768 0.687041

Test 30 2.928104 1.708068 1.631034 1.726235 0.34411 0.681869 0.912318 0.795688
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periods. To reduce the absolute error, it is necessary to form
databases based on daily morbidity and mortality.

The intricate relationship between machine learning and
the available data forms the bedrock of our research
endeavors. At its core, machine learning thrives on data;
the quality, granularity, and comprehensiveness of this data
directly influence the efficacy of the predictive models [40].

In the context of our study, the data sourced from the World
Health Organization Coronavirus Dashboard served as the
empirical foundation upon which our models were trained,
validated, and tested.

They are implementing a forecasting system for a phe-
nomenon as dynamic and multifaceted as the COVID-19
pandemic presents a unique set of challenges distinct from

Table 11: MAPE values of decision tree models for confirmed cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.00967 0.013254 0.021191 0.006507 0.356152 7.767514 0.28222 0.332541

Test 3 0.002969 0.028793 0.007956 0.008657 0.261771 0.140789 0.380797 0.265373

Train 7 0.017271 0.025857 0.039773 0.01404 0.380668 7.023082 0.318073 0.337635

Test 7 0.007039 0.060258 0.018863 0.023588 0.5067 0.097694 0.266316 0.2949

Train 14 0.033259 0.046418 0.070861 0.025124 0.550332 1.016977 0.477096 0.402219

Test 14 0.012129 0.10712 0.037762 0.049494 0.786634 0.128593 0.317757 0.261905

Train 21 0.048688 0.065957 0.098308 0.035699 0.753696 8.665087 0.740159 0.586648

Test 21 0.016697 0.146555 0.056531 0.075343 0.911067 0.151105 0.328267 0.258661

Train 30 0.071595 0.092106 0.13495 0.050189 1.020199 7.372852 1.175772 0.658837

Test 30 0.022424 0.196695 0.081206 0.107261 1.142982 3.224258 0.364767 0.263778

Table 12: MAPE values of decision tree models for fatal cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.002234 0.005224 0.011059 0.008466 1.051796 5.287666 1.912357 0.398852

Test 3 0.000997 0.005873 0.001607 0.002224 0.354808 0.1715 0.478632 0.106842

Train 7 0.004101 0.009886 0.021461 0.01804 1.051796 5.526710 5.737070 0.419804

Test 7 0.002166 0.015232 0.004348 0.00512 0.259721 0.138082 0.418675 0.150069

Train 14 0.007975 0.018619 0.039748 0.032437 1.051796 6.683686 2.868535 0.582338

Test 14 0.003567 0.034589 0.01004 0.0103 0.236864 0.158846 0.456952 0.145728

Train 21 0.011804 0.027272 0.056557 0.046043 1.338650 6.989663 9.561783 0.783502

Test 21 0.004658 0.054933 0.016894 0.016401 0.293422 3.838783 0.383957 0.173759

Train 30 0.01766 0.039383 0.079718 0.065041 1.061358 7.850224 3.824713 0.698311

Test 30 0.005699 0.085935 0.028394 0.026349 0.581109 2.600466 0.321396 0.221548

Table 13: MAE values of support vector regression models for confirmed cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 177461.93 42413.24 345269.25 6168.6 21543.02 6972.67 12801.19 1318.78

Test 3 29971.42 72498.7 31604.26 14735.92 9307.22 20931.64 11677.88 2895.02

Train 7 265493.7 77343.36 611024.82 11372.04 23277.99 9217.39 15721.31 1711.46

Test 7 18319.71 67374.52 17284.68 40875.99 6040.81 18690.31 17388.82 4444.81

Train 14 445035.41 146217.19 873006.51 27015.18 29017.56 12723.74 19964.82 2773.76

Test 14 28997.77 377267.67 71368.74 107157.97 5043.77 22257.87 25912.74 6375.72

Train 21 667271.19 230578.59 1075023.62 43444.73 31731.82 10768.37 26608.89 2806.22

Test 21 28105.31 1147611.83 246277.95 207970.03 4936.3 22706.61 30160.83 7056.76

Train 30 941923.57 297501.25 1375049.59 86625.4 36162.97 12782.22 34437.58 3063.81

