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A healthy and efficient ventilation system is essential for establishing a comfortable indoor environment and significantly reducing
a building’s energy demand simultaneously. This paper proposed a novel ventilation system and applied it to the IEA Annex 20
mixing ventilation enclosure to verify its feasibility through mathematical modeling and CFD simulations. First, two bionic
ventilation systems, single-side and dual-side ventilations, were compared to a conventional constant-volume supply system
using CFD simulations, with the results demonstrating that the bionic ventilation system could provide higher ventilation
efficiency and more effective pollutant removal from stagnant regions. Furthermore, the present work exercised these two
bionic ventilation systems with different temporal periods of sine and rectangular wave functions, identifying a turning point
at a period of 0.06 τn, which could contribute to further enhancement of these bionic ventilation systems. Finally, a
methodology depending on the Bayesian inference algorithm was developed for identifying pollution sources in the bionic
ventilation system with unstable flow fields, and factors influencing source identification accuracy were discussed. The results
show that the peaks of the KDE distributions and the sampling average values of both the source location and intensity are all
consistent with the actual source parameters. The potential of the proposed bionic ventilation systems has been well
demonstrated by direct and inverse CFD models, paving the way for further engineering applications.

1. Introduction

Indoor air safety and health are complex and critical prob-
lems that pose a significant threat to billions of people’s
well-being. According to the Global Burden of Disease
(GBD) 2019 study, air pollution (including outdoor fine par-
ticulate matter, ozone pollution, and indoor fine particulate
matter pollution from fossil fuel combustion) was responsi-
ble for 6.6 million premature deaths globally, accounting for
11% of total deaths and ranking as the fourth leading risk
factor for all disease burdens [1]. As people spend 80-90%
of their time indoors, the majority of air pollution exposure
occurs within indoor environments, incorporating both
indoor and outdoor sources [2, 3]. Therefore, investigating
indoor air pollution transport and control holds significant

importance for safeguarding public health and minimizing
social and economic losses [4].

Improving indoor air quality and ventilation efficiency is
essential research that is aimed at enhancing the health and
well-being of billions of individuals. Currently, there are two
primary research approaches: one involves using inverse
optimization methods to obtain optimal design parameters
and ventilation strategies, while the other proposes new ven-
tilation systems with innovative characteristics. The reverse
optimization algorithm is based on the objective function
to constraint to find the optimal solution, whose core idea
is to calculate the input parameter values in reverse order
from the objective output, such that the objective function
is optimized. In ventilation system design, the reverse opti-
mization algorithm can be used to determine the optimal
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design parameters and ventilation strategies. Common
inverse methods include CFD-based adjoint method, CFD-
based genetic method, CFD-based artificial neural network
method, and proper orthogonal decomposition method [5].
However, these methods only improve existing ventilation
systems’ performance, without addressing inherent flaws
and limitations. Novel ventilation systems, such as displace-
ment ventilation [6], impinging jet [7, 8], stratum ventilation
[9, 10], and personalized ventilation [11, 12], are aimed at
overcoming these issues.

Existing ventilation designs are based on the premise of
constant supply parameters, including velocity and tempera-
ture. However, improvements achieved through reverse opti-
mization design are limited by the presence of stagnant zones
where pollutants accumulate under this premise. From a bio-
mimetic perspective, ventilation systems share similarities
with human or animal respiratory systems, both of which
involve inhaling oxygen and exhaling carbon dioxide [13].
Studies have shown that the ventilation of buildings, human
lungs, and even bird lungs are primarily convective fluid
flows [14]. However, unlike these natural systems, which
cyclically inhale and exhale air through the same “pipe sys-
tem,” built environment ventilation systems supply air at a
constant velocity through independent supply and exhaust
ducts [12]. Consequently, creating bionic ventilation systems
with time-periodic conditions is an innovative and reason-
able way to enhancing ventilation performance.

The available literature on room ventilation under time-
periodic conditions appears to be quite limited. Kandzia
et al. investigated the impact of a time-related variation in
inlet velocity, at a scale of minutes, on the airflow character-
istics in a room [15]. Their findings revealed that the stagna-
tion zones, which were evident under steady conditions with
a constant supply velocity, were absent in the time-average
velocity field under unsteady cases. Another study by Sattari
et al. found that pulsating inlet conditions resulted in an
amplification of the distribution and intensity of vortices,
accompanied by a decrease in stagnation zones [16]. Both
of these phenomena contributed to an improvement in the
air mixing within the room. Van Hooff and Blocken studied
the mixing ventilation derived by two oppositely supply jets
with a time-periodic (sine function) supply velocity, finding
that it can reduce high pollutant concentration in stagnant
regions and reduce the overall time-averaged pollutant
concentration [17]. In summary, several studies have dem-
onstrated the potential benefits of time-varying air supply
conditions, but further research is needed to fully compre-
hend their advantages and limitations. This paper proposes
two periodic supply methods to generate a more uniform
time-averaged velocity distribution, reduce the stagnant
zones of pollutants, and achieve higher ventilation efficiency.
The present study is distinguished from prior research in
that it employs a time-varying supply flow rate, rather than
a constant supply. Additionally, the study distinguishes itself
from situations where variable-air-volume (VAV) ventila-
tion [18], demand-controlled ventilation [19], or specific
ventilation schedules [20] are utilized, as these scenarios
typically involve relatively large time scales, such as one
hour, resulting in the persistence of a statistically stationary

flow pattern within the room. This paper focuses on rela-
tively small-time scales and their influence on indoor airflow
distribution and is aimed at improving ventilation efficiency
by enhancing the mixing of room air with fresh supply air,
achieved through the breakdown of stagnation regions.

The identification of indoor pollution sources’ positional
parameters is mainly achieved through sensor data that
tracks pollution source information, a task that belongs to
the domain of inverse problems [21–24]. The methods used
in this process can be categorized into four groups: (1) direct
methods based on regularization or stabilization methods,
(2) traditional probability methods based on Bayesian infer-
ence or joint probability methods coupled with transport
processes, (3) optimization methods based on gradient or
heuristic algorithms, and (4) analytical methods combining
regularization techniques for inference.

Among them, probability-based and optimization-based
methods have gained widespread attention and develop-
ment [25]. The essential difference between them lies in
the use of probability in the former, which considers input
and output uncertainties in the inverse model, representing
the solution as a probability distribution with a certain con-
fidence interval using Bayesian principles, while the latter
seeks a single extremum.

Accurately locating pollution sources in the bionic venti-
lation system proposed in this paper is particularly challeng-
ing due to the complexity of the supply system, especially
when attempting to identify pollution sources within dynamic
flow fields. This paper first investigated the mechanism of
unsteady flow fields and nonlinear pollutant propagation
underlying time-periodic supply velocity creation. Bayesian
inference was then employed to develop a methodology for
identifying pollution sources in indoor environments under
dynamic flow fields and discussion. The factors influencing
the accuracy of source identification were discussed in detail.

This paper is organized as follows. In Section 2, Bayesian
inference and the source-receptor relationships under
dynamic indoor flow fields were established. In Section 3,
the computational methodology and simulation parameters
were described and validated using experimental data in
Section 4. Finally, the characteristic analysis of the bionic
ventilation system and source term estimation results are
drawn in Section 5. Section 6 concludes the work presented.

