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The COVID-19 pandemic outbreak has increased the general awareness of the importance of proper ventilation in the indoor
environment to reduce the contagion risk. In particular, attention has been paid to specific categories of buildings, such as
schools, due to two factors: (1) high occupancy density and (2) the presence of young and sometimes more susceptible people.
Despite the high level of alertness towards the ventilation of classrooms, robust analyses of the effectiveness of the different
strategies to mitigate the contagion risk have been difficult to perform. Indeed, the COVID-19 pandemic is still ongoing, and
many factors, such as the presence of multiple viral strains, use of facial masks, progression in vaccination, and installation of
air purifiers and other sanitization devices, make it difficult to fully quantify the impact of room ventilation by simply
analysing available monitoring data. Moreover, mitigation strategies related to ventilation are often dynamic, increasing the
complexity of the problem to assess. In this framework, this work proposes a new Monte Carlo method integrated with
building performance simulation to evaluate the number of infected occupants under different scenarios, considering also the
dynamic boundary conditions. The described approach has been applied to a case study classroom at the Free University of
Bozen-Bolzano, Italy, analysing almost 100 different scenarios and discussing the effectiveness of different ventilation strategies
traditionally adopted to ensure suitable IAQ according to CO2 concentration limits. Results highlight the importance of
combining different solutions (e.g., mixed-mode ventilation and facial masks) to limit the risk for both students and lecturers.

1. Introduction

Considering that the majority of people spend most of their
life inside buildings, i.e., up to 90% of their time [1], con-
cerns about indoor environmental quality are more than jus-
tified. Among other aspects, it is essential to assess indoor air
quality IAQ inside homes, schools, offices, and public and
private buildings to ensure the health of the occupants and
plan interventions in case IAQ is not good enough [2].

Not only health but productivity as well can be affected by
poor quality. In office environments, where the provision of a
sufficient and continuous supply of fresh air to the occupants
is often possible only bymeans of a ventilation system [3], office
workers are exposed to different pollutants and environmental
stressors, such as chemical, ergonomic, biological, and physical

loads. These factors may affect work performance [4, 5], com-
fort [6], sickness leave rate [7–9], and the frequency of work-
related health problems [10] and increase the possibility to
develop sick building syndrome (SBS) symptoms [11–13].

The same aspects apply also to other building typologies.
Focusing on schools, for instance, ASHRAE 62.1 [14] and
62.2 [15] provide a list of concentration limits for six pollutants
(NO2, CO, O3, PM10, SO2, and lead) and impose a minimum
flow rate of fresh air equal to 8 l s-1 per person, to keep indoor
CO2 concentration below 700ppm. This is also required to
satisfy the odour perception quality of at least 80% of people.
Most schools around the world have basic natural ventilation
systems that are typically inadequate to meet the needs of stu-
dents [16] leading to a nonnegligible risk for students to be
exposed to various air pollutants. Kumar et al. [17] studied
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the effects of poor air quality on students, highlighting again a
potential risk of reduction in cognitive performances and of
severe health consequences in the form of SBS.

Concentration levels of CO2 are frequently used as ametric
of IAQ [18] and are a critical aspect in classrooms for many
different reasons, such as the students’ health [19] and aca-
demic performances [20]. An increase of 10-20% in absentee-
ism in classrooms with an average CO2 concentration above
1000ppm was observed by Shendell et al. [21]. High levels of
CO2 concentration may be linked also to an increase in respi-
ratory disease such as asthma [22] and a decrease in learning
performances [13]. On the contrary, Bakó-Biró et al. [23]
and Toftum et al. [24] observed that higher ventilation rates,
and so, lower CO2 concentrations, directly improve the
responses for several tasks. For instance, according to Toftum
et al. [24], learning outcomes for a group of Danish students
exposed to lower CO2 concentrations in schools got signifi-
cantly better. Finally, Chatzidiakou et al. [25] presented an
extensive review about IAQ in classrooms, highlighting that
increased ventilation rates also help improve satisfaction with
IAQ by mitigating overheating, reducing mould formation,
and lowering total volatile organic compounds (TVOCs) and
CO2 concentrations.

