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Manual monitoring of vital signs, which often fails to capture the onset of deterioration, is the main monitoring modality in most
Ghanaian hospitals due to the high cost and inadequate supply of patient bedside monitors. Consumer wearable devices (CWDs)
are emerging, relatively low-cost technologies for continuous monitoring of physiological status; however, their validity has not
been established in low-resource clinical settings. We aimed to (1) investigate the validity of the heart rate (HR) and oxygen
saturation (SpO2) data from two widely used CWDs, the Fitbit Versa 2 and Xiaomi Mi Smart Band 6, against gold standard
bedside monitors in one Ghanaian hospital and (2) develop a web application to capture and display CWD data in a clinician-
friendly way. A healthy volunteer simultaneously wore both CWDs and blood pressure cuffs to measure HR and SpO2. To test
for concordance, we conducted the Bland-Altman and mean absolute percentage error analyses. We also developed a web
application that retrieves and displays CWD data in near real time as text and graphical trends. Compared to gold standards
(patient monitor and manual), the Fitbit Versa 2 had 96.87% and 96.67% measurement accuracies for HR, and the Xiaomi Mi
Smart Band 6 had 94.24% and 93.21% measurement accuracies for HR. The Xiaomi Mi Smart Band 6 had 98.79%
measurement accuracy for SpO2. The strong concordance between CWD and gold standards supports the potential
implementation of these devices as a novel method of vital sign monitoring to replace manual monitoring, thus saving costs
and improving patient outcomes. Further studies are needed for confirmation.

1. Introduction

There are five traditional vital signs that are considered
the gold standard for monitoring physiologic status: respi-
ratory rate (RR), heart rate (HR), body temperature, blood
pressure (BP), and blood oxygen saturation (SpO2). As
such, there is a need for continuous monitoring of these
vital signs in hospitalized patients [1]. Although changes in
vital signs accurately predict clinical deterioration leading to

adverse events, these changes often go unnoticed in low- and
middle-income countries (LMICs) or are detected late [2–4].
This is due to the inability to frequently monitor and interpret
vital signs, inadequate recording of vital signs, or because of an
inappropriate response to abnormal values [3, 5–7]. The
current bedside vital sign monitors provide much needed con-
tinuous vital sign data; however, several factors make these
monitors unsustainable and ineffective in resource-limited
settings [8]. The bedside monitors are expensive, and their
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service and maintenance requirements generally far exceed
local resources. Together with voltage instability, these factors
contribute to the short lifespan of conventional monitoring
equipment.

Additionally, human resource factors make conventional
monitoring devices less than ideal due to the large amount of
time required to take patient vitals and record them manu-
ally at the appropriate frequency. The two major contribut-
ing factors to this phenomenon are a lack of monitoring
equipment and a shortage of staff to monitor vital signs [9,
10]. In 2017, a survey of nurse anesthetists trained in Ghana
showed that 29% work alone or in pairs and only 60% have
access to capnography and less than 80% have EKG moni-
toring [11]. In a recent study of 232 nurses in Ghana, 44%
of nurses reported adequate staffing and resources [12]. A
quality improvement initiative at a regional hospital in
Ghana that included improvements in staffing and equip-
ment was able to cut post-C-section mortality due to hemor-
rhage from 14.8% to 1.6% over 4 years [13].

Wearable technology encompasses a myriad of devices
either worn directly or loosely attached to a person [14].
Consumer wearable devices (CWDs) are emerging and
increasingly ubiquitous wearable technology that enhance
the continuous monitoring of human physiological data
during daily activities or in a clinical environment with the
benefit of lessening discomfort and/or interference with nor-
mal human activities [15], the use of which has increased
among both adults and children [16]. CWDs have incorpo-
rated sensors that are comparable to clinical-grade bedside
monitors and can transmit data in near real time to a smart-
phone using Bluetooth technology and then to a cloud com-
puting service that can be shared with a clinical team [17].
With these capabilities, CWDs such as the Fitbit and the
Xiaomi have great potential as a wireless monitoring system
alternative to traditional methods of monitoring.