Test 30 39144.99 2740984.16 782585.62 395002.04 6565.9 33405.66 27506.52 7493.87
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conventional forecasting endeavors. Traditional forecasting
models often rely on stable, predictable patterns. In contrast,
the COVID-19 pandemic, influenced by many sociopolitical,
environmental, and biological factors, exhibits a level of vol-
atility that demands a more adaptive and nuanced modeling
approach [41]. Our machine learning models, particularly
the support vector regression, were designed to navigate this

volatility, learning from the intricacies of the data to make
robust predictions.

Looking ahead, the field of COVID-19 forecasting is
poised to encounter several challenges. The emergence of
new viral strains, changing vaccination rates, and evolving
public health measures can introduce unforeseen complexi-
ties into the data. By emphasizing the importance of daily

Table 14: MAE values of support vector regression models for fatal cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 399.16 90.81 72.14 617.96 50.06 14.44 28.87 40.12

Test 3 102.69 180.45 20.51 64.21 41.55 21.76 5.51 21.52

Train 7 681.17 171.72 214.52 1067.67 50.84 15.75 30.78 44.9

Test 7 225.59 461.32 21.5 38.32 27.67 14.07 3.79 15.48

Train 14 1202.87 321.98 641.75 1778.12 60.34 19.37 33.74 58.43

Test 14 352.16 1085.13 22.18 136.92 24.66 36.1 9.06 24.67

Train 21 1723.38 476.29 1037.56 2673.69 68.13 24.05 39.41 67.3

Test 21 439.12 1787.47 20.5 394.72 22.38 39.28 11.32 42.76

Train 30 2471.49 743.6 1612.14 3814.64 77.89 27.76 41.99 89.43

Test 30 496.3 2963.69 19.63 985.68 22.33 37.67 13.84 57.79

Table 15: RAE values of support vector regression models for confirmed cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.020578 0.014347 0.051229 0.010876 0.385339 0.269954 0.227337 0.249052

Test 3 0.533316 0.583329 0.404621 0.978625 0.274556 1.645081 0.369008 0.739826

Train 7 0.030785 0.026163 0.090661 0.020051 0.416373 0.35686 0.279196 0.32321

Test 7 0.167765 0.172721 0.090169 0.767667 0.246486 0.804955 1.062733 0.62577

Train 14 0.051604 0.04946 0.129533 0.047632 0.519036 0.492612 0.354557 0.523824

Test 14 0.178381 0.511014 0.175353 0.96603 0.230273 0.943323 1.281093 0.856766

Train 21 0.077373 0.077997 0.159507 0.0766 0.567586 0.416908 0.472549 0.529954

Test 21 0.12184 1.072314 0.387529 1.162875 0.236375 0.814444 1.18144 0.962439

Train 30 0.10922 0.100634 0.204023 0.152735 0.646846 0.494876 0.61158 0.578599

Test 30 0.129235 1.732956 0.841585 1.561756 0.331465 0.903673 1.068853 1.032478

Table 16: RAE values of support vector regression models for fatal cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.02106 0.01548 0.009339 0.037708 0.525147 0.362153 0.530935 0.264905

Test 3 1.175869 2.261846 1.357158 0.624051 0.88613 1.255252 1.652311 0.5763

Train 7 0.03594 0.029272 0.02777 0.06515 0.533342 0.395006 0.566022 0.29647

Test 7 1.534016 1.651911 0.341557 0.15409 0.825802 0.419491 0.396898 0.547401

Train 14 0.063465 0.054886 0.083077 0.108502 0.632977 0.486001 0.620467 0.385795

Test 14 1.707127 1.591522 0.150748 0.257448 0.802261 0.602924 0.667564 0.688777

Train 21 0.090928 0.081189 0.134317 0.16315 0.714705 0.603202 0.724743 0.444301

Test 21 1.65779 1.575147 0.078365 0.431956 0.776902 0.538983 0.751257 0.847105

Train 30 0.1304 0.126756 0.208699 0.232772 0.817074 0.696338 0.772135 0.590408

Test 30 1.732633 1.589979 0.043109 0.626331 0.744521 0.552149 0.806762 0.919628
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and cumulative data, our research offers a blueprint for
addressing some of these challenges. By ensuring that our
models are trained on comprehensive datasets that capture

the full spectrum of the pandemic’s dynamics, we enhance
their adaptability and resilience against future uncer-
tainties [42].