Given the importance of keeping low CO2 concentration
levels in classrooms, different ventilation strategies aimed at
improving IAQ have been widely analysed in the literature.
Stabile et al. [26] and Almeida et al. [27] compared the effec-
tiveness of different natural ventilation strategies in school
buildings on indoor air quality. Stabile et al. [28] investigated
the potential of both natural and mechanical ventilation
strategies including free-running ventilation, based on the
occupants’ perception of IAQ.

Since the SARS-CoV-2 virus outbreak occurred in late
2019, it has become a priority to avoid conditions favourable
to the virus spreading. For instance, Burgmann and Janoske
[29] investigated the possibility to use air purifiers to reduce
the airborne particles present in classrooms. In some cases,
airborne transmission can be assumed as the main route of
contagion [30], and so, the health hazard posed by the virus
can be strictly correlated to IAQ as far as ventilation aspects
are concerned. Consequently, ventilation strategies can be
compared not only in terms of CO2 concentration reduction
but also in lowering the airborne contagion risk. A step in this
direction has been made by Di Gilio et al. [31], whomonitored
the CO2 levels in 11 classrooms of 9 schools and used CO2
concentrations as a proxy to assess the airborne infection risk.
A similar work has been proposed by Park et al. [32], who
employed a tracer gas to measure the air flow rate related to
different ventilation strategies and the Wells–Riley equation
[33] for risk assessment.

Another useful model for risk assessment is the “airborne
infection risk calculator” (AIRC) [34]. In this case, quanta
concentrations, i.e., “the dose of airborne droplet nuclei
required to cause infection in 63 % of susceptible persons,”
are directly used to assess the contagion risk. Despite the
potential of this approach, it considers steady-state conditions
and, thus, prevents the assessment of the effectiveness of
dynamic strategies of ventilation and occupancy for the reduc-
tion of the contagion risk.

In this framework, this paper aims at investigating the
efficacy of three standard and dynamic ventilation strategies,
conventionally used for the CO2 concentration reduction,
namely, schedule-based, CO2 concentration-based ventilation
controls, and hybrid ventilation, to mitigate the SARS-CoV-2
infection risk. In order to do so, a new Monte Carlo approach
has been proposed, ensuring the assessment of the contagion
risk under dynamic boundary conditions and expanding in
such a way the scope of state-of-the-art approaches, such as
the AIRC by Buonanno et al. [30], which evaluates the conta-
gion risk under steady-state conditions. The proposed meth-
odology has been applied to a university classroom of the
Free University of Bozen-Bolzano, focusing on the ability to
mitigate the contagion risk of the ventilation strategies ana-
lysed in a previous contribution [35].

The proposed approach has overcome typical limitations
related to transient boundary conditions, e.g., windows open-
ing, variable number of infected subjects in the classroom, and
CO2 concentration-based control for mechanical ventilation.
Furthermore, theMonte Carlo approach has also allowed con-
sidering the impact of some factors concurring in the infection
process of healthy subjects, such as the probability of a subject
being asymptomatic, a variable symptoms onset day for each
subject, and the probability for an infected subject to be conta-
gious before symptom onset, paving the way to a more com-
prehensive and dynamic infection risk assessment through
all the COVID-19 contagion phases.

2. Methods

As previously stated, in this work, different ventilation strate-
gies were evaluated in terms of COVID-19 contagion risk
reduction. Furthermore, thanks to the steps required by the risk
assessment process, it was possible to compare the ventilation
strategies also in terms of CO2 and energy load reduction. In
fact, an energy simulation of the building model was necessary
to calculate the air density of the classroom, a parameter that is
included in the mass balance of the SARS-CoV-2 virus. Given
the variety of factors included in the analysis, in the next para-
graph, a brief overview of the steps involved in the evaluation
processes is given.