CWDs have been implemented in some clinical settings
as a supplement for vital sign monitoring. In the United
States, the ViSi Mobile device from Sotera Wireless [18] is
a commercial product that has been accepted by the Food
and Drug Administration (FDA) as a health device and is
being used as a monitoring device in some hospitals. It reads
and records SpO2 levels, skin temperature, electrocardio-
gram (ECG), HR, BP, and RR [19]. In addition, SensiumVi-
tals from Sensium Healthcare Limited [20] in the UK is an
FDA-approved and Conformité Européenne-marked wear-
able vital sign monitoring system that records HR, RR, and
body temperature [21].

We believe that Bluetooth-based wearable physiology
monitors, such as Fitbit or Xiaomi, connected to central
monitoring stations may be able to overcome the limitations
of currently used vital sign monitors and improve the care of
patients. The aim of this study was to investigate the validity
of the HR and SpO2 data from two widely used CWDs, the
Fitbit Versa 2 and Xiaomi Mi Smart Band 6, against gold
standard clinical bedside monitors used in one Ghanaian
hospital, to develop a fully functioning web application to
capture and display CWD data in a clinician-friendly way
and assess the feasibility of incorporating this platform into
clinical practice.

2. Materials and Methods

2.1. Participants. A healthy 22-year-old male volunteer with
no medical or surgical history was used as the study subject.
This study formed part of a larger study for which ethical
clearance was obtained (KBTH-IRB 00092/2022).

2.2. Devices Used in the Study. The Fitbit Versa 2 and Xiaomi
Mi Smart Band 6 were selected for the study to assess the fea-
sibility of utilizing them as alternatives and/or replacements
for the manual mode of vital sign measurement in various
hospitals in Ghana. These devices were chosen based on the
success of previous studies using similar devices for the mon-
itoring of physiologic data [22–27]. The Philips MX450
patient monitor and a portable BP and HRmonitoring device
were used for the gold standard measurements. Both wear-
able devices were worn on the wrist of the volunteer’s left
arm, and 5 ECG leads were placed on the chest of the volun-
teer and connected to the Philips monitor for HR data.

2.3. Study Procedure. The study was carried out in a closed
room environment at the University of Ghana Medical Cen-
ter (UGMC) over a two-day period. The study was con-
ducted in an environment with a temperature of 25
degrees Celsius. The two devices were placed on the domi-
nant arm of the volunteer and synchronized with their
respective mobile applications on a smartphone.

Recording of vital signs commenced at least one minute
after placement of the ECG electrodes. The volunteer was laid
on a table in a supine position to ensure accurate HR record-
ings as previously done in a similar study [28]. The HR and
SpO2 data from both the Philips MX450 patient monitor
and the CWDs were recorded in intervals of one minute.

2.4. Data Collection and Processing. The Philips MX450
patient monitor was set to record HR and SpO2 data every
minute. To obtain SpO2 data, a pulse oximeter was placed
on the finger of the volunteer and connected to the Philips
patient monitor. One member of the team had the task of
recording the HR and SpO2 data from the Philips MX450
patient monitor into a comma-separated values (CSV) file.
The data retrieved from the patient monitor came with the
time at which it was recorded and data from each CWD
were matched based on time stamps. A total of 116 HR data
points were recorded by the patient monitor on day one and
121 HR data points on day two, summing up to a total of
237 HR data points obtained from the Philips MX450
patient monitor. The Philips MX450 patient monitor
recorded 116 SpO2 data points on day one and 121 on day
two, also summing up to a total of 237 SpO2 data points.

To retrieve data recorded by Fitbit, an application pro-
gramming interface (API) was registered on the Fitbit web-
site and then a python code was written to make a get
request to the registered API with Fitbit. The data was
retrieved in a CSV file format with time stamps and in inter-
vals of one minute. The retrieved CSV file from Fitbit
contained 135 HR data points for day one and 121 for day
two, summing up to a total of 256 HR data points.

To retrieve data from Xiaomi, an account was registered
with a third-party website, Huami. Data recorded on the
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Xiaomi device were retrieved in a CSV file format via the
Huami website. The data recorded by the Xiaomi device
contained 130 HR data points on day one and 121 on day
two making a total of 251 HR data points. Data retrieved
from the Xiaomi device were also recorded every minute
and came with the time of recording as well. The Xiaomi
device also recorded SpO2 with 36 data points on day one,
115 data points on day two, and 151 SpO2 overall data
points. The SpO2 data were recorded manually and proc-
essed into a CSV file. HR data obtained from all the devices
were processed into a single CSV file for each day and com-
bined to form an overall HR dataset for each device in a
single CSV file. This resulted in a total of three CSV files
for day one, day two, and overall. The data from all the
devices were matched using the time at which they were
recorded. A total of 116 data points were processed into a
single CSV file for each device on day one, and 121 HR data
points were processed for day two, resulting in 237 data
points for HR. Thirty-six SpO2 data points were processed
into a CSV file for Philips MX450 patient monitor and
Xiaomi on day one, 115 SpO2 data points on day two, and
an overall of 151 data points for SpO2.

To obtain manual data from the portable BP monitor,
the cuff was worn on the left arm around the biceps and tri-
ceps 2-3 cm from the elbow and fastened tightly. The cuff
was connected to the BP device, which provided pressure
on the arm for the physiological data to be measured. HR
data was recorded in intervals of 30 minutes and then later
in intervals of one minute to obtain sufficient data points.
The time at which the data was taken was then recorded.
A total of 116 HR data points were obtained.

2.5. Statistical Analysis. All statistical analyses on data col-
lected and processed were performed in Python (Jupyter
Notebook) which was locally installed on a computer. The
Python libraries used were NumPy, SciPy, Matplotlib, sea-
born, statsmodels, and pandas.

The normality of the data collected was tested to identify
whether the dataset followed a Gaussian distribution in order
to select the most appropriate tests for the dataset [29]. To
achieve this, quantile-quantile (Q-Q) plots, histogram plots,
and the Shapiro-Wilk and Kolmogorov-Smirnov tests were
used. All tests showed that the datasets did not follow a nor-
mal distribution and therefore only statistical analyses valid
for nonnormally distributed datasets were used to evaluate
the performance of the CWDs against the patient monitor
and the manual monitoring device.

Three major analyses were performed on the datasets in
Python. The first was correlation analysis. The Spearman
correlation coefficient was calculated in Python using the
in-built libraries. The Spearman correlation coefficient mea-
sures the relationship between two variables and in this case
two different methods of measurement [30, 31]. The import
of the Spearman correlation analysis was to determine
whether the measurements from the Fitbit and Xiaomi
devices were significantly different (lower or higher) com-
pared to values recorded by the gold standard devices. The
Bland-Altman analysis was also performed to compare mea-
surements made with the various devices. The Bland-Altman

analysis is a plot that shows the level of agreement between a
new method of measurement and an already existing method
of measurement by estimating the mean difference and the
level of agreement between the two methods used in measur-
ing the same quantity over a 95% confidence interval [32].
The plot also gives information on whether the new method
overestimates or underestimates the measurement. Addi-
tionally, the Bland-Altman plot identifies possible outliers,
making it suitable for the study. The final metric that was
evaluated was the mean absolute percentage error (MAPE)
to assess the accuracy of the CWDs. The MAPE gives errors
in estimating a quantity by a new method of measurement
relative to a gold standard method in percentage [33].

For further correlation analyses, the Mann–Whitney U
test was used to compare the differences between the heart
rate data from the patient monitor and the two wearable
devices. This nonparametric test was used to assess the rela-
tionship between the gold standards and the wearable
devices using the null hypothesis Ho: there exists a signifi-
cant relationship between the gold standards and the wear-
able devices in terms of heart rate measurement. This
analysis was also performed in Python.

2.6. Web Application Development. To develop a web appli-
cation to store and display data collected from the wearable
devices, the concept of the application (UI/UX) was
designed in Figma. The design was translated into a front-
end design using hypertext markup language (HTML), cas-
cading style sheets (CSS), and JavaScript programming lan-
guages. The backend of the web application was developed
in Django.

The backend was designed to communicate with the
CWD web application programming interface (API) to
retrieve an individual’s HR (Figure 1). With this design, users
will be able to view patients’HR and SpO2 data (Figure 2). The
SQLite 3 database tables were successfully converted to Hero-
ku’s Postgres database. The architectural diagram of the web
application is described as follows:

When a user submits a request, such as uploading man-
ual vitals, viewing patient data, and searching for a patient,
the web server is able to interact with the database, retrieving
or posting the data requested. Essentially, the following
actions may be executed:

(1) Display of patient data on the web interface for the
user to visualize

(2) Fitbit and Xiaomi APIs communicate with their web
servers to retrieve physiological data when the user
makes a request to visualize patient heart rate and
pulse oxygenation data

(3) Patients are registered on the Fitbit and Zepp Life
apps using an email and password with the wear-
ables worn on the wrist

(4) Physiological data obtained from patients is stored
on cloud databases via the android application web
servers
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(5) Physiological data is synced every 15 minutes to save
data into the cloud databases

(6) Data obtained from manual monitoring is tran-
scribed into an Excel sheet and saved as CSV

(7) Data obtained from the Philips IntelliVue MX450
patient monitor is recorded with a USB drive and
saved as a CSV file

(8) Data obtained from both the manual monitoring
and the Philips patient monitor can be uploaded into
the web application’s database

3. Results

3.1. Statistical Analysis. Normality tests conducted on the
datasets using the Shapiro-Wilk and Kolmogorov-Smirnov
tests demonstrated that all the datasets were not normally
distributed as the recorded p value in each case was less
than 0.05.

The comparison between the wearable devices and the
gold standard measurements shows a positive correlation for
the evaluated Spearman correlation coefficient (Table 1 and
Figure 3). Fitbit recorded a strong positive correlation of
0.749730 for HR against the patient monitor, which is a very
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Figure 1: Flow chart showing how to make a get request from the Fitbit API.
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good linear relationship as expected. Xiaomi also recorded a
strong positive correlation of 0.607200 for HR against the
patient monitor. Xiaomi and Fitbit recorded a correlation
coefficient of 0.422363 and 0.841943 for HR, respectively,
when compared to the manual mode of measurement.

The Bland-Altman plot for Fitbit HR against patient
monitor (Table 2) showed a mean difference of 0.63 bpm,
0.91 bpm, and 0.77 bpm on day one, day two, and overall,
respectively (Figure 4). This means that the Fitbit device
was overestimating the HR by 0.63 beats per minute on
day one, 0.91 beats per minute on day two, and an overall
overestimation of 0.77 beats per minute. The Bland-
Altman plot for Xiaomi against the patient monitor showed
a mean difference of -1.22 bpm on day one, -0.51 bpm on
day two, and an overall mean difference of -0.88 bpm. This
result means that Xiaomi underestimated the HR measure-
ment by 1.22 bpm on day one, 0.51 bpm on day two, and
an overall underestimation of 0.88 bpm. The Bland-Altman
plot for Xiaomi also revealed quite a large limit of agreement
between -10.53 and 8.82 compared to that of Fitbit. Only six
and fifteen outliers were found in the plot for Fitbit and
Xiaomi, respectively, out of the 237 data points which means
that the remaining data points lie in the 95% confidence
interval (Figures 4(a) and 4(b)).

The Bland-Altman plot for Fitbit HR data against the
manual monitoring device showed that Fitbit was underesti-
mating HR measurement by 1.56 beats per minute with a
limit of agreement between -7.23 and 4.11 with three outliers
(Figure 4(c)). When the results from Fitbit against the
patient monitor were compared to Fitbit against the manual
monitor, it can be observed that the limit of agreement of
Fitbit against the manual monitor is larger than that against
the patient monitor; this indicates that Fitbit agrees more
with the patient monitor than the manual monitor. The
Bland-Altman plot for Xiaomi HR against the manual mon-
itor displayed a HR underestimation by 2.12 beats per
minute and a limit of agreement between -15.07 and 10.83
with only one outlier over a 95% confidence interval
(Figure 4(d)). Similar to the case of Fitbit, Xiaomi recorded
large limits of agreement when compared to the manual
monitoring device than to the patient monitor. The Fitbit
device used does not measure SpO2 data; however, the
Xiaomi device does. The Bland-Altman plot for Xiaomi
SpO2 data against the Philips MX450 patient monitor
SpO2 data revealed a mean difference of 1.11% on day one,
-0.78% on day two, and an overall of -0.33%. The plot also
showed a narrow limit of agreement between -3.47 to 2.81,
which is because all of the SpO2 readings recorded were
between 95% and 100% (Figure 4(e)).

The outliers in the Bland-Altman plots (extreme peaks)
observed in Figure 3 for the Xiaomi wearable device may
be due to artefacts due to unexpected movements of the vol-
unteer during the data collection process. The fact that these
movements were not detected for the Fitbit wearable device
may reflect differences in the ability of the two algorithms
used in interpreting data from the sensors of the respective
CWDs to detect and correct for anomalies in measurements.

The accuracy of the devices was measured by a metric
known as the mean absolute percentage error (MAPE) as

explained earlier. From the MAPE (Table 3), the accuracy
of the devices with regard to HR and SpO2 data was calcu-
lated in percentages. Fitbit recorded a HR accuracy measure-
ment of 97.16% on day one, 96.6% on day two, and overall
HR accuracy of 96.87% when compared to the patient mon-
itor. Xiaomi recorded HR accuracy of 93.85% on day one,
94.61% on day two, and overall accuracy of 94.24% when
compared to the patient monitor. Xiaomi again recorded
SpO2 accuracy measurement when compared to the patient
monitor as follows: 98.08% on day one, 99.01% on day two,
and an overall accuracy of 98.79%. When compared to the
manual monitor, Fitbit and Xiaomi recorded accuracies of
96.64% and 93.21%, respectively, for HR measurement.

The results from the correlation analysis using the
Mann–Whitney U test demonstrated that we fail to reject
the null hypothesis that there exists a significant relationship
between the Philips MX450 patient monitor and the Xiaomi
device in terms of heart rate measurement since the p value
in this case (p value = 0.192666) is greater than 0.05 as
expected (Table 4). In contrast, results obtained for Fitbit
against the Philips MX450 patient monitor provides evi-
dence that supports the alternative hypothesis (H1) since
the p value (0.030022) generated was less than 0.05. Also,
there is enough evidence to reject the null hypothesis that
“there exists a significant relationship between the Manual
Monitor and the wearable devices in terms of heart rate
measurement” since the reported p values are less than
0.05. It is worth noting that the data collected from the man-
ual monitor is instantaneous while that collected from the
wearable devices is an average over a minute.

3.2. Web Application Development. The system was designed
with the following pages to achieve its functionality
(Figure 5).

Sign Up. The user is required to provide the following
credentials: first name, last name, username, designation,
email, and password to sign up. A verification link is sent
to the email provided earlier, and the user is required to click
on the link to have access to the system.

Sign In. The user is required to provide a username and
password as credentials to sign in to the system. When the
email and password provided are valid, the system allows
the user to have access to the system.

Register New Patient. The user can register a patient if it
is the patient’s first time visiting the hospital. The patient is
given a unique outpatient department (OPD) number,
which is used for identification. This number is used to iden-
tify each patient any time he or she visits the hospital. Addi-
tionally, the user is able to save the patient’s surgical history
in the system’s database. This helps to maintain the medical
history of the patient.

Table 1: Spearman’s correlation coefficient results for heart rate for
Fitbit and Xiaomi against the continuous bedside monitor and
manual monitor.

Device Philips MX450 patient monitor Manual monitor

Fitbit 0.749730 0.841943

Xiaomi 0.607200 0.422363
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Upload Patient Vitals. Vital signs are taken manually in
the hospital every four (4) hours and written in a document
for safekeeping and records. The user is able to upload
patient vitals into the system’s database, which is a more
secure way of storage. Also, the vital sign data can be
retrieved as a CSV file whenever it is needed.

View Patient Vitals. Patient HR obtained from Fitbit web
API is displayed here as a line chart. SpO2 data is also dis-

played as a line chart. The chart displays the minimum,
average, and maximum HR and SpO2 trends. A table
included also shows minimum, average, and maximum HR
and SpO2 for the last 24 hours, 4 hours, 1 hour, and 5
minutes, respectively.

Receive Alerts for Abnormal Vitals. The table included in
the vital visualization page alerts the user of abnormal HR
and SpO2 data by changing the text color to red when vitals

Table 2: Results from the Bland-Altman plot.

Devices Mean difference Limits of agreement Outliers

Fitbit heart rate vs. patient monitor 0.77 -3.78 to 5.33 6

Fitbit heart rate vs. manual monitor -1.56 -7.23 to 4.11 3

Xiaomi heart rate vs. patient monitor -0.86 -10.56 to 8.82 15

Xiaomi heart rate vs. manual monitor -2.12 -15.07 to 10.83 1

Xiaomi SpO2 vs. patient monitor -0.33 -3.47 to 2.81 4
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Figure 3: Line and scatter plots of heart rate measurements obtained from Xiaomi band (XIAOMIHR) and Fitbit (FITBITHR) compared to
the gold standards of Philips IntelliVue MX450 patient monitor (PTMTHR) and manual blood pressure monitor (MANUALHR). (a) Line
plot of PTMTHR, XIAOMIHR, and FITBITHR measurements. (b) The same information in a scatter plot. (c) Line plot of MANUALHR,
XIAOMIHR, and FITBIT HR measurements. (d) The same information in a scatter plot.
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are high and blue when vitals are low. However, the text
color remains black when vitals are normal according to
the standard range for HR and SpO2.

Export Data. Users are able to export all patient informa-
tion as a CSV file. In addition, they are able to export all
patient surgical information, CWD data, and manual moni-
toring data, as CSV files. Users are also able to import data
into the system’s database.

Dashboard: Users can view recent patient information
such as HR, SpO2, temperature, and step count.

4. Discussion

This project sought to assess the feasibility of using CWDs to
monitor SpO2 and HR of patients in a quaternary care Gha-
naian hospital. HR and SpO2 of a healthy male volunteer
were successfully monitored in a hospital setting using Fitbit
Versa 2 and Xiaomi Smart Band 6, showing high concor-
dance between measures from these CWDs with the clinical
gold standard. The CWD data were simultaneously inte-
grated with the web application designed by the project
team. Simulation was achieved by successfully connecting
the CWDs wirelessly to the web application to display the
vital signs measured in a concise and easily understandable
format. These results demonstrate the feasibility of a moni-
toring system using CWDs with a web application that could
be used in LMICs in the absence of the gold standard bed-
side monitor.

Our findings demonstrate the potential utility of CWDs
in resource-limited areas throughout the world. CWDs may

be used to supplement the scarce bedside patient monitors
available and alleviate the heavy burden of understaffing in
low-resource LMIC hospitals. With the virtual platform,
use of such devices may also aid clinicians in viewing and
following trends in patient vital signs, further improving
the quality and timeliness of clinical decision-making.
Several clinical conditions (e.g., trauma from car accidents,
which is highly prevalent in these countries) could benefit
immensely from having access to this technology. Trauma
patients often suffer from internal hemorrhage which could
result in the patients’ death. Continuous monitoring of HR
and SpO2 is vital to detecting such changes. Thus, using the
CWDs could potentially save thousands of lives.

Recognizing that the current CWD measures are not
ideal is important before implementing them in clinical set-
tings. CWDs performed significantly better than manual
monitoring and had high concordance with the gold stan-
dard, which is expected. However, despite the high concor-
dance between measures from these CWDs with the clinical
gold standard, differences in accuracy were still observed.
Using the Bland-Altman analysis, it was determined that
the Fitbit overestimated HR by less than 1 beat per minute
on both days of the study, while the Xiaomi underestimated
the HR by less than 1 beat per minute. SpO2 data analysis
using the same method showed an overall underestimation
of SpO2 by the Xiaomi of -0.33% on both days of the study.
While the overall overestimations and underestimations
were generally small for HR and SpO2, it is important to
further explore the clinical implications of these differences
in various patient populations, especially as the statistical test
for concordance (Mann–Whitney U) revealed some differ-
ences between the CWDs and the gold standards for HR
measurement.

Previous studies obtained larger error estimations and
limits of agreements for Fitbit HR which is less accurate
compared to the values obtained in this study [34, 35].
Another study in the literature reported that an error margin
of less than ±10% has been widely accepted by organizations
for wearable devices used for estimating HR [36], a margin
within which our analysis shows the CWDs studied fall.
Although many studies have been conducted on Fitbit, no
study has been reported on the use of Xiaomi for vital sign
monitoring. Further, this is the first known study in a low-
resource LMIC to assess the concordance between CWD-
derived vital signs and the gold standard vital signs obtained
from a bedside monitor, while simultaneously interfacing
the results with a centralized platform storing and displaying
the vital signs for clinical use.

The Fitbit and the Xiaomi band were selected based on
their robust design and wide use. While our findings have
shown that both devices are fairly accurate compared to
the gold standard, there may be advantages to one CWD
over the other, depending on the patient population being
monitored. However, all of these devices are continuously
improving their sensing capabilities. The availability of other
vital signs such as respiratory rate and body temperature
that are measured by these devices will increase, ultimately
furthering the case for the use of CWDs in low-resource
hospitals.

Table 3: Results from mean absolute percentage error (MAPE)
calculations.

Device
Philips MX450
patient monitor

Manual monitoring
device

Fitbit heart rate day 1 2.84%

Fitbit heart rate day 2 3.40%

Overall Fitbit heart rate 3.13% 3.63%

Xiaomi heart rate day 1 6.15%

Xiaomi heart rate day 2 5.39%

Overall Xiaomi heart rate 5.76% 6.79%

Xiaomi SpO2 day 1 1.92%

Xiaomi SpO2 day 2 0.99%

Overall Xiaomi SpO2 1.21%

Table 4: Mann–Whitney U test results for Fitbit and Xiaomi
against the continuous bedside monitor and manual monitor for
heart rate measurement.

Device
Philips MX450
patient monitor

Manual monitoring
device

Statistic p value Statistic p value

Fitbit 31304.5 0.030022 5117 0.001564

Xiaomi 26147.5 0.192666 5111 0.001524
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(a)

(b)

Figure 5: Continued.
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(c)

(d)

Figure 5: Continued.
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This study has limitations. First, the study was con-
ducted on one healthy individual over a short period of time.
Data were not collected on a typical busy clinical ward with
multiple patients. Thus, the results may overestimate the
accuracy of the CWDs. Second, the interfacing of CWD data
with the web application was not performed in real time.
While we did demonstrate the feasibility of this interface,
further testing and modeling are necessary to demonstrate
the feasibility and utility of providing real-time vital sign
data to clinicians in a clinical setting. Furthermore, although
the web application was successfully launched on Heroku’s
cloud server and made publicly available, there was a time

out error during the testing phase. This issue simply indi-
cates that the internal server took longer to load the web
application’s resources. This could possibly be due to the
web application’s contact with the Postgres database server.
Finally, no work was done on validating or mitigating
against reported inaccuracies in SpO2 measurements taken
from dark-skinned patients. Clearly, the system can benefit
from further optimization. Replicating our findings using
actual patients in various clinical settings and over longer
periods of monitoring time is needed to further validate
and certify the use of CWDs in hospitals in low-resource
settings.

(e)

(f)

Figure 5: Pages of web application showing the main features and functions which include (a) user sign-up page, (b) user sign-in page, (c)
individual user dashboard, (d) new patient registration page, (e) individual patient vital sign flowsheet with wearable device data shown in
tabular and graphical form, and (f) vital sign upload page from manual measurements.
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5. Conclusions

The two wearable devices used in this study (Fitbit Versa 2
and Xiaomi Mi Smart Band 6) were shown to be accurate
in measuring oxygen saturation and heart rate and were eas-
ily interfaced into the web application. This concordance
study will aid in the development, validation, and certifica-
tion of these devices to be used alongside the fully functional
web application developed by our team, both in Ghana and
other low-resource low- and middle-income countries.
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