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Carbonyl compounds (CCs) in indoor air pose a significant threat to residents’ health and have garnered considerable attention in
recent years. However, most studies have focused on low-molecular-weight carbonyl compounds (LMW-CCs) and have
underestimated the impact of high-molecular-weight ones (HMW-CCs), causing a failure to comprehensively understand their
effects on health. In this study, we analyzed twenty carbonyls in the indoor and outdoor air at typical residential communities
in a megacity in Northwest China by using high-performance liquid chromatography (HPLC) coupled with a photodiode array
detector (DAD). The total concentration of indoor carbonyls was 1.4-3.4 times that of outdoor carbonyls. In addition, the
concentration of indoor carbonyls was much higher during the heating season than that during the nonheating season.
Conversely, the concentration of outdoor carbonyls was higher during the nonheating season than that during the heating
season. The principal component analysis (PCA) revealed that indoor carbonyl pollution was primarily influenced by building
materials, cooking fume, and wooden furniture. Formaldehyde exposure in indoor environments posed a greater health risk to
children than acetaldehyde exposure. HMW-CCs were the primary contributors to indoor odor pollution, which was
considered a significant cause of sick building syndrome (SBS). Our findings underscore the crucial role of HMW-CCs in
indoor environments in exerting adverse impacts on health.

1. Introduction

Carbonyl compounds (CCs), including aldehydes and
ketones, are commonly present in the gaseous phase of
indoor environments [1]. Indoor CCs originate from various
sources, such as building materials (e.g., linoleum floors,
composite floors, wood-based panel materials, plywood
products, and wallpaper) [2, 3], wooden furniture [4, 5],

household products (e.g., glue, paint, and coating) [6], ciga-
rette smoke [7], cooking smoke [8], air fresheners, cos-
metics, and other daily consumer goods [9, 10]. Some
indoor CCs are secondary products of volatile organic com-
pounds (VOCs) reacting with ozone [11]. Additionally, cer-
tain CCs are emitted directly from automobile exhaust,
biomass combustion, fuel combustion, biological sources,
or generated by photochemical oxidation of VOCs in the
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outdoor atmosphere in urban areas [12–14]. These com-
pounds can enter indoor environments through air infiltra-
tion and natural ventilation [15].

Many CCs are toxic and harmful, and some are consid-
ered carcinogenic. For example, formaldehyde, one of the
most common CCs [16], can induce emphysema, renal fail-
ure, and other symptoms when excessively inhaled, leading
to deformity and cancer [9, 17]. Acetaldehyde can stimulate
various parts of the human body, including brain nerves,
facial skin, eyes, and respiratory mucosa [18, 19]. Breathing
in moderate levels of acetone for short periods can cause
headaches, light-headedness, confusion, and a high pulse
rate, while prolonged or repeated skin contact with acetone
may produce severe dermatitis [20]. Glyoxal and methyl-
glyoxal can severely affect human health by inducing cellular
damage and generating advanced glycation end products
[21]. In addition, CCs can cause odor and sensory irrita-
tions, which are important aspects of sick building syndrome
(SBS) and directly affect residents’ perceptions of indoor air
quality [22, 23]. Therefore, the presence of CCs in residential
indoor environments constitutes a potential hazard to the
health of residents.

Numerous studies have investigated the characteristics
and sources of indoor CCs pollution and their potential
effects on health [1, 24–26]. For instance, Pu et al. [27] iden-
tified the primary emission sources of formaldehyde (sofa
materials, smoking, and family location), acetaldehyde
(smoking and kitchen structure), acetone (kitchen structure
and potted plants), and hexanal (potted plants) in residential
buildings in Beijing. Huang et al. [28] found that indoor
formaldehyde exposure may increase the risk of children
suffering from the common cold. However, most of these
studies focused on indoor low-molecular-weight (LMW,
carbon number <6) CCs, such as formaldehyde, acetalde-
hyde, and acetone. In fact, high-molecular-weight (HMW,
carbon number ≥ 6) CCs (i.e., hexanal, heptanal, octanal,
nonanal, and decanal) also contribute significantly to total
indoor CCs [29–31] and have significant adverse effects on
human health [32, 33]. Lou et al. [22] found that some alde-
hydes (i.e., nonanal, decanal, and heptanal) were potential
oxidation products with ozone, and they were closely associ-
ated with people’s sensory irritations. Therefore, under-
standing both LMW-CCs and HMW-CCs in the indoor
environment is necessary to mitigate their threats to health.