The first phase was to select a case-study in order to create,
calibrate, and validate a building model, necessary to dynami-
cally calculate the temperatures in the classroom and so the
energy required both for heating and cooling, under the adop-
tion of different ventilation strategies. At this point, the soft-
ware MATLAB® was used to implement a mass balance of
both CO2 and quanta of the SARS-CoV-2 virus, where a quan-
tum is defined as “the dose of airborne droplet nuclei required
to cause infection in 63% of susceptible persons” [34]. To eval-
uate the risk of contagion due to COVID-19, both building
model andmass balances were coupled with some of the AIRC
tool’s equations for the evaluation of the probability of conta-
gion given the quanta concentration of COVID-19. Finally, a
Monte Carlo approach was adopted to iteratively evaluate the
risk of contagion by including some probabilistic factors such
as the emission of quanta’s rates by the infected occupants.

In this chapter, the aforementioned phases are described
in detail.
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2.1. Case Study. The case study selected for the model develop-
ment is a classroom (named E5.21), located on the 5th and top
floor of “E Building” at the Free University of Bozen-Bolzano
campus, in the centre of the city of Bolzano (Northern Italy;
46° N, 11° E; altitude equal to 262m). Conditions are typical
of a heating-dominated climate in the Alpine region (2791K
d with respect to a base temperature of 20°C, calculated in
agreement with DPR 412/1993 [36]), with a relatively short
but hot summer. The “E Building” is surrounded by other
buildings with approximately the same height.

The room floor area is 56m2, and its height is 3.5m, with a
total volume of 196m3. The classroom is surrounded by two
other classrooms with similar features (E5.20 and E5.22),
along a common hallway. It has two west-oriented windows
and a single door of about 2m2 towards the corridor. Win-
dows are located on one side of the classroom (single-sided
natural ventilation), with a total surface of approximately
12m2. Each of the windows is divided into three portions—a
fixed element, a tilt window, and a turn window. The openable
area is about half of the total window area. Even if single-sided
ventilation is generally related to lower ventilation rates with
respect to cross-ventilation [32, 37], due to the configuration
of the nearby buildings and no major obstacles in the proxim-
ity of the external wall, a good exchange of air is expected with
the external environment when the windows are open.

Only two elements of the building envelope, i.e., the roof
and the west façade, are exposed to the external environment:
the former one is an insulated concrete slab covered by a green
roof with a thermal transmittance equal to 0.21Wm-2K-1,
while the latter one is an externally insulated concrete struc-
ture with a thermal transmittance equal to 0.24Wm-2K-1.
The two windows are complex fenestration systems, i.e., triple
glazing with integrated Venetian blinds with curved slats, with
a thermal transmittance of 0.6Wm-2K-1 and a solar heat gain
coefficient (SHGC) of 0.53. Besides the integrated shading
device, external Venetian blinds are present also.

The classroom is designed to host up to 24 students. In
consideration of the typical activities (i.e., occupants seated,
very light work), their metabolic rate can be assumed equal to
1.2 MET [38]. Five luminaires, each one with two fluorescent
lamps, provide general illumination to the room, and two
additional luminaires are dedicated to the blackboard. As a
whole, the indoor artificial lighting system is responsible for
8.75Wm-2 of internal gains. Furthermore, a desktop computer,
a beamer, and a motorized screen are installed in the room,
contributing with other 1.7Wm-2. Artificial lighting systems
and equipment are typically on only during occupancy time,
i.e., from Mondays to Fridays, from 8 : 00 am to 6 : 00pm, and
on Saturday in the morning, from 8 : 00am to 12 : 00pm.

The “E Building” is conditioned primarily by means of
an air system, which supplies the indoor environments also
with fresh air. During the heating period, which is from
October 15th to April 15th in the climate zone where Bolzano
is located, space heating needs are satisfied also by means of
a couple of radiators per room, installed under the windows
as a secondary heating system. All classrooms on the 5th

floor are supplied by a ventilation system designed to pro-
vide a nominal air-flow rate slightly larger than 0.1m3 s-1

but generally operated at 0.07m3 s-1.