Table 17: MAPE values of support vector regression models for confirmed cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.01081 0.00761 0.037698 0.002576 0.428747 0.834929 0.26526 0.207072

Test 3 0.000968 0.005581 0.001588 0.00378 0.266631 0.110273 0.136966 0.156381

Train 7 0.016709 0.014585 0.06877 0.004817 0.475477 0.706441 0.422481 0.271758

Test 7 0.00059 0.005033 0.000865 0.010244 0.179739 0.087962 0.172116 0.168697

Train 14 0.029249 0.029065 0.103574 0.011468 0.655775 0.829557 0.594183 0.414621

Test 14 0.000927 0.025298 0.003399 0.025782 0.239441 0.109741 0.220938 0.216823

Train 21 0.04544 0.052855 0.13259 0.018537 0.803028 0.870909 0.839054 0.526918

Test 21 0.000895 0.07172 0.011317 0.047973 0.260429 0.107378 0.242646 0.23299

Train 30 0.063497 0.067262 0.176482 0.036429 0.946648 0.784371 0.993964 0.631374

Test 30 0.001233 0.157201 0.034564 0.086736 0.342491 0.288011 0.261809 0.268311

Table 18: MAPE values of support vector regression models for fatal cases.

Forecast period (days)
Cumulative cases Daily cases

Germany Japan South Korea Ukraine Germany Japan South Korea Ukraine

Train 3 0.003765 0.004802 0.006072 0.010939 4.416103 4.064632 0.857073 0.30425

Test 3 0.000701 0.005511 0.000817 0.000646 1.948793 0.222187 0.276933 0.2145

Train 7 0.006419 0.009178 0.015502 0.019093 4.343917 4.159286 0.956759 0.317696

Test 7 0.001539 0.013893 0.000854 0.000385 1.320155 0.123105 0.15837 0.142423

Train 14 0.011256 0.016954 0.043637 0.031653 4.861689 3.829763 0.911865 0.401937

Test 14 0.002398 0.031704 0.000878 0.001358 1.392047 0.15902 0.21682 0.173629

Train 21 0.016029 0.024938 0.070958 0.046336 4.903038 4.657209 0.497613 0.517992

Test 21 0.002987 0.050664 0.000807 0.003872 1.797445 0.419907 0.227797 0.229247

Train 30 0.02277 0.038143 0.10976 0.063765 5.883873 3.226588 0.881677 0.654389

Test 30 0.003373 0.079958 0.000763 0.00951 4.348637 0.284453 0.239565 0.267526

Table 19: Accuracy of models (%).

Data Germany Japan South Korea Ukraine

Logistic regression

Cumulative new cases 99.95162 99.70030 99.86759 99.87374

Daily new cases 99.41299 96.77574 99.72373 99.61698

Cumulative fatal cases 99.98934 99.79289 99.97083 99.97365

Daily fatal cases 98.11139 98.16951 99.54319 99.70875

Decision tree

Cumulative new cases 99.97758 99.80331 99.91879 99.89274

Daily new cases 98.85702 96.77574 99.63523 99.73622

Cumulative fatal cases 99.99430 99.91407 99.97161 99.97365

Daily fatal cases 99.41889 97.39953 99.67860 99.77845

Support vector regression

Cumulative new cases 99.99877 99.84280 99.96544 99.91326

Daily new cases 99.65751 99.71199 99.73819 99.73169

Cumulative fatal cases 99.99663 99.92004 99.99924 99.99049

Daily fatal cases 95.65136 99.71555 99.76044 99.73247
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Our study contributes significantly to the broader dis-
course on the role of machine learning in healthcare systems.
By demonstrating the potential of machine learning models
to make accurate short-term forecasts in the context of a
global pandemic, we underscore the transformative potential
of these technologies in public health decision-making. As
healthcare systems worldwide grapple with the challenges
of the 21st century, from pandemics to chronic diseases,
the integration of machine learning tools, as evidenced by
our research, will be pivotal in driving innovation, efficiency,
and improved patient outcomes [43].