In this study, we measured indoor and outdoor CCs,
including both LMW-CCs and HMW-CCs, in residential
buildings in different areas of a megacity (Xi’an) in North-
west China. The study is aimed at (a) determining the levels
of carbonyls in the indoor and outdoor environments of the
residence in the city, (b) identifying the most relevant
pollutant sources of carbonyls, and (c) assessing the
potential cancer risks of children exposed to formaldehyde
and acetaldehyde and determining olfactory pollution by
HMW-CCs in the indoor environment.

2. Methods

2.1. Sample Collection. Carbonyl samples were collected
from January to March 2016 (heating season) and Septem-

ber 2016 (nonheating season) at three residential communi-
ties in Xi’an (Figure S1): (1) a mixed commercial–residential
site in Huifang community with heavy traffic (HS); (2) an
urban residential site in Qujiang village (QJ), adjacent to
densely populated residential buildings without any
factories; and (3) a suburban site in Xiangyang community
(XY), with relatively less population and commercial
activities. The details of each sampling site can be referred to
in Table S1. Carbonyl samples were collected by an acidified
2,4-dinitrophenylbydrazine (DNPH) impregnated cartridge
(Sep-Pak DNPH-silica, Waters Corporation, Milford, MA)
at a flow rate of 0.6-0.8 L/min. Indoor samples were collected
for 8h (9 : 30-17 : 30) in the living room of each household.
Outdoor sampling was carried out on the open balcony of
another uninhabited house. In addition, we collected 10
carbonyl samples during the cooking process (18 : 00-19 : 00)
in the heating and nonheating seasons in Qujiang village.
The air exchange rate (ACH) was monitored by a CO2
analyzer (LI-820, LI-COR, USA).

2.2. Analytical Method. A total of 20 carbonyls were ana-
lyzed by a high-pressure liquid-chromatography system
(HPLC, Series 1200; Agilent Technology, Santa Clara, CA)
coupled with a photodiode array detector (DAD). The
carbonyls included formaldehyde (C1), acetaldehyde (C2),
acetone (A3K), propionaldehyde (n-C3), 2-butanone
(MEK), butyraldehyde (i,n-C4), benzaldehyde (Benz), isova-
leraldehyde (i-C5), n-valeraldehyde (n-C5), o-tolualdehyde
(o-tol), m-tolualdehyde (m-tol), p-tolualdehyde (p-tol), 2,5-
dimethylbenzaldehyde (2,5-DB), hexaldehyde (C6), hepta-
naldehyde (C7), octanaldehyde (C8), nonanaldehyde (C9),
decanaldehyde (C10), glyoxal (Gly), and methylglyoxal
(mGly), respectively. A more detailed description of the ana-
lyticalmethodmay be found in research byDai et al. [8]. Iden-
tification and quantification of CCs were based on retention
time and peak areas of the corresponding calibration stan-
dards, respectively. A strong linear relationship (R2 > 0:999)
was found between the concentrations and responses for each
target carbonyl. The relative standard deviation for duplicate
analysis was lower than 5%. Further information of quality
control and quality assurance (QA/QC) can be referred to in
research by Lui et al. [12] and Dai et al. [34].

2.3. Data Analysis. Statistical analyses were conducted by
using SPSS 26 and Excel 2021. The normality of the data dis-
tribution was checked with the Kolmogorov–Smirnov test.
Spearman correlation coefficients were calculated to exam-
ine the relationships between two kinds of CCs. Statistical
significance was determined at p < 0:05 for all analyses. Prin-
cipal component analysis (PCA) with varimax rotation and
multiple linear regression analysis were applied to the car-
bonyl concentration data to identify the sources of CCs.
For PCA, components with an eigenvalue greater than one
were extracted. Each factor from the PCA was associated
with source characterization by its most representative
CCs. Prior to statistical analysis, values below the limit of
detection were substituted by LOD/2 to estimate means
and standard deviations [35]. Multiple linear regression
analysis was performed using a stepwise procedure with a
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significance level of p set at <0.05 for inclusion variables and
>0.10 for exclusion them.