Air conditioning, ventilation, and shadings are controlled
through a central building energy management system
(BEMS) by the University Facility Management, according
to a typical schedule designed to ensure comfort conditions
during occupancy time. Specifically, the systems are switched
on at 6 : 00am until 8 : 00pm during weekdays and switched
off during Sundays and holidays. On Mondays, the systems
are switched on earlier, at 5 : 00 am, while on Saturdays they
are turned off in the afternoon. In each room, the occupants
are allowed to override the BEMS signals. For instance,
although the nominal temperature setpoint is 22°C, the occu-
pants can apply some regulation changes in a ±3°C range.

Classroom E5.21 is part of the Living Labs of the Free
University of Bozen-Bolzano and is equipped with several
sensors for the long-term monitoring of the indoor environ-
mental conditions. Among the installed sensors, four onset
HOBO U12-013 and two onset HOBO MX1102 loggers
(Table 1) record air temperature and relative humidity with
a 10-minute timestep and CO2 concentrations with a 5-
minute timestep, respectively. MX1102 sensors, in particu-
lar, are installed at approximately 1.75m height (half of the
room height), on the west façade between the two windows
and on the opposite internal wall, sufficiently far away from
the inlet and outlet vents of the air system to avoid their
influence. The rooms adjacent to E5.21 and on the floor
below are equipped with similar sets of sensors to allow for
the monitoring of the same environmental quantities.

Finally, a meteorological station is installed on the roof
of the “E Building,” registering outdoor air temperature
and humidity, and the solar radiation incident on different
orientations (global and diffuse horizontal solar irradiance,
global solar irradiance on the main cardinal vertical orienta-
tions, and direct normal irradiance).

In this research, two periods before the COVID-19 pan-
demic outbreak, characterized by similar occupancy profiles,
were considered: period 1, from 18.11.2018 to 23.12.2018,
and period 2, from 08.11.2019 to 23.12.2019. To be able to
collect the data required for the calibration and validation pro-
cesses, it was necessary to select two periods belonging before
the start of the COVID-19 pandemic. In fact, during these
periods, the number of students present in the classroom
and typical occupancy were not yet affected by the pandemic.

2.2. Building Energy Simulation Model

2.2.1. Preparation, Calibration, and Validation. EnergyPlus
9.6 was employed to develop a single-zone building energy
simulation (BES) model of the case study E5.21 classroom.
Since the actual HVAC system serves the whole building, a
simplified approach was adopted: specifically, an “ideal load
air system” was modelled limiting air-flow rates and supply
temperatures as in the real case-study, and additional heat
gains were included to account for the radiators during the
heating period.

The details provided in Section 2.1 were used as inputs.
EnergyPlus contaminant mass balance model was exploited
to simulate the variation of CO2 concentration, setting the
CO2 generation rate per occupant in agreement with Persily
and de Jonge [39]. In order to take into account the dilution
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of CO2 concentration because of airflows exchanged with the
adjacent corridor, an equivalent generation rate was applied
considering a dilution factor. Since it was observed that the
E5.21 door was usually left open during the considered
periods, a constant value was adopted.

Simulations were run considering a 5-minute timestep.
Amultistage calibration was performed according to Penna