The salient observation from our research underscores the
differential impact of accumulated holiday data versus daily
data during weekdays on the predictive accuracy of our
models. While evident in our results, this distinction warrants
a more in-depth exploration to elucidate the underlyingmech-
anisms that contribute to this phenomenon.

One plausible hypothesis is that during holidays and
weekends, there is a marked reduction in the number of
individuals seeking medical attention, leading to the poten-
tial underreporting of cases. This underreporting can intro-
duce noise into the data, making daily figures during these
periods less reliable. By accumulating data over such periods,
we might mitigate this noise’s effects, thereby enhancing the
model’s predictive capabilities. Conversely, on regular week-
days, when medical facilities operate at their usual capacity
and individuals are more likely to seek medical care, daily
data provides a more granular and accurate representation
of the disease’s spread.

Furthermore, the implications of this observation extend
beyond the realm of academic interest. In practical terms,
understanding the nuances of data collection and its impact
on model accuracy can significantly influence how healthcare
systems approach data-driven decision-making. For instance,
policymakers and healthcare administrators could prioritize
the collection of cumulative data during holiday-rich periods
and place greater emphasis on daily data during regular oper-
ational days. This tailored approach to data collection, driven
by our findings, could potentially enhance the accuracy of
future predictive models, leading to more informed and effec-
tive epidemic control measures.

Moreover, while our study has shed light on this partic-
ular aspect of data utilization, it also underscores the broader
need for a holistic approach to model development in
healthcare. It is not merely about selecting the right algo-
rithm or having vast amounts of data; it is about under-
standing the intricacies of the data, the context in which it
is collected, and the myriad factors that can influence its
quality and reliability. Only by addressing these nuances
can we truly harness the power of machine learning in the
service of public health.

6. Conclusions

The article describes the results of an experimental study of
three models for predicting the dynamics of COVID-19
based on statistical machine learning methods: logistic
regression, decision tree, and support vector regression.
For the experiments, data on the incidence and mortality

of COVID-19 in Germany, Japan, South Korea, and
Ukraine, provided by the World Health Organization
COVID-19 Dashboard, were used.

All developed models have shown sufficient accuracy for
use in healthcare practice for the development and imple-
mentation of control measures to curb the spread of infec-
tious diseases.

The prediction accuracy of the logistic regression model
ranged from 96.78% to 99.95% for morbidity and from
98.11% to 99.99% for fatal cases. The accuracy of the decision
tree model ranged from 96.78% to 99.98% for morbidity and
from 97.39% to 99.99% for lethal cases. The accuracy of the sup-
port vector regression model ranged from 99.65% to 99.99% for
morbidity and from 95.65% to 99.99% for lethal cases.

At the same time, the analysis of model indicators for all
data showed that the most accurate model is a model based
on the support vector regression method. The results of the
model analysis showed that the use of cumulative case and
death data as input increased the accuracy of the models,
which at first glance is attractive and may lead to the mis-
conception of not using data on daily new cases and deaths.
However, the evaluation of models using MAE shows a
much smaller absolute error.

It should be concluded that to build models, it is neces-
sary to use the entire set of available data, both daily and
cumulative, giving preference to cumulative data during
periods full of holidays and weekends and daily data in other
periods. To reduce the absolute error, it is necessary to form
databases based on daily morbidity and mortality.

The scientific novelty of the research lies in the develop-
ment of COVID-19 predictive models based on statistical
machine learning methods. Unlike other studies, the article
analyzes the performance of the model depending on differ-
ent forecasting periods. Unlike other studies, the article ana-
lyzes the use of various input data (cumulative and daily) for
modeling. The results of the analysis will increase the effec-
tiveness of the use of machine learning models of infectious
diseases in healthcare systems.
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