2.4. Children’s Inhalation Exposure Estimation and Health
Risk Evaluation. Compared with adults, children are more
susceptible to the adverse effects of environmental pollutants
due to their higher respiratory rate, more vulnerability, and
longer exposure time [36, 37]. In this study, we employed
the methodology proposed by the U.S. Environmental
Protection Agency (EPA) to calculate personal inhalation
exposure and assess the health risks of children aged 0-6
years [38]. The formula was as follows:

Eij = Cij × IR j × t j,

RQ =
Eij

NSRLchild
,

ð1Þ

where Eij was the daily inhalation dose of pollutant (i) in the
microenvironment (j), μg/day; Cij was the concentration of
the pollutant (i) in the microenvironment (j), namely, the
measured concentration of carbonyls in the living room,
μg/m3; IR j was the inhalation rate in the microenvironment
(j), values from the Chinese exposure factors handbook (chil-
dren) [39], as shown in Table S2 in the Supplementary Data,
m3/h; t j was the exposure time in the microenvironment (j),
namely, children’s daily time spent in different rooms, as
shown in Table S2 in the Supplementary Data, h/day; RQ
was risk quotients. An RQ value of 1.0 or less indicates an
insignificant impact on human health, while an RQ value of
larger than 1.0 represents that children’s inhalation dose
exceeds the threshold of 10−5 lifetime cancer risk, or in other
words, the child is confronted with the potential cancer risk.
NSRLchild is child-specific no significant risk levels, and the
procedure for calculating child-specific NSRLchild is clarified
in the Supplementary Data (S1).

2.5. Odor Analysis. The odor intensity resulting from the
presence of a CC component was quantified using odor
activity value (OAV), which represents the ratio of the mass
concentration of a single chemical compound to its corre-
sponding odor threshold (OT) [23, 40]. The OAV was calcu-
lated using the following formula:

OAVi =
Ci

OT
, ð2Þ

where OAVi was the odor activity value of pollutant (i)
(dimensionless), Ci was the mass concentration of pollutant
(i) (μg/m3

), and OT was the odor threshold values used for
the calculation was obtained from Jiang et al. [23] and
Yoshio and Nagata [41].

3. Results and Discussion

3.1. Concentration and Molecular Distribution of
Carbonyl Compounds

3.1.1. Outdoor Carbonyl Compounds. The concentrations of
total measured CCs, PM2.5, and meteorological parameters

at various outdoor sites in the heating season were summa-
rized in Table S3 (indoor: HS-1, HS-2, HS-3, HS-4, QJ-1,
QJ-2, QJ-3, QJ-4, QJ-5, XY-1, XY-2, XY-3, XY-4, and XY-
5, outdoor: HS-O, QJ-O, and XY-O). The outdoor
temperature in XY and HS was higher than that in QJ due
to the different sampling periods, while the outdoor
humidity remained relatively constant across all sampling
sites. The total concentrations of outdoor CCs at the three
sites were comparable. Figure 1 and Table S4 present the
molecular distributions of outdoor CCs at HS, QJ, and XY.
Consistent with previous studies [42–48], acetone (A3K),
acetaldehyde (C2), and formaldehyde (C1) were the most
abundant compounds in CCs at all three outdoor sites.
The concentrations of outdoor A3K, C2, and C1 were 9.6-
21.2μg/m3, 5.7-12.2μg/m3, 6.0-9.7μg/m3, respectively, and
the sum of LMW C1, A3K, and C2 accounted for 37.3-
66.3% of the total CCs. Additionally, methylglyoxal
(mGly), glyoxal (Gly), and nonanaldehyde (C9) were found
to have high loading at outdoor sites. Especially in HS, the
concentrations of mGly, Gly, and C9 were 9.7μg/m3,
8.7μg/m3, and 5.4μg/m3, respectively, and their sum of
accounted for 40.8% of the total CCs. These results
confirmed that HMW-CCs and Di-CCs (Gly and mGly)
also contributed substantially to outdoor environments.