et al. [40]. The first stage was dedicated to the calibration of sur-
face heat convection coefficients and infiltration and ventilation
rates, followed by a second stage focused on actual occupancy
(i.e., number of people) and occupancy-dependent quantities,
such as internal gains and CO2 sources, as well as the CO2 dilu-
tion factor because of air exchanges with the corridor (varied in
a range between 0 and 1 according to a 0.1 step). Actual mete-
orological years (AMYs) were built for 2018 and 2019, thanks to
the measurements collected by the weather station. Air temper-
atures recorded by the sensors in the adjacent environments
were used as boundary conditions for internal walls and floor.
After analysing, the recordings of CO2 concentrations before
room occupancy, 390ppm and 420ppm, were assigned as con-
stant values of CO2 concentration in the fresh air, respectively,
for 2018 and for 2019. Finally, occupancy schedules were set
in agreement with the data provided by the university secretar-
iat. Simulated air temperature and CO2 concentrations were
compared to the values collected during period 1 (2018) and
period 2 (2019), using the first period for calibration and the
second one for validation purposes, expressing accuracy by
means of the root-mean-square difference (RMSD) and the
mean bias error (MBE). The RMSD values for air temperature
in period 1 and period 2 resulted equal to 0.68°C and 0.70°C,
respectively, and equal to 94ppm and 76ppm for the CO2 con-
centration. TheMBE values resulted equal to 0.54°C and 0.56°C
for the air temperature and for periods 1 and 2, respectively,

while the normalized MBE for CO2 concentration was equal
to 13% and 9.6%.

2.2.2. BES Simulation Plan. In order to explore the potential of
different solutions for room ventilation and controls of the
mechanical ventilation system, a simulation plan was designed.

Boundary and operative conditions were standardized.
Instead of the AMY weather file, the reference year devel-
oped by the Italian Thermo-technical Committee (CTI)
and the CO2 outdoor concentration detected during the last
months of 2019 (i.e., 420 ppm) was adopted.

Standard occupancy profiles were defined, with morning
classes from 8 : 00 am to 12 : 00 pm and from 2 : 00 pm to
6 : 00 pm during weekdays. On Saturdays, only morning clas-
ses were scheduled, and no activities were simulated on Sun-
days. The standard calendar was implemented, assuming no
occupancy during the winter holiday break (i.e., from 24.12
to 07.01) and in the month of August.

Conventional temperature setpoints of 20°C (space heat-
ing) and 26°C (space cooling) were set, starting 3h before
occupancy and for all the occupied time. Space heating was
considered available only during the conventional heating sea-
son (from October 15th to April 15th) and space cooling when
necessary. Air conditioning, ventilation, and shading controls
were modelled adopting the same inputs, assuming the cali-
bration results, with the exception of the maximum air flow
rate for the ideal load air system, set equal to the value of
0.1m3 s-1 indicated in Section 2.1.

The factors used to define different scenarios were selected
based on their relationship with CO2 concentrations in indoor
spaces and, more in general, indoor air quality. Then, they
were changed in order to reflect realistic situations, for exam-
ple, a crowded classroom with no natural ventilation and a

Table 1: Technical characteristics of the onset HOBO U12-013 and MX1102.

Onset HOBO U12-013 Onset HOBO MX1102

Temperature sensor

Range -20 to 70°C 0 to 50°C

Accuracy ±0.35°C from 0 to 50°C ±0.21°C from 0 to 50°C

Resolution 0.03°C at 25°C 0.024°C at 25°C

Drift <0.1°C per year <0.1°C per year

Relative humidity RH sensor

Range 5% to 95% RH (noncondensing) 1% to 90% RH (noncondensing)

Accuracy
±2.5% from 10% to 90% RH (typical),

with a maximum of ±3.5%
±2% (20% to 80%: Typical to a maximum
of ±4.5%, including hysteresis at 25°C;
below 20% and above 80%: ±6% typical)

Resolution 0.05% 0.01%

Drift <1% per year typical <1% per year typical

Carbon dioxide sensor (sensing method: nondispersive infrared (NDIR) absorption)

Range — 0 to 5000 ppm

Accuracy —
±50 ppm ±5% of reading at 25°C, less than
90% RH noncondensing and 1013mbar

Resolution — Auto or manual to 400 ppm

Drift — <1% of FS
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closed door, or a low-density classroom with a CO2-based
mechanical ventilation. The factors selected are listed below:

(1) Number of occupants (i.e., 8, 16, or 24)

(2) Type of control for mechanical ventilation (i.e.,
scheduled occupancy-based or CO2 concentration-
based)

(3) Status of the classroom door, closed or open (i.e.,
CO2 dilution factor equal to 1 or to 0.5)

With regard to factor (2), a CO2-based mechanical ventila-
tion system supplies additional fresh air within the limit of its
nominal value (up to a total of 0.1m3 s-1) to keep the CO2 con-
centration level below a given threshold. Two different concen-
tration setpoints were compared, i.e., 1220ppm and 970ppm,
corresponding, respectively, to the lower thresholds for IAQ
categories 2 and 1 according to EN 16798-1 : 2019 [41]. For
those cases where mechanical ventilation was found insuffi-
cient, and in consideration of some of the policies adopted in
educational buildings after the pandemic outbreak, also win-
dows’ opening wasmodelled, imposing 10 air changes per hour
(ACH) according to three different schedules:

(a) From 9 : 45 am to 10 : 00, from 12 : 00 am to 2 : 00 pm,
and from 3 : 45 pm to 4 : 00 pm

(b) Equivalent to (a), with the addition of 5-minute
openings at the end of each hour

(c) Windows always open during all occupancy time

As regards to the dilution factor (factor 3), in the case of
the open door, the same value found in the calibration and
validation phases (i.e., 0.5) was adopted. Indeed, as men-
tioned before, the door was generally left open in the two
periods considered for calibration and validation. For those
scenarios that consider the door closed, a dilution factor of
1 was selected assuming the negligible contribution of infil-
trations with the corridor.

Total simulated scenarios were 24 (Table 2). Among simu-
lation outputs, operative temperatures and CO2 concentrations
during occupancy hours and annual space energy needs were
analysed.

2.3. Modelling of the SARS-CoV-2 Infection Risk. Considering
the SARS-CoV-2 infection risk, several previous contributions
in the statistic field aimed at computing the probability of
infection for subjects exposed to virus quanta.

The mathematical model on which the present work is
based was developed by Riley et al. [33] based on data collected
during and after an outbreak of measles in an elementary
school in New York, in 1974. This model was later included
as a particular case in the deterministic mathematical model
by Gammaitoni and Nucci [42].

The mathematical model was used to simulate different
environmental control strategies to reduce the infection risk
in four scenarios of tuberculosis outbreaks. The quanta
emission rate of airborne infection for an infected subject
is a fundamental but difficult-to-know value to assess the

probability of contagion. Because of that, data provided by
the tuberculosis outbreaks were used to evaluate the proba-
bility of contagion without the need to calculate quanta
emission rates for the infected occupants but by considering
the final number of infected and noninfected people (a pos-
teriori evaluation).

With the COVID-19 outbreak, a methodology to evalu-
ate a priori the emission quanta rate was needed in order
to quickly assess different strategies in terms of probability
infection reduction, without waiting for enough data to be
gathered for a posteriori evaluation. Buonanno et al. [34]
estimated the quanta emission rate of SARS-CoV-2, obtain-
ing as result distribution curves whose parameters depend
on the activity performed by the infected subject. A mathe-
matical model able to assess the risk of infection was then
developed, based on the previous Riley model and the subse-
quent Gammaitoni and Nucci contribution. The final model
for airborne contagion risk assessment has been imple-
mented in the AIRC tool (airborne infection risk calculator)
that can be used to evaluate the risk of contagion for differ-
ent infectious diseases.

In the present work, some of the limitations of the AIRC
tool related to transient boundary conditions (e.g., windows
opening and variable number of infected subjects) are over-
come by dynamically assessing the individual infection risk
of subjects exposed to SARS-CoV-2 airborne transmission
pathway with a Monte Carlo (MC) model. This methodology
was used to evaluate the probability of infection for subjects
exposed to SARS-CoV-2 in room E5.21 with the MC model
written in MATLAB® environment. The ventilation strategies
introduced in the previous chapter were analysed also in terms
of effectiveness in airborne contagion risk reduction. The
EnergyPlus model described in Section 2 was simplified and
then integrated with a Monte Carlo model to dynamically
evaluate not only the CO2 concentrations but also the quanta
concentration of COVID-19.

The following nomenclature was adopted in this research:

(i) Infected/Noninfected. A noninfected subject is a
student or professor who never contracted the
SARS-CoV-2 virus and can be infected only once
per iteration, becoming an infected subject. Infected
occupants can be either contagious or not, depending
if the simulation day is inside their contagious period

(ii) Contagious/Noncontagious. A contagious subject is
an infected subject during the contagious period.
A noncontagious subject can be either a noninfected
subject or an infected subject before or after the
contagious period [43]

(iii) Symptomatic/Asymptomatic. All subjects are subdi-
vided into one of these two categories at the begin-
ning of each iteration, regardless of the infection
status. The classification is needed only for the
iteration-ending check process and does not con-
tribute to changes during the simulations. Nonethe-
less, subjects classified as “asymptomatic” during
the initialization phase, can be infected during the
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simulations, furtherly increasing the spread of the
SARS-CoV-2 virus

The implemented modelling approach is briefly described
as follows:

(i) All iterations start with an infected asymptomatic
subject (i.e., a student or a professor)

(ii) Due to the infected subject, when the simulations
start, there is an increase in the total quanta emis-
sion in the classroom and, thus, of the quanta con-
centration in the next days

(iii) At the end of each day, it is checked if an infected
symptomatic subject reaches the onset of symptoms
or if all the asymptomatic infected ones end their
contagious period, which would end the simulation
as well. If neither of these two conditions is verified,
another simulation day starts. The day on which the
symptoms arise depends on the day of contagion
and is selected randomly from a distribution curve
for each infected subject

(iv) At the end of each day of the iteration, the number
of infected subjects is quantified based on their
exposure and risk, and the elapsed days from the

start (day one) to the end of the iteration are
evaluated

(v) Infected subjects are added to the quanta emission
rates to assess the contagion risk on the following
day

(vi) At the end of the simulation, the number of infected
people is divided by the number of susceptible sub-
jects to calculate the individual risk of contagion or
“attack rate.” This represents the percentage of peo-
ple contracting the virus before one infected person
is showing symptoms and the class is quarantined

2.3.1. Monte CarloModel.TheMonte Carlo model was used to
run 1000 iterations for each scenario. During each iteration,
several days are simulated (with a mean number that depends
on the scenario selected) to dynamically evaluate the dose
received by the susceptible subjects, and so, the possible num-
ber of infections, as well as accounting for some probabilistic
features as the quanta emission rates, was selected randomly
at each iteration from a distribution curve.

Before running the first simulation of each iteration,
some variables and parameters are initialized:

(i) A random value of quanta emission rates and a set
value of CO2 emission rates are predetermined for

Table 2: Characteristics of the simulated cases, including the number of occupants, the considered mechanical and natural ventilation
strategies, and the door status.

Case ID Number of occupants Mechanical ventilation control Natural ventilation Status of the door

1A

8

Scheduled occupancy-based

No

Open

1B IAQ category 2 CO2-based

1C IAQ category 1 CO2-based

2A

16

Scheduled occupancy-based

2B IAQ category 2 CO2-based

2C IAQ category 1 CO2-based

3A

24

Scheduled occupancy-based

3B IAQ category 2 CO2-based

3C IAQ category 1 CO2-based

4A

8

Scheduled occupancy-based

Closed

4B IAQ category 2 CO2-based

4C IAQ category 1 CO2-based

5A

16

Scheduled occupancy-based

5B IAQ category 2 CO2-based

5C IAQ category 1 CO2-based

5D IAQ category 1 CO2-based Schedule (a)

5E IAQ category 1 CO2-based Schedule (b)

5F IAQ category 1 CO2-based Schedule (c)

6A

24

Scheduled occupancy-based

No6B IAQ category 2 CO2-based

6C IAQ category 1 CO2-based

6D IAQ category 1 CO2-based Schedule (a)

6E IAQ category 1 CO2-based Schedule (b)

6F IAQ category 1 CO2-based Schedule (c)