2. Methodology for Source Identifications:
Inverse CFD Models

In this paper, the characteristics of bionic ventilation
systems were analyzed through CFD numerical simulations.
Furthermore, Bayesian inference for source identification in
the dynamic indoor environment is further developed by
considering time-periodic air supply, which is suitable for
the bionic ventilation system.

2.1. Bayesian Inference. The Bayesian theorem is employed
to determine the possibility of an event occurring condi-
tional on another event, as Equation (1). Different from
traditional statistical inference, Bayesian inference preserves
uncertainty and believes that probability represents the
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degree of the credibility [26]. It builds on existing knowledge
of events.

p M D, I =
p M I p D M, I

P D I
1

For the inverse problem of pollutant identification in
indoor environments, M represents the pollutant model
parameters, D denotes the observation data of various detec-
tors, I signifies the available model and related information.
p M I is the prior probability density function (PDF) for
substituting random variable parameters, typically derived
from prior expert experience or direct assumptions. p D M
, I represents the likelihood that the model results fit the
observed data when the model parameters (M) are deter-
mined. p M D, I is the posterior PDF, namely, the result
of estimation. When Bayesian inference is applied to identify
unknown pollution sources in indoor environments, the
PDF of model parameter M is updated by obtaining
observed data D continuously.

In Equation (1), the denominator p D I is the marginal
likelihood function, representing the applicability of the
modelM when the obsessed dataD is obtained. This marginal
likelihood function is expressed as p M I p D M, I dM,
which is often as an integral constant. In high-dimensional
problems, this integral is different to solve and is typically
normalized for simplification. Generally, this process does
not affect the parameters optimization for a single model sys-
tem [27]. In this paper, source term identification is a single
model system only considering the pollutant transport equa-
tion, and the Bayesian inference is expressed as Equation (2).

p M D, I ∝ p M I p D M, I 2

The prior distribution p M I is independent of the
observed data D. Commonly used prior distributions include
uniform distribution, Gaussian normal distribution, mixed
distribution, and pulse distribution [28]. Uniform distribu-
tion is often an effective choice when only the upper and
lower limits of parameters are known. The focus is more on
the sensitivity of the posterior distribution to the prior, rather
than the exact expression. In this paper, source term estima-
tion based on the pollutant advection-diffusion equation is
not sensitive to the form of the prior distribution.

2.2. Likelihood Function. The likelihood function p D M, I
represents the likelihood between the output values from
models and the detection values from detectors and is
expressed as a PDF. An appropriate likelihood function has
a significant impact on estimating source terms accurately,
stably, and quickly and is a critical aspect of constructing
Bayesian inference models. In this paper, the observation
error is incorporated and independent of the system. The
mathematical system can be expressed as follows:

D = f M + E, 3

where D is the observed data with observation error E, f · is
the forward model operator, and M represents the model

parameters, assuming that the observation error is a ran-
dom variable with a mean of 0, and the systemic error
induced by the iteration of the forward operator is much
smaller than the detector error. For systems with unknown
errors, assuming a Gaussian distribution is a reasonable
choice. It is assumed that the observation error satisfies
E~N (0, Г), where Г is the covariance matrix and n is the
number of detectors. Therefore, the likelihood function can
be expressed as follows:

p D M, I =
1

2π n/2 det Γ 1/2 exp −
D − f M T D − f M

2Γ

4

2.3. Markov Chain Monte Carlo Sampling. After parameter
identification using Bayesian inference, the posterior proba-
bility distribution (PPD) provides information related to pol-
lution sources, such as their position and intensity. When the
PDF has a simple form, an analytical solution can be obtained
directly. However, for high-dimensional nonlinear systems,
the PDF is often relatively complex and difficult to solve, mak-
ing it challenging to obtain effective information [29]. Param-
eter estimation methods can be used to obtain the solution;
typically, there are maximum likelihood estimation and sam-
pling statistics methods [30]. For maximum likelihood estima-
tion, the PDF p D M, I is maximized by finding a suitableM.
For sampling statistics methods, a group of samples satisfying
the posterior PDF is extracted. The statistical characteristics of
the posterior PDF can be obtained by analyzing the samples,
and the estimated values of pollutant source information can
be obtained accordingly. Therefore, efficient and accurate
sampling from the posterior PDF is critical for parameter
inversion using Bayesian inference.

Common sampling statistical methods include Markov
chain Monte Carlo sampling (MCMC), acceptance-rejection
sampling, and importance sampling [28]. In this paper, the
MCMC method is utilized as an effective approach for Bayes-
ian inference to estimate the posterior distribution p D M, I
of interest parameters through random sampling in probabil-
ity space. Samples that follow the target distribution p D M, I
can be obtained by constructing one or more Markov chains,
and then the numerical solution of the posterior PDF is
obtained through statistical analysis of the samples. When
applying this method to the inverse problem of indoor envi-
ronment, the Metropolis-Hastings MCMC is an effective and
widely-used algorithm, with its pseudocode shown in Algo-
rithm 1. The flow chart in Figure 1 illustrates the methodology
for identifying the location and release intensity of a pollutant
source through Bayesian influence.

2.4. Source-Detector Relationship. When using Bayesian
inference to estimate pollution source, it is necessary to
perform multiple calculations of the forward pollutant
advection-diffusion equation (Equation (5)) to obtain the
numerical solutions of the pollutant distribution with differ-
ent source parameter conditions (such as source location,
intensify, and release time). Without the aid of a surrogate
model, performing only CFD calculations (Equation (5))
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can be computationally expensive, often requiring tens of
thousands or even hundreds of thousands of forward calcu-
lations. When faced with high-dimensional problems and
complex domains, implementing this method can become
challenging, which contradicts the need for timely and accu-
rate source location. In addition, the forward calculation can
obtain information about the entire flow field, while the
monitoring points in the flow field are often sparse, resulting
in only a few monitoring points’ information being used for
source term estimation. In this paper, dual adjoint models of
transient pollutant transport in dynamic fields are con-

structed to increase the amount of information obtained in
a single calculation process.

∂C
∂t

+ u ⋅ ∇C = ∇ ⋅ D∇C + S, ∀ x , t ∈Ω × 0, T ,

∇C ⋅ n = 0, ∀ x , t ∈ Γ × 0, T ,

C x , 0 = C0, ∀ x , t ∈Ω × 0, ts ,

5

1: initial parameters: m(0)

2: FOR k = 0,1,2, … DO {Sampling from Proposed Distribution}
3: m∗⟵ sampling from q(·|m(k))
4: α⟵min 1, p m∗ d, I /p m k d, I q m k m∗ /q m∗ m k {Calculate acceptance rate}
5: u ⟵ sampling from uniform(0, 1)
6: IF u < a THEN
7: m(k+1) ⟵ m ∗ {Accept Sampling}
8: ELSE
9: m(k+1) ⟵ m(k) {Reject Sampling}
10: END IF
11: END FOR

Algorithm 1: Metropolis-Hastings MCMC.

Start

Update priori
(p (M

End

Priori PDF
(p (M|I))

Convergence ?

Posterior PDF sampling
(MCMC)

Forward calculation
(D = f (M)+E)

Likelihood function
(p (D|M,I))

Posterior PDF
p (M|D,I)

Observed
data (D)

No

Yes

Update parameters from the
recommended distribution (M∗)

∗|I))

Figure 1: Solution flowchart to inversely identify the pollutant source information in the bionic ventilation system using Bayesian inference.
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where the source term in Equation (5) is assumed to be an
instantaneous source and can be expressed as follows:

S = qsδ x − xw H t − ts −H t − te , 6

where qs is the source intensity, kg/s, ts is the start release
time, and te is the end release time ts, te ∈ 0, T . xw is the
source location, xw ∈Ω. δ ⋅ and H ⋅ are the Dirac delta
and Heaviside unit step functions, respectively.

δ x − xw =
1, x = xw,

0, x ≠ xw,

H τ =
1, τ ≤ 0,

0, τ > 0

7

The advection-diffusion equation (Equation (5))
models the release of the source S over a space-time
domain Ω × 0, T through the time evolution of the con-
centration field, C. Here, C denotes a Reynolds-average
concentration, kg/m3, and u denotes the Reynolds-
average wind velocities, m/s. t denotes time, s, and C0 is
the initial pollutant concentration, kg/m3. D is an eddy
diffusivity used to model the turbulent scalar fluxes, kg/
(m3 s). Ω is the fluid domain, and Γ is the boundary of
the spatial domain. The vector n refers to the boundary-
normal direction, and ∇ ⋅ is a gradient operator.

The forward advection-diffusion operator L is defined as
Equation (8) which describes the linear, one-to-one, nonsin-
gular, nonreactive pollutant transport equation.

L ⋅ =
∂
∂t

⋅ + u ⋅ ∇ ⋅ −∇ ⋅ D∇ ⋅ ⟹ L C = S 8

When the source release position is fixed, the concentra-
tion distribution C and the concentration values of the
detectors form a linear system, which naturally satisfies the
superposition and homogeneity of a linear system. Assum-
ing that the value of the ith detector at x r is DSi, it can be
expressed as the inner product of the concentration field C
and the detector response function R, as follows:

DSi = C, R =
T

0
dt

Ω

CRdΩ 9

The response function of any detector is expressed as
R, with units of 1/(m3 s), as Equation (10), which acts as
a space-time filter and would be a Dirac delta function
in both space and time for an ideal detector with infinite
space and temporal resolving power. In other words, it is
assumed that at tr and x r , the nominal pollution source
(detector) has unit intensity.

R = R x − x r , t − tr = δ x − x r ⋅ δ t − tr 10

By multiplying the dual adjoint concentration C∗ of
forward transport (Equation (5)) and integrating over the
space-time domain, the dual adjoint equation was obtained
as Equation (11). From a physical point of view, the dual
adjoint equation is the inverse of the forward advection-
diffusion equation (Equation (5)) with respect to time
and convection terms. The general procedure for obtaining
the dual adjoint of a linear operator is outlined in [31].

−
∂C∗

∂t
− u ⋅ ∇C∗ = ∇ ⋅ D∇C∗ + R, x ∈Ω × 0, T ,

D∇C∗ ⋅ n + u ⋅ nC∗ = 0, x ∈ Γ × 0, T
11

The dual adjoint operator L∗ is defined as follows:

L∗ ⋅ = −
∂
∂t

⋅ − u ⋅ ∇ ⋅ −∇ ⋅ D∇ ⋅ ⟹ L C∗ = R 12

According to the Lagrangian dual relation [32], DSi
could also be expressed as the inner product of the dual
adjoint concentration field C∗ and the source strength S,
expressed as follows:

DSi = S, C∗ =
T

0
dt

Ω

SC∗dΩ 13

Then,

C, L∗C∗ = LC, C∗ ⟹ C, R = S, C∗ 14

When the pollutant transport system is unsteady, the
forward pollutant advection-diffusion operator L ⋅ equals to
∂ ⋅ /∂t + u ⋅ ∇ ⋅ −∇ ⋅ D∇ ⋅ , and the dual adjoint operator
L∗ ⋅ equals to −∂ ⋅ /∂t − u ⋅ ∇ ⋅ −∇ ⋅ D∇ ⋅ . Then, the

value of the ith detector at x r position tr moment is DS tr
i .

Under the assumption that the timescale of pollutant con-
centration transport is significantly shorter than that of the
flow field, it is inferred that the pollution source disperses
within a relatively stable quasisteady-state velocity field.
According to the principle of superposition,

F tr
i = 〠

tr

t=ts

C x r , tr , xw, ts Q ts , 15

where C x r , tr , xw, ts is the concentration value measured at
monitoring point x r at time tr after unit source intensity

released at xw and time ts. F
tr
i is the detector value measured

at the ithmonitoring point at time tr when the source intensity

isQ ts . It can be seen that F
tr
i is the integral of the product of

the unit source intensity field and the source intensity over the
time period ts, tr .

In practice, the detector does not obtain the concentration
values continuously but rather measures the average value
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over a period of time. Similar to the superposition in Equation

(15), the detector value DS tr
i measured at the ith monitoring

point at x r, at time tr, can be expressed as follows:

DS tr
i =

tr

ts

qs t C
∗ x r , tr , xw, t dt

= 〠
tr

t=ts

C∗ x r , tr , xw, t qs t Δt,
16

where C∗ x r , tr , xw, t is the concentration value of monitor-
ing point xw at time t, after the unit intensity source is released
from location x r at time tr.

When n cases with different release times ts1, ts1,⋯,tsn
and different release positions xw1, xw2, xw3,⋯,xwn are
needed to be calculated, Bayesian inference determines the
next state parameter m∗ according to the current state
parameter m k with the help of proposal distribution. n2

forward calculations are needed to complete all possible
cases. In contrast, Bayesian inference with source-receptor
relationships assumes a nominal pollution source with unit
intensity at the monitoring positions. It is only necessary
to calculate the dual adjoint concentration field of the nom-
inal source C∗ x r , tr , xw, t once, and then, according to the
dual relation of Equation (16), the concentration at any
source intensity, position, and release time can be obtained
for the monitors x r .

Therefore, the significance of introducing the unsteady
dual adjoint equation is that the problem of solving for
multiple source parameters (position xw, intensity qs, and
release time ts) in the forward advection-diffusion equations
is transformed into the problem of solving for multiple
physical field parameters (monitoring point x r and trans-
port time Δt) of dual adjoint equations, which greatly
reduces the consumption of computing resources.

When the intensity of the pollutant source is constant
and released at time ts = 0, the S is equal to qsδ x − xw ;
then,

DS tr
i = qs 〠

tr

t=0
C∗ x r , tr , xw, t Δt 17

The difference and connection between the dual adjoint
equation and the forward transport equation can be physi-
cally explained as follows: the forward transport equation
describes the pollutant concentration distribution caused
by an exact pollution source to any position in the domain,
while the dual adjoint equation describes the influence of
any potential source on the pollutant concentration in the
domain. The forward equation and the adjoint equation
reflect the same phenomenon from different angles. If the
forward transport results of a given source are needed to
be evaluated, it is convenient to use the forward transport
equation to evaluate. If the source position is uncertain, then
the dual adjoint equation has a unique advantage.

3. Computational Fluid Dynamics and Its
Solver Settings

3.1. Computational Geometry. The characteristics of a bionic
ventilation system, inspired by the respiratory system of
humans and animals, were assessed in a rectangular enclo-
sure based on the IEA Annex 20 experiment, as shown in
Figure 2 [33]. This system utilizes time-periodic supply
velocity in a mixing ventilation flow, and the feasibility of
applying Bayesian inference for pollutant source identifica-
tion in such systems was verified. The experimental setup
consisted of a 9 0m × 3 0m × 3 0m (L ×H ×W) rectangu-
lar enclosure with air supplied through a 0.168m high linear
opening and exhausted through a 0.48m height linear
exhaust located opposite the supply opening, as illustrated
in Figure 3. This model represents a typical forced convec-
tion mixing ventilation system with adiabatic boundaries.

Drawing inspiration from the periodic inhalation and
exhalation of air through a single “pipeline system” in
humans and animals, the characteristics of periodic ventila-
tion were extended to indoor ventilation systems, resulting
in bionic ventilation systems. Two typical types of bionic
systems were proposed, based on traditional mixing ventila-
tion, as shown in Figure 4, including single-side ventilation
system and dual-side ventilation system. To estimate
unknown pollutant sources in unsteady airflow fields, this
paper presents a Bayesian inference method suitable for a
bionic ventilation system. It is assumed that two constant
pollutant sources are released in this bionic ventilation sys-
tem: source-1 at (2.3m, 2.6m) and source-2 (6.5m, 1.2m).
Three sensors are installed within the room: sensor-1 at
the ceiling (5.8m, 2.8m), sensor-2 at the floor (2.3m,
0.2m), and sensor-3 at the exhaust vent (8.8m, 0.24m), as
depicted in Figure 4. Sensors play a critical role in the
inverse identification of indoor pollutants. The primary
aim of this study is to present a novel Bayesian inference
inverse method that is suitable for the strong nonlinearity
inherent in bionic ventilation systems. In this paper, we
have employed sensors with unlimited resolution. The
effects of their quantity, placement, and accuracy on the
results of pollutant inverse identification will be the subject
of future research.

3.2. Boundary Conditions. In this paper, two types of time-
periodic supply velocity were utilized, based on a sine func-
tion and a rectangular wave function, as illustrated in
Figure 5. The sine function generated a time-periodic supply
velocity that oscillates with a period P and amplitude A
around a constant reference velocity U0 = 0 455m/s, defined
by Equation (18). The rectangular wave function, a superpo-
sition form of the sine function, is convenient to implement
in practice with 0-1 controller. The period P and amplitude
A also serve as key parameters determining the air supply
law, and the function is described by Equation (19). In the
case of dual-side ventilation, the left and right vents operate
with a half-period phase difference. Specifically, when the
left vent reaches its maximum velocity, the right vent is at
their minimum velocity.
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u = A ×U0 sin
2πt
P

+U0, 18

u =
0 455 × A nT < t ≤ nT +

T
2

,

0 nT +
T
2

< t ≤ nT + T
n = 0, 1, 2,⋯

19

The influence of varying periods P for both sine and
rectangular wave functions were investigated in this paper,
ranging from 0 003τn to 0 3τn, where τn denotes the nomi-
nal time constant [34], which represents the shortest time
required to replace the air in an enclosure, as defined by
Equation (20). V is the volume of the enclosure, and Q is
the volume rate supplied. The case setup for three different
ventilation systems is depicted in Table 1.

τn =
V
Q

20

The supply condition for turbulent kinetic energy k was
determined by Equation (21). uref is the average reference
velocity, m/s. In this paper, the turbulence intensity (I) was
set at 10%, which typically falls within the range of 1-10%.
The turbulent dissipation rate ε at the supply was calculated
using Equation (22) [35]. The supply temperature was set to
20°C with the kinematic viscosity ν being 15 3 × 106 m2/s. L
is 3m as the characteristic length, Cμ 0.09 in this paper.

k =
3
2

uref I
2, 21

ε = C3/4
μ

k3/2

0 01L
22

Using the source-detector relationship (described in
Section 2.4) can improve MCMC sampling efficiency for
Bayesian inference. It is critical to solve the dual adjoint
equation accurately, but its accuracy is significantly influ-
enced by the boundary conditions, particularly near the
domain boundary. As shown in Equation (11), D∇C∗ ⋅ n +
u ⋅ nC∗ = 0 serves as a mixed boundary condition and is
solved using Fluent software with appropriate numerical

settings [36]. In Fluent, the grid element c0 attached to the
boundary is depicted in Figure 6, where e s is a vector con-
necting the centroid of cell c0 to the face centroid, n is the
unit normal vector in the direction from c0 to the boundary
face f , and dr is the distance that connecting the centroid of
cell c1 to the face centroid.

Under mixed boundary conditions, for a generic cell c0
adjacent to the boundary, the diffusive flux across the
boundary face f of the cell is expressed as follows:

f
D

∂C∗

∂n
dS +

f
unC

∗dS = 0 23

Using the midpoint rule of surface integral, the diffusive
flux can be approximated as Equation (24), where Df is the
diffusion coefficient at the boundary, Af is the area of the
boundary grid, and un is the velocity component perpendic-
ular to the boundary.

Df
∂C∗

∂n f

Af + unC
∗Af = 0 24

The diffusive flux is approximated in two parts: the
primary gradient term and the secondary gradient (cross-
diffusion) term. The primary gradient is evaluated implicitly
along the line connecting the cell centroid c0 to the centroid
face f . It is corrected by a secondary gradient term, which is
evaluated explicitly using the gradient obtained from the
previous iteration, as shown in the following equation.

Df
∂C∗

∂n f

Af ≈Df

C∗
f − C∗

c0

dr
A ⋅ A

A ⋅ e s
primary

+Df ∇C∗ ⋅ A − ∇C∗ ⋅ e s
A ⋅ A

A ⋅ e s
secondary

25

By substituting Equation (25) into Equation (24),
boundary conditions for dual adjoint equations can be
expressed as shown in Equation (26), where β0 is the

secondary term and Abe equals to A ⋅ A/A ⋅ e s

C∗
f =

Df Abe/dr C∗
c0
− β0

unAf +Df Abe/dr
26

3.3. Computational Settings and Parameters. The experiment
depicted in Figure 2 was modeled in 2D based on the infor-
mation provided by reference [37]. The problem was simu-
lated by ANSYS Fluent 2022R2 and treated as a transient
model with a time step size of 0.01 seconds. The number
of iterations within each time step was set to 20. The
adequacy of both the iteration count and the sampling time
(100 periods) was confirmed by monitoring the develop-
ment of instantaneous and time-averaged velocities. The
RNG k − ε turbulent model was employed for the URANS

Figure 2: The experimental schematic diagram of IEA Annex 20.
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simulations, in which discretization schemes and pressure
interpolation are second order, and the SIMPLE algorithm
was used for pressure-velocity coupling. In Fluent, we
employed the user-defined function (UDF) approach to
solve both the pollutant transport equation and the corre-
sponding dual adjoint equation. The pollutant source was
addressed using the user-defined scalar source term. All

boundary conditions for the pollutant transport equation
were set to the Neumann boundary conditions, ensuring
the diffusive flux across the boundary face was zero. Com-
monly used RNG k − ε models determine the turbulent
kinetic energy k and the turbulent dissipation rate ε by
solving Equations (27) and (28), subsequently obtaining
the turbulent viscosity using Equations (29).

Z X

Y

H = 0.168 m

L = 9.0 m
W

H= 3.0 m
t = 0.48 m

Inlet
U0 = 0.455 m/s
TI = 4.0%

Figure 3: Vertical cross-section of IEA Annex 20 geometry established in CFD.
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Figure 4: Two proposed bionic ventilation systems: (a) single-side ventilation system and (b) dual-side ventilation system.
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∂
∂t
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ρkui
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∂
∂xj

μ +
μt
σk

∂k
∂xj

+Gk + Gb − ρε − YM + Sk,
27

∂
∂t

ρε +
∂
∂xi

ρεui

=
∂
∂xj

μ +
μt
σε

∂ε
∂xj

+ C1ε
ε

k
Gk + C3εGb − C2ερ

ε2

k
+ Sε,

28

μt = ρCμ

k2

ε
, 29

where i, j = 1, 2, 3. Cμ is a constant. ρ is the density. u is
velocity. Gk represents the turbulent kinetic energy gener-
ated by the mean velocity gradient, while Gb denotes the
turbulent kinetic energy produced by buoyant forces. YM is
the dissipation rate due to fluctuating expansion in com-

pressible flows, but this is typically neglected in indoor envi-
ronment. The model constants are given as C1ε = 1 44,
C2ε = 1 92, and Cμ = 0 09. The turbulent Prandtl numbers
for k and ε are σk = 1 0 and σε = 1 3, respectively. These
default values, informed by turbulence experiments, are
notably effective for wall shear flow problems. Sk and Sε act
as user-defined source terms.

4. Verification and Validation with
Benchmark Experiments

Since the simplified geometry of the IEA Annex 20 experi-
ment, the mesh was composed of quads elements in a
uniform distribution (structure mesh) and was refined near
the walls to accurately transfer the boundary conditions to
the air domain. Velocity gradients are particularly large in
the regions adjacent to the walls; therefore, a finer mesh is
necessary for accurate predictions. The fluid domain was
discretized using grids, with the first layer situated 0.01m
from the wall and a grid growth rate of 1.05. Wall functions
were employed to handle the transition of physical quanti-
ties from the wall to the turbulent core area, and the grids
were refined near the wall to ensure Y + values were greater
than or equal to 11.63. In this paper, scalable wall functions
are adopted, which can effectively prevent numerical deteri-
oration near the wall [36].

Figure 7 presents the velocity field for the initial experi-
ment case with a constant inlet velocity of 0.455m/s. A
clockwise airflow with a strong jet throw beneath the ceiling
is observed, resulting from the air inlet. Grid independency
verification was performed for mesh sizes of 90 × 30 (L ×H),
150 × 50 (L ×H), and 240 × 80 (L ×H). Figure 8 depicts the

0.0 0.2 0.4 0.6 0.8 1.0
−1

0

1

2

3

A

P

SIN
RW

Figure 5: Time-periodic supply velocity profiles for the sine function (SIN) and the rectangular wave function (RW).

Table 1: Case setup for three different ventilation systems.

Type Flow rate (m3/s) ACH (1/h) Time-periodic (s)
Source information

(x, y)a Sb

Constant 0.0764 0.0028 — — —

Single-side 0.0764 0.0028 0 003τn~0 3τn (2.3, 2.6) 10.0

Dual-side 0.0764 0.0028 0 003τn~0 3τn (6.5, 1.2) 5.0
aUnit of the source location is m. bUnit of the source location is mL/s.

f

A (n)

c0

dr
es

Figure 6: Numerical description of mixed boundary conditions for
dual adjoint equations.
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dimensional velocity u/u0 obtained from the 2D steady RANS
CFD simulations at four different reference positions (red
lines): x =H, x = 2H, y = h/2, and y=H-h/2. Relevant experi-
mental data can be obtained from https://www.cfd-
benchmarks.com. Detailed discussions on data processing
and comparisons can also be found in References [37–42].

Various turbulence models have been adopted for compari-
son, including the standard k − ε model, low-Reynolds k − ε
model, RNG k − ε model, standard k − ω model, and SST k
− ω model. In addition, LES, RANS, and URANS were also
compared. Generally, the k − ε models outperformed the k −
ω models. URANS k − ε and LES demonstrated higher

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
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3.0
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0.10
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x = H x = 2H

y = H-h/2

y = h/2

Figure 7: Velocity vector distribution at the vertical cross-section velocity vector distribution at the vertical cross-section range from 0.05m/
s to 0.45m/s.
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Figure 8: Numerical verification results at four reference lines and a grid independence test with three different grid numbers.

10 Indoor Air

https://www.cfd-benchmarks.com
https://www.cfd-benchmarks.com


predictive accuracy compared to RANS k − ε. In this research,
good agreement is present along the four reference lines for
u/u0, with the largest discrepancies near the floor and ceiling
of the enclosure and the best agreement in the wall jet region.
The average difference between simulated and experimental
data is 5.2% for 150 × 50 mesh, which is negligible. However,
the CFD model with a 90 × 30 mesh predicted slightly worse
results, particularly near the walls. After evaluating the overall
performance, a mesh size of 240 × 80 was chosen for the CFD
validation process. In Reference [37], several turbulence
models, standard k − ε, RNG k − ε, realizable k − ε, standard
k − ω, and SST k − ω, were adopted and compared for predict-
ing flow patterns. Overall, the velocities predicted by all evalu-
ated k − ε and k − ω models are in good agreement with the
measured velocities. However, significant differences in pre-
dicted velocities among the turbulence models are observed
close to the top and bottom walls. In this region, the standard
k − ε and RNGmodels accurately predict the reverse flow near
the floor and the jet throw near the ceiling, showing the best
performance with differences of less than 7% compared to
the experimental data. In contrast, the realizable k − ε model
exhibits the largest discrepancies, with differences of 21.3%.
In this paper, the validation study demonstrates that the
RNG k − ε turbulent model, combined with the other compu-
tational settings and parameters employed, is sufficiently capa-
ble of predicting mixing ventilation flow in a genetic enclosure
with adequate accuracy, particularly with respect to mean
velocities. Therefore, the employed turbulent model and set-
tings were used in the case study in the subsequent section.

5. Results and Discussion

5.1. Characteristic Analysis of Bionic Ventilation System from
Direct CFD Models. This paper compares the typical charac-
teristics of single-side and dual-side bionic ventilations, such
as air age and inhomogeneity coefficient under different
periodic conditions. The definitions of air age and supply
air uniformity index were established. “Air age” was pro-
posed by Sandberg in the 1980s and is defined as the time
required for air to reach a specific location in a room from
the supply vent [43]. This metric reflects the freshness of
indoor air; the lower the air age at a particular location,
the fresher the air in that location. Equation (30) presents
the tensor expression of the air age equation [44].

∂τ
∂t

+ ∂
∂xi

ui ⋅ τ = ∂
∂xi

ΓA ⋅
∂τ
∂xi

+ 1, 30

where τ is air age at any point in the room (s); t is the
time (s); ui is the velocity component in the i direction
(m/s); xi is the spatial coordinate in the i direction
(i = 1, 2); ΓA is the diffusion coefficient of air age (m2/s).

Air age demonstrates significant inhomogeneity within
the fluid zone, and this inhomogeneity is reflected in the
inhomogeneity coefficient, which can be expressed using
Equation (31). In this equation, ai represents the air age at
a sampling point, a is the average value of air age, and N is
the number of samples. The numerator of Equation (31)

represents the RSME (root mean square error). Generally,
a smaller inhomogeneity coefficient is desirable indoors.

ka =
∑ ai − a 2/N

a
31

Figure 9 compares the time-averaged air age distribution
of three different supply strategies after convergence and
stabilization. Figure 9(a) displays the air age distribution
with single-side constant supply ventilation. Influenced by
the supply and exhaust vent layout, a unidirectional airflow
vortex forms in the room. An air stagnation zone appears
on the left side of the room, with a high air age of almost
500. Conversely, near the exhaust vent, air circulates well,
resulting in a younger air age of almost 300. Traditional
mixing ventilation, a common air supply method, is prone
to short-circuiting of the airflow.

Regarding the bionic system with time-periodic supply
velocity, Figures 9(b) and 9(c) display the air age distribution
for single-side and dual-side supplies with a periodicity of
P = 0 03τn. Compared to constant supply, the bionic ventila-
tion system with time-periodic supply resulted in a more
uniform and younger air age distribution throughout most
areas. The air age in most areas ranged between 200 and
400, demonstrating that the bionic ventilation system with
time-periodic supply has significant advantages for improv-
ing indoor air quality compared to the traditional constant
supply system.

Figure 10 displays the contours of the instantaneous air
age for the case with a period of P = 10τn, during one period
after the time-average values have stabilized. Figure 10(a)
shows periodic and fluctuating forward movement. Vortex
rings carrying fresh air with high momentum move forward
under the supply vent pushing, resulting in stronger mixing
and purification abilities compared to traditional mixing
ventilation. Figure 10(b) shows the contours of the dual-
side bionic ventilation, which displays the back-and-forth
movement of the flow in the enclosure, driven by the wall
jets and the breakup of the recirculation vortex-rings. In
comparison to single-side periodic ventilation, the stagnant
regions of dual-side periodic ventilation appeared in the
middle of each recirculation cell. Fresh air is delivered to
the middle of the room due to the conflicting airflow from
the dual-side vents and then spread along the floor until
exhausted from the outlet.

Figure 11 presents a comparison of mean air age between
single-side supply and dual-side supply with different sine
time-periodic values from 0 to 0.3τn. For small time-periodic
values ranging from 0 to 0.03τn, the mean air age decreases
rapidly from 400 to 300. When the time periodicity exceeds
0.06τn, the air age no longer changes with the period and
remains between 270 and 280. Dual-side ventilation exhibits
a slight superiority over single-side, but both demonstrate
nearly a 30% improvement compared to constant supply.

Figure 12 displays the inhomogeneity coefficient ka with
different time-periodic values for single-side supply and
dual-side supply. Generally, the bionic ventilation system
exhibits a smaller inhomogeneity coefficient than the
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constant supply. When the period is smaller than 0.06τn, ka
decreases with the increase in period. However, when the
period exceeds 0.06τn, ka slightly increases with the increase
in period.

For the rectangular wave function time-periodic supply
ventilation, Figures 13 and 14 demonstrate the air age and
inhomogeneity coefficient. Compared to sine time-periodic
supply, the rectangular wave function exhibits similar devel-
opmental phenomena, namely, a smaller air age and
inhomogeneity coefficient compared to constant supply ven-
tilation. As shown in Figure 15, rectangular wave function
time-periodic single-side supply ventilation exhibits the
smallest inhomogeneity coefficient compared to other cases,
demonstrating a 77% decrease compared to constant supply.
In dual-side ventilation for both sine and rectangular wave
functions, the air age is larger than single-side, potentially
due to a smaller air supply momentum compared to
single-side in order to maintain the same air change rate

(ACH). Overall, the bionic ventilation system demonstrates
absolute advantages over the traditional constant supply
system in air age and inhomogeneity coefficient.

5.2. Source Term Estimation Results from Inverse CFD
Models. Traditional constant supply ventilation systems
maintain a relatively stable indoor environment, making
pollutant source estimation typically appropriate for steady
indoor flow fields, although unsteady flow fields with mini-
mal perturbations can also be assumed as steady flow fields
[45]. However, bionic ventilation systems with time-
periodic supply present a significant challenge for estimating
pollutant sources in dynamic flow fields. In this paper, we
proposed a novel Bayesian inference method suitable for
bionic ventilation systems, which exhibit strong pulsation
and unsteady characteristics. Single-side and dual-side
time-periodic ventilations with a period of P = 0 = 0 015τn
using a sine supply function were chosen as the typical

(a) Single-side steady supply

(b) Single-side unsteady supply T = 10

(c) Dual-side unsteady supply T = 10

0 50 100 150 200 250 300 350 400 450 500

Air age 𝜏

(a) Single-side steady supply

(b) Single-side unsteady supply T = 10

Figure 9: Air age comparison of different supply strategies. (a) Single-side ventilation with constant supply. (b) Single-side ventilation with
time-periodic supply (sine function, T = 0 03τn). (c) Dual-side ventilation with time-periodic supply (sine function, T = 0 = 0 03τn).
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Figure 10: Continued.
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situations for source term estimation, given their high insta-
bility and nonlinearity characteristics.

Figure 16(a) shows the spatial variation of concentration
at two vertical lines (x =Hm, x = 2Hm), resulting from a
unit point source release at the sensor’s location, which
was solved using the dual adjoint Equation (11). To facilitate
comparison, Figure 16(a) also shows the concentration pre-
dicted by solving the forward advection-diffusion Equation

(5). From the figure, it is evident that the concentrations pre-
dicted by the dual adjoint Equation (11) agree well with
those predicted by the forward Equation (5). Figure 16(b)
illustrates the temporal variation of the concentration at
three sensors after the source was released at time t = 0. It
is apparent that the peak values of pollutants at each moni-
toring point occur at different times due to the indoor flow
field. The time series of concentrations predicted by the dual

T = 4

T = 8

T = 6

T = 2

T = 10

0 40 80 120 160 200 240 280 320 360 400
Air age 𝜏

(b)

Figure 10: Contours of the instantaneous air age during one period T (T = 0 03τn) for sine function. (a) Single-side periodic ventilation. (b)
Dual-side periodic ventilation.
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adjoint (Equation (5)) also exhibits a strong agreement with
the forward time series.

Bayesian inference was employed to estimate source
information, including source position and intensity, under
dynamic flow fields. It is worth noting that the intensity of
pollution sources exhibits a linearly relationship with the
concentration at the monitoring point and can be calculated
through linear scaling. Nevertheless, the intensity of pollu-
tion sources is still considered as a variable that needs to
be identified through Bayesian inference.

The posterior probability density function (PDF) of the
source position was obtained using the grid computing
method [46] as shown in Figure 17. The posterior probabil-

ity distribution (PPD) of the pollutant source exhibited a
more extensive spread along the return airflow path. And
the maximum posterior PDF was located near the actual
source location: 2.3m and 2.6m for Figure 17(a) and 6.5m
and 1.2m for Figure 17(b). The PPD effectively displays
the results of identifying unknown parameters.

When the posterior PDF becomes more complex due to
an increase in unknown parameters or system nonlinearity,
analytical solutions become difficult to obtain and visualize.
Conventional optimization methods often prove inefficient
and limited in solving parameter identification problems
with inaccurate prior information, large measurement, and
numerical errors. Therefore, a sampling statistics method is
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Figure 11: Mean air age with different time periods for single-side supply and dual-side supply bionic ventilation systems (sine function).
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employed to generate a set of sampling points that converge
to the posterior distribution, and statistical analysis is per-
formed to ascertain the statistical characteristics of the PPD.

In this paper, the Markov chain Monte Carlo (MCMC)
method was utilized for sampling. The Markov chain was
initialized at the center of the domain (4.5m, 1.5m) and
subsequently underwent a burn-in period to converge to
the vicinity of the actual source location.

The entire Markov chain has a length of 50,000. To
ensure that it was fully mixed and the starting point is for-
gotten, the first half of the samples (30,000 iterations) were

discarded, and the second half of the chain was used for
inference. Samples from MCMC algorithms typically exhibit
autocorrelation due to the inherent Markovian dependence
structure. The degree of autocorrelation can be qualified
using the autocorrelation function.

ρk =
Cov Mi,Mavg

Var M Var Mavg

=
∑N−k

i=1 Mi −Mavg Mi+k −Mavg

∑N
i=1 Mi −Mavg

2

32
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Figure 13: Mean air age with different time periods for single-side supply and dual-side supply bionic ventilation systems (square wave
function).
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By calculating the autocorrelation coefficient (defined by
Equation (32)) between the accepted sampling points, it is
possible to determine whether the Markov chain has reached
convergence. Let Mi represent the sampling value at itera-
tion step i. Mavg denotes the average sampling value, and
N is the total iteration steps. Significant autocorrelation
between samples indicated that the chain needs to be
thinned, meaning that every interaction sample is taken to
reduce the correlation before using the posterior statistics
for inference. Figure 18 illustrates the degree of autocorrela-
tion ρk as a function of the thinning interval in the Markov
chain. From Figure 18, it can be observed that for the single-
side ventilation system, the autocorrelation is small enough
to conduct inference when the thinning interval is greater
than 20, whereas for the dual-side ventilation system, the
thinning interval needs to be at least 45 to obtain a suffi-
ciently small autocorrelation. This means that suitable
subsequences Xk , Yk , and Sk can be generated by
MCMC sampling.

The next sampling point determined by the proposal
distribution should be neither too far nor too close to the
current point, and the acceptance rate can be adjusted to
approximately 50% by continuously changing the hyper-
parameters, like standard deviation. Improved MCMC
methods, such as Hamiltonian Monte Carlo [47], can also
be employed to reduce the autocorrelation between con-
secutive sampling points.

The PPD of the source parameters, including the loca-
tion and strength, are shown in Figure 19 using histogram
plots. These plots provide a quantified representation of
the marginal probability distribution of the source parame-
ters. Based on Figure 19, the peaks of the histograms for both
source position and intensity are located near the actual
source parameters, as indicated by the red vertical line.

The kernel density estimation (KDE) curves, represented
by the blue lines, also exhibit peaks near the true values.
These results demonstrate that Bayesian inference, coupled
with the dynamic dual adjoint equation, effectively identifies
sources in two types of bionic ventilation systems.

Table 2 presents the summary statistics of the source
parameters generated from the MCMC samples for both
single-side and dual-side ventilation cases. Compared to
single-side ventilation, dual-side ventilation exhibits smaller
standard deviation regions for both source location and
intensity, suggesting a more concentrated posterior distribu-
tion. For the single-side bionic ventilation system, the
distance between the KDE peak value and the true value of
the x-coordinate is 0.2m. However, the average difference
is 1.0m, and the standard deviation is 2.42m, except for
the KDE peak value, indicating a large error. This is due to
the strong airflow organization in the domain near the vent,
which results in a small concentration gradient in the hori-
zontal direction and a relatively scattered distribution of
sampling points. The KDE peak value of the y-coordinate
of the pollution source is 0.1m away from the true value,
the average difference is 0.6m, and the standard deviation
is 0.44m. The concentration gradient in the y-direction is
relatively large, leading to more concentrated sampling
results during the identification process. For the inverse
identification of the source intensity, both the average value
and the KDE peak value are closer to the true value, owing to
the strong linear relationship between the measured pollut-
ant concentrations at the sensors and the source intensity.
For the dual-side bionic ventilation system, the high degree
of matching of matching between the standard deviation
and the KDE peak is attributed to source-2 being located
in the recirculation zone, where the pollutants tend to
change relatively smoothly.

During the sampling of the PPD, the acceptance and
rejection of each sampling point in the x and y coordinates
were recorded, as illustrated in Figure 20. The blue dots rep-
resent accepted sampling points, while the red dots represent
rejected sampling points. The actual source location is
marked by the yellow circle. The “saturation region” is rep-
resented by the blue area, and once the sampling points
reach this area, the acceptance rate of the algorithm
increases significantly. This indicates that the algorithm
has reached the optimal parameter space that can be sam-
pled from, and the Markov chain is in a convergent state.
In Figure 20, the algorithm no longer accepts any values out-
side the blue range. In Figure 20(a), the distribution of
accepted sampling points is concentrated in the upper left
part of the computational domain, whereas in Figure 20(b),
the distribution is concentrated in “stagnant zones,” as
shown in Figure 10(b). Therefore, the airflow organization
of the flow field has a significant impact on the sampling
space. The success of former identification results highlights
the accuracy and reliability of the Bayesian inference method
in identifying sources in bionic ventilation systems.

5.3. Discussion. In this study, the effectiveness and safety of
bionic ventilation systems were investigated, with a focus
on enhancing indoor air quality and identifying potential
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Figure 17: Posterior probability density function distribution of pollution source location. (a) Single-side ventilation with time-periodic
supply (sine function, T = 0 03τn). (b) Dual-side ventilation with time-periodic supply (sine function, T = 0 03τn).
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pollution sources. The findings have significant implications
for the design and implementation of bionic ventilation sys-
tems across various settings, such as residential, commercial,
and public spaces.

Ventilation effectiveness, a key factor in maintaining a
healthy and comfortable indoor environment, was evaluated.
The results show that bionic ventilation systems, designed to
create a more uniform air age distribution and minimize
pollutants in stagnant zones, exhibit higher ventilation effi-
ciency compared to traditional constant air-supply systems.
A comparison between single-side and dual-side bionic ven-
tilation systems revealed that both configurations lead to
substantial improvements in ventilation effectiveness. The
oscillatory flow in the enclosure, propelled by wall jets and
the breakup of recirculation vortex rings, delivers fresh air
to the middle of the room. The characteristics of the airflow
organization formed by the bionic ventilation system can be
observed in Figures 9 and 10. This mechanism effectively
precludes the development of stagnant areas. By adjusting
the supply air frequency of the bionic ventilation system to
approach its natural frequency, ventilation efficiency can be

improved. Such research is primarily focused on the field
of heat exchange, rather than air quality. This topic will be
explored in greater detail in future work.

Safety is another crucial aspect of the ventilation system.
Accurate identification of pollution sources in indoor envi-
ronments can be challenging due to the highly nonlinear
nature of supply systems, particularly in dynamic flow fields.
A Bayesian inference algorithm was employed in the paper
to develop a methodology for identifying pollution sources
in indoor environments under dynamic flow conditions.
Through the combination of computational fluid dynamics
(CFD) simulations and the Markov chain Monte Carlo
(MCMC) sampling, it was demonstrated that indoor pollut-
ant source parameters (including location and intensity) can
be effectively identified with high confidence. Applying this
method to real-world scenarios to explore its effectiveness
and timeliness would be another worthwhile work of
research. The quantity, placement, and accuracy of sensors
play a significant role in the results of pollutant inverse iden-
tification. In this study, we employed only three sensors to
identify source information, typically positioned near the
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Figure 18: The autocorrelation plots for source parameter. (a) Single-side ventilation with time-periodic supply (sine function, T = 0 03τn).
(a) Dual-side ventilation with time-periodic supply (sine function, T = 0 03τn).
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ceiling, floor, and side walls, which highlights the efficiency
of the algorithm. While increasing the number of sensors
can certainly improve identification accuracy, it also comes
with additional layout costs. The influence of a sensor’s
quantity, placement, and accuracy on the results of pollutant
inverse identification will be the focus of future research.

In conclusion, the findings highlight the potential of
bionic ventilation systems in enhancing ventilation effective-
ness and safety simultaneously in indoor environment. By
accurately and efficiently identifying pollution sources, these
systems can play an essential role in maintaining healthy and
comfortable living and working spaces.
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Figure 19: The histogram of source parameters estimation, with the actual value shown as the red vertical line. KDE is the kernel density
function. (a) Single-side ventilation with time-periodic supply (sine function, T = 0 03τn). (b) Dual-side ventilation with time-periodic
supply (sine function, T = 0 03τn).

Table 2: True values of the source parameters and the summary of the estimation results.

Type
True value Source location estimation Source rate estimation
(x, y)a Sb KDEc peak value Average value Standard deviation KDE peak value Average value Standard deviation

Single-side (2.3, 2.6) 10.0 (2.1, 2.7) (3.1, 2.0) (2.42, 0.44) 10.0 9.7 3.22

Dual-side (6.5, 1.2) 5.0 (6.5, 1.1) (6.8, 1.2) (0.69, 0.17) 4.9 10.2 0.74
aUnit of the source location is m. bUnit of the source location is mL/s. cKernel density estimation, used to estimate unknown PDF.
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6. Conclusions and Limitations

This article has proposed a new type of ventilation system,
namely, bionic ventilation systems, which are aimed at gen-
erating a more uniform mean velocity distribution, reducing
pollutants inside stagnant zones, and achieving higher venti-
lation efficiency simultaneously. The performance of two
bionic ventilation systems, single-side and dual-side ventila-
tions, was compared with a traditional constant air-supply
system. In this context, the constant air-supply system
denotes an air supply with a consistent airflow rate, as
opposed to the bionic ventilation system which employs
periodic airflow rates. Our results showed that the bionic
ventilation systems had higher ventilation efficiency and
lower inhomogeneity coefficient of pollutants. Furthermore,
bionic ventilation systems with different time periods of sine
and rectangular wave functions were compared. The turning
point occurs at a period of 0.06τn, where the ventilation effi-
ciency increases rapidly as the period increases below this
point, whereas, beyond this critical point, promotion of the
period has little effect on ventilation efficiency. The present
research further demonstrated that the rectangular wave
function could be an effective alternative to the sine wave
function in cases where it is difficult to produce sinusoidal
time-periodic ventilation.

Accurately identifying pollution sources in the bionic
ventilation system poses significant challenges, primarily
due to the highly nonlinear nature of the supply system,
especially when attempting to identify those pollution
sources in dynamic flow fields. Bayesian inference algorithm
has been used to develop a methodology for identifying pol-
lution sources in indoor environments under dynamic flow
fields. Factors that influence the accuracy of source identifi-
cation were also discussed in detail.

By combining the CFD method to solve the dual adjoint
equation and Bayesian inference using MCMC sampling, the
parameters of indoor pollutant sources (including the loca-
tion and intensity of the source) can be identified in a short
time with high confidence. From the results, the peaks of the
KDE distributions and the sampling average values of the
source location and intensity are all consistent with the
actual source parameters. The largest deviation for the
KDE peak location is less than 0.2m with a relative error
of 8%, while the KDE peak for the source intensity deviation
is 0.3mL/s with a relative error of 3%. This demonstrates the
effectiveness and reliability of the method for source identi-
fication in bionic ventilation systems with strong instability
and nonlinearity characteristics.

In this paper, it is assumed that the model and monitor-
ing errors follow a Gaussian distribution. When there are
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Figure 20: Source location estimation sampling point distribution. (a) Single-side ventilation with time-periodic supply (sine function,
T = 0 03τn). (b) Dual-side ventilation with time-periodic supply (sine function, T = 0 03τn).
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monitoring singularities, the Laplace distribution can be
used to improve the accuracy of the sampling estimation.
When the observation error is extremely small and can be
considered negligible, the likelihood function can be repre-
sented using the Dirac delta function. Only three monitoring
points are used in the calculation domain, which may result
in an overly large posterior distribution or multiple solutions
with limited “evidence.” It can be foreseen that increasing
the number of pollutant monitoring points can effectively
improve the accuracy of inversion identification. Addition-
ally, the placement of monitoring points has a significant
impact on the posterior distribution of pollutants. In the
absence of prior information about the location of the pol-
lutant source, it is still valuable to explore effective arrange-
ments of monitoring points. The effectiveness of the
proposed method may be influenced by the complexity of
the indoor environment, the accuracy of the CFD simula-
tions, and the quality of the monitoring data. All sensors
have inherent detection thresholds and strategic errors. As
a result, the methods for effectively collecting pollutant source
data, along with the accuracy and efficacy of the algorithm,
warrant further analysis and investigation. In practice, the
source-measurement relationship can be precalculated for a
specific room under a determined airflow organization
(steady/unsteady). When the pollutant source release position
is fixed, the pollutant concentration distribution within the
computational domain and the concentration values at the
receptors form a linear system. Any source release intensity
can be obtained by linear scaling of this system. These factors
should be carefully considered when applying the method in
real-world scenarios.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Additional Points

Highlights. Novel bionic ventilation system was proposed to
achieve effectiveness and safeness. Source term estimation
method suitable for unsteady flow fields was established.
Two kinds of bionic systems, single-single and dual-side
ventilations, were compared. Time-periodic supply with
different functions and periods were compared. Proposed
bionic ventilation system was demonstrated for future
engineering applications.
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