The concentration of outdoor acetone increased gradu-
ally from the urban center (HS: 9.6μg/m3) to the suburban
area (XY: 21.2μg/m3). However, formaldehyde (C1) and
acetaldehyde (C2) exhibited higher concentrations at QJ
than at HS and XY, as QJ is located in the residential area
of Xi’an where traditional heating methods involving coal
and/or biomass materials are still prevalent, leading to sig-
nificant emissions of C1, C2, and other pollutants [49]. This
was supported by the significantly higher PM2.5 concentra-
tion in the atmospheric environment of QJ (225.4μg/m3)
compared with HS (111.9μg/m3) and XY (110.8μg/m3)
(Table S3). In contrast, XY is situated in the suburbs of
Xi’an, with fewer residents and no apparent sources of
pollution, suggesting that the high concentration of A3K in
XY may be largely influenced by regional transport. The
concentrations of Gly (8.7μg/m3) and mGly (9.7μg/m3) in
the outdoor environment of HS were higher than those in
the outdoor environments of QJ (0.8μg/m3 and 1.0μg/m3)
and XY (1.6μg/m3 and 8.0μg/m3). Since HS is the main
tourist area in Xi’an with dense human flow and busy
traffic, the increase in Gly and mGly in this area may be
mainly attributed to vehicle exhaust and/or combustion
activities [13, 50].

3.1.2. Indoor Carbonyl Compounds. The average concentra-
tions and relative molecular contributions of indoor CCs at
HS, QJ, and XY are shown in Figure 2. The concentrations
of CCs in indoor environments at these sites were 1.4-3.4
times those in the corresponding outdoor environments.
The indoor CCs concentrations could be ranked in descend-
ing order as follows: QJ (186.6μg/m3)>XY (96.2μg/m3)>HS
(84.1μg/m3). Formaldehyde (C1), acetaldehyde (C2), ace-
tone (A3K), hexanal (C6), and nonanal (C9) exhibited
higher concentrations in QJ than in the other two sites.
The houses in QJ were constructed within the past five years
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(as shown in Table S1), and thus more indoor pollutants
were emitted from building materials and furniture [51, 52].

Regarding Di-CCs, the relatively higher concentration of
Gly and mGly in HS could be ascribed to the fact that the
houses in HS were self-built buildings with 2-3 stories, which
had poor airtightness and were more susceptible to outdoor
CCs. In addition, the pollutants from the fuel combustion
for heating could not be completely discharged from the
house, thereby resulting in indoor CCs pollution [53].

HMW-CCs, especially C6, C9, and C10 in the three resi-
dential areas, accounted for 18.3%, 19.5%, and 25.0% of the
total CCs, respectively.Within indoor environments, the ozo-

nolysis of fatty acids resulted in the formation of C10, C9, and
other aldehydes [54], which were linked to ozone-initiated
chemistry on the human skin [54, 55] and interior surface
(clothing fabric, painted wall, or carpet) [56]. HMW-CCs
might be associated with cooking-related activities [57]. Here,
the concentration of HMW-CCs in the indoor environments
was significantly higher than that in the outdoor environ-
ments, suggesting that these CCs may be emitted by the
human body and cooking-related activities. Additionally,
the concentration of Di-CCs in the indoor and outdoor envi-
ronments changed similarly, with HS>XY>QJ, indicating
that they may be influenced by outdoor infiltration.
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Figure 1: The concentrations and relative molar contributions of outdoor carbonyls at HS, QJ, and XY.
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3.1.3. Seasonal Variation. The concentrations of the ten
most abundant CCs in both indoor and outdoor environ-
ments of QJ in heating and nonheating seasons are shown
in Figure 3 (indoor: QJ-1, QJ-2, QJ-3, QJ-4, and QJ-5; out-
door: QJ-O). Interestingly, the seasonal variation of indoor
and outdoor CCs was the opposite. The concentrations of
indoor CCs (147.2-235.1μg/m3) in the heating season were
higher than those in the nonheating season (70.9-
137.7μg/m3), whereas outdoor CCs showed higher con-
centrations in the nonheating season (68.9± 28.2μg/m3)
than those in the heating season (55:3 ± 9:4μg/m3). The sea-
sonal variation of outdoor CCs was attributed to the rela-
tively higher temperature (21:6 ± 4:3°C in the nonheating
season vs. 0:8 ± 2:9°C in the heating season) and stronger

solar radiation in the nonheating season, which favored the
photochemical reaction of atmospheric organic matter [58].
The impact of plant emissions was also an important factor
[59]. For indoor CCs, the concentrations of LMW-CCs, C1,
C2, and A3K in the heating season were obviously higher
than those in the nonheating season. Especially, the con-
centration of C2 in the heating season (24.1-48.5μg/m3)
was more than twice that in the nonheating season (7.5-
12.9μg/m3). Similar seasonal variations of CCs in urban
residences were observed in Baotou, another city in north-
west China [9]. This was reasonable because the indoor tem-
perature in the heating season and nonheating season in
most cities in northwest China was comparable (20-25°C),
but the window was less open in the heating season. Thus,
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Figure 2: The concentrations and relative molar contributions of indoor carbonyls at HS, QJ, and XY.
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the excellent airtightness of modern buildings could cause a
continuous accumulation of gaseous pollutants in indoor
environments.

Previous studies have demonstrated that indoor pollut-
ant concentrations decrease with strong ventilation [9, 25,
60]. To investigate the impact of ventilation on indoor CCs
pollution, we employed the CO2 tracer gas decay method
to determine the air exchange rate (ACH) [60]. The detailed
procedure for calculating ACH was described in Supplement
S2. Our results indicated that the ACH in the nonheating
season (2.6-48.6 h-1) was 1-2 orders of magnitude higher
than that in the heating season (0.1-0.8 h-1), further high-
lighting that the low ACH served as a significant contributor
to severe indoor CCs pollution in the heating season
(Table S5).

3.2. Source Identification

3.2.1. Correlation and PCA. Spearman correlations were cal-
culated for almost all CCs quantified in the indoor environ-
ments to determine common sources (Table S6). Except for
2,5-DB, C10, Gly, and mGly, most CCs showed strong
correlations with each other, with Spearman coefficients
(ρ) between 0.5 and 0.9, indicating that they coexisted in
the indoor environments and were emitted from the
same sources. C1 presented a strong correlation with C2
(ρ = 0:89), A3K (ρ = 0:83), C3 (ρ = 0:86), and C4
(ρ = 0:85), suggesting similar sources for these four CCs.
N-C5 presented a strong correlation with C6 (ρ = 0:90)
and C7 (ρ = 0:91), suggesting that the three CCs shared
similar sources.

Factor analysis was used to quantitatively analyze indoor
CCs sources in this study. Factor 1 was characterized by C1,
C2, A3K, C3, and C4, which were mainly emitted from
building materials and cooking fumes [61–65]. In the indoor
environment, pressed wood products using adhesives that
contain urea-formaldehyde (UF) resins were likely to be
the most significant sources of C1 (available at http://www
.epa.gov/iaq/formalde.html). The Spearman coefficients
between these CCs ranged from 0.77 (p < 0:01) to 0.92
(p < 0:01), indicating that they were common indoor
sources. Factor 2 presented high loadings with n-C5 and
C6, indicating the source of wooden furniture [66, 67]. Fac-
tor 3 was dominated by Gly and mGly, which were emitted
directly to the atmosphere through biomass combustion and
then again formed by oxidation of VOCs [14]. Factor 4
was characterized by high levels of Benz, which was used
as a special top-flavor and found in some cosmetics and
personal care products (available at https://www.vedantu
.com/chemistry/benzaldehyde), such as cosmetics, air fresh-
eners, and cleaning agents [68]. A3K and C2 also showed
high loadings, indicating that Factor 4 represented emissions
from personal care products. Factor 5 was identified as ciga-
rette smoke due to the high contributions of MEK and i-C5.
MEK showed higher levels in smoking houses and apart-
ments [29]. The twiddle factor loadings and variances of
the extracted principal components are shown in Table 1.
Building materials and cooking fumes were the most impor-
tant sources of indoor CCs, contributing to 54.9% of the
indoor CCs. The identified release source of wooden furni-
ture also made a substantial contribution (13.6%) to CCs.
The rest of the CCs were caused by outdoor infiltration,
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personal care products, and cigarette smoke, contributing to
10.6%, 7.6%, and 3.8% of the CCs, respectively.

Indoor CCs sources identified in this study were com-
pared with other limited source apportionment studies avail-
able worldwide. In the present study, different indoor
sources within Chinese households contributed to more
than 90% of measured indoor CCs. Guo [69] found that over
76% of indoor VOCs concentrations in households in Hong
Kong, China, were attributed to the off-gassing of building
materials. The highest source contribution of off-gassing
of building materials could be explained by the fact that
most furniture in households in Hong Kong was made
of pressed wood products with adhesives containing
urea-formaldehyde resins [70]. The source apportionment
in Edmonton, Canada, which employed PCA, suggested
that the emission of household products had the largest
contribution (43.2%) to indoor VOCs [71]. In a recent
study, Liu et al. [72] reported that more frequent high-
emitting activities (such as cooking), and high emissions
from building materials and furnishings were the primary
source of indoor VOCs in the United States. Overall, the
observed concentrations of CCs within residences were
influenced by common indoor sources, which had been
reported in comparatively similar ways in different studies.

3.2.2. Cooking Contribution. In a study conducted by Liang
et al. [73], only two aldehydes (hexanal and nonanal) were
detected at different stages of interior decoration in an apart-
ment in Beijing. Another study by Liang et al. [74] revealed
that aldehyde levels increased gradually after one year of
occupancy, with the type of aldehydes increasing from 2 to
10. This indicated that aldehydes were closely associated
with human activities in Chinese households with cooking

activities being a significant contributor to indoor air pollu-
tion. Ho et al. [75] illustrated that long-chain saturated car-
bonyls, e.g., heptanal, octanal, and nonanal, accounted for at
least 40% of carbonyls in kitchens that frequently used
heated cooking oils. Cheng et al. [76] measured the concen-
trations of CCs in the restaurant, kitchen, and fume exhaust
and observed that most CCs (>50%) were removed by the
kitchen ventilator. However, these pollutants could still be
transported to the dining room and other areas and thus
affected indoor air quality. Pei et al. [24] investigated the
concentrations of VOCs in unventilated kitchens before
and after cooking and found that the concentrations of
indoor HMW-CCs (hexanal, nonanal, octanal, pentanal,
and heptanal) increased 2-5 times during the cooking
period.

The concentration variations of CCs in the living room
before and during cooking in QJ are shown in Figure 4.
The concentrations of indoor LMW-CCs C1, C2, and A3K
increased significantly during the cooking process. The
increase of the three LMW-CCs was even more pronounced
in the nonheating season, with increments of 73% (QJ-3),
47% (QJ-4), and 143% (QJ-3), respectively. A3K is a moder-
ately toxic reagent that can cause damage to the central ner-
vous system and liver in humans [77]. Therefore, the
potential risk of A3K exposure during cooking cannot be
overlooked. The contribution of HMW-CCs to indoor CCs
during the cooking process increased more significantly in
the heating season. For instance, C9 and C10 increased by
42% and 71%, respectively. Liu et al. [72] reported that C9
and C10 could be emitted from ozone reactions on various
indoor surfaces, such as surface oil films originating from
cooking [78]. These results confirmed that cooking activity
was a significant source of CCs.

Table 1: Component matrix from PCA of indoor CCs.

Compounds
F1

Building materials
and cooking fumes

F2
Wooden furniture

F3
Outdoor infiltration

F4
Personal care products

F5
Cigarette smoke

C1 0.897 0.048 -0.271 0.167 0.138

C2 0.695 0.320 -0.255 0.443 0.151

A3K 0.591 0.317 -0.218 0.582 0.136

C3 0.738 0.406 -0.198 0.342 0.165

MEK 0.113 0.030 -0.041 0.225 0.951

C4 0.620 0.484 -0.174 0.455 0.246

Benz 0.345 0.214 -0.147 0.860 0.110

iC5 0.174 0.089 -0.104 -0.035 0.960

nC5 0.179 0.859 -0.256 0.250 0.169

Tol 0.362 0.477 -0.237 0.553 0.060

DB 0.326 0.727 0.401 0.083 -0.208

C6 0.126 0.890 -0.285 0.212 0.109

Gly -0.261 -0.151 0.898 -0.184 -0.113

mGly -0.272 -0.145 0.906 -0.147 -0.041

% variance 54.9 13.6 10.6 7.6 3.8

Accumulative (%) 54.9 68.5 79.1 86.7 90.5

Boldface denotes high factor loadings considered to be marker species.
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3.3. Inhalation Exposure Estimation and Health Risk
Assessment of Children. Table 2 summarizes the daily inhala-
tion doses of formaldehyde and acetaldehyde (Eij) for chil-
dren in each household during the heating season. The
highest daily inhalation doses of formaldehyde and acetalde-
hyde for children aged <2 years were 398.5μg/day and
223.0μg/day, while for children aged 2-6 years, they were
580.8μg/day and 325.0μg/day, respectively. The daily aver-
age inhalation doses of formaldehyde and acetaldehyde for
children aged <2 years (209.5 and 154.5μg/day) and 2-6
years (305.3 and 225.1μg/day) in QJ were approximately
3-4 times higher than those in HS (aged <2 years: 50.8 and
44.3μg/day; aged 2-6 years: 74.1 and 64.6μg/day) and XY
(aged <2 years: 63.1 and 57.3μg/day; aged 2-6 years: 92.0
and 83.5μg/day). Fan et al. [1] reported that the inhalation
doses of formaldehyde and acetaldehyde for children in the
child’s bedroom were nearly ten times that in the living
room due to prolonged exposure time. Therefore, indoor

CCs pollution in the bedrooms of children warrants greater
attention.

The child-specific NSRLs were utilized to assess the
health risks of children exposed to formaldehyde and acetal-
dehyde in their homes. Table 2 summarizes the risk quotient
(RQ) of each child’s exposure to these chemicals during the
heating season. The inhalation dose exceeded the safety limit
(RQ > 1:0) of the exposure dose recommended by the Office
of Environmental Health Hazard Assessment (OEHHA).
The results showed that children in all three communities
were at risk of developing cancer (cancer risk > 10−5). Dur-
ing the heating season, the RQ of formaldehyde exposure
for children aged <2 years in households was 45.7-773, and
for children aged 2-6 years, it was 10.9-185. These findings
demonstrated that children’s exposure to formaldehyde
was tens to hundreds of times the “Safe Harbor” level. The
values of RQ for acetaldehyde exposure in all households
ranged from 15.4 to 192.3 for children aged <2 years and
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from 3.7 to 45.9 for children aged 2-6 years. Compared with
children’s exposure to acetaldehyde, formaldehyde exposure
had a greater impact on children’s health, particularly for
children aged <2 years. This was consistent with the results
of a study by Bradman et al. [18], which reported higher
RQ values for formaldehyde exposure (12.0-51.7) than those
for acetaldehyde exposure (2.3-9.8).

3.4. Odor Pollution of HMW-CCs Emitted from Indoor
Environments. Chinese urban residents spend almost 90%
of their lifetime indoors, with 72% of that time spent in res-
idential indoor environments [25]. Consequently, the emis-
sion and concentration of indoor CCs are strongly
associated with human health. Odor activity value (OAV)
was used for estimating odor intensity and evaluating the
contribution of CCs to perceived odor. When the OAV

was below 1, the CC theoretically cannot be perceived by
the general population, whereas an OAV above 1 indicated
that the CC was expected to contribute to the perceived odor
[23]. Table 3 shows the OAV of the CCs in the indoor envi-
ronment of HS, QJ, and XY. Generally, the odor thresholds
of LMW-CCs, namely, C1 and A3K, in the indoor environ-
ment of residences were relatively high, resulting in a lower
OAV for these compounds. In contrast, C2 showed a signif-
icant odor activity with activity values greater than 3. The
OAV of HMW-CCs, namely, C6, C7, C8, C9, and C10 was
greater than 1. Notably, the OAV of C8 was greater than
10, indicating that HMW-CCs should be the focus in explor-
ing the odor pollution of CCs in the indoor environment.

Indoor chemical factors are considered important causes
of SBS. Some decorative materials contain chemical compo-
nents that may induce SBS. C6 may induce general

Table 2: Daily inhalation doses and risk quotients of formaldehyde and acetaldehyde by children in each household.

Site
Formaldehyde Acetaldehyde

Birth to <2 years old 2 to <6 years old Birth to <2 years old 2 to <6 years old
Eij (μg/day) RQ Eij (μg/day) RQ Eij (μg/day) RQ Eij (μg/day) RQ

HS-1 62.9 122.1 91.7 29.1 59.4 51.2 86.6 12.2

HS-2 46.3 89.9 67.5 21.5 51.2 44.2 74.6 10.5

HS-3 23.5 45.7 34.3 10.9 17.9 15.4 26.0 3.7

HS-4 70.5 136.7 102.7 32.6 48.7 42.0 70.9 10.0

QJ-1 398.5 773.2 580.8 184.5 176.6 152.3 257.4 36.4

QJ-2 106.7 207.0 155.5 49.4 110.7 95.4 161.3 22.8

QJ-3 187.3 363.3 272.9 86.7 223.0 192.3 325.0 45.9

QJ-4 141.9 275.3 206.8 65.7 115.2 99.3 167.9 23.7

QJ-5 212.9 413.0 310.3 98.6 146.8 126.5 213.9 30.2

XY-1 73.9 143.3 107.6 34.2 49.1 42.3 71.6 10.1

XY-2 49.4 95.9 72.0 22.9 45.6 39.3 66.4 9.38

XY-3 88.9 172.4 129.5 41.2 119.2 102.8 173.8 24.5

XY-4 48.3 93.7 70.4 22.4 35.7 30.8 52.0 7.35

XY-5 55.1 106.9 80.3 25.5 36.7 31.7 53.5 7.56

Table 3: Odor activity values of indoor pollutants at HS, QJ, and XY.

Compounds Odor threshold/(μg/m3)
Odor activity value

HS QJ XY

LMW-CCs

Formaldehyde C1 670.3 0.02 0.07 0.02

Acetaldehyde C2 2.95 3.66 11.4 4.27

Acetone A3K 108900 <0.01 <0.01 <0.01
Propionaldehyde n-C3 2.59 0.75 1.58 0.91

2-Butanone MEK 1416.4 <0.01 <0.01 <0.01
i,n-Butyraldehyde i,n-C4 1.64 0.96 1.61 1.00

i-Valeraldehyde i-C5 0.38 7.99 7.98 2.89

Valeraldehyde n-C5 1.58 0.79 1.81 1.05

HMW-CCs

Hexaldehyde C6 1.25 3.72 12.9 6.18

Heptanaldehyde C7 0.8 2.56 5.32 2.98

Octanaldehyde C8 0.06 26.2 95.3 42.0

Nonanaldehyde C9 2.16 3.56 7.68 5.59

Decanaldehyde C10 2.79 1.08 1.29 1.52
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symptoms of SBS, while C8 and C10 can significantly cause
skin symptoms of SBS [32]. Therefore, it is necessary to con-
sider setting limits for HMW-CCs in the indoor environ-
ments. Several studies have shown that older buildings
increase the risk of SBS. However, Fu et al. [79] found that
housing built in the last ten to fifteen years also contributed
to the occurrence of SBS, possibly due to chemical residues
in newer buildings, such as new decorations and new fur-
nishings. The present study observed that new buildings in
QJ had stronger odor pollution and may pose greater SBS
risks for health.

4. Conclusions

The prevalent and abundant CCs in the indoor and outdoor
environment of residential buildings were LMW-CCs, such
as formaldehyde, acetaldehyde, and acetone. The concentra-
tions of HMW-CCs (hexanal, nonanal, and decanal) were
significantly higher indoors than outdoors. Indoor CCs con-
centrations were higher during the heating season, while
outdoor CCs concentrations were higher during the non-
heating season. This seasonal contrast was due to the influ-
ence of temperature on outdoor CCs pollution and heating
and ventilation on indoor CCs pollution. PCA of indoor
measurements identified five components that accounted
for 90.5% of the total variance, including building materials
and cooking fumes, wooden furniture, outdoor infiltration,
personal care products, and cigarette smoke. During the
cooking period, LMW-CCs contributed more to indoor
CCs in the nonheating season, while HMW-CCs contributed
more in the heating season. Formaldehyde exposure posed a
greater health risk to children than acetaldehyde exposure in
the indoor environment. The main source of odor pollution
in residential indoor environments was HMW-CCs with low
odor thresholds, including hexanal, heptanal, octanal, nona-
nal, and decanal. Currently, China only regulates indoor
formaldehyde levels, with no relevant regulations for other
CCs that have adverse effects on human health. Our findings
can provide valuable insights into the profile of indoor CCs
pollution in urban regions in China and highlight the need
for relevant standards on indoor air quality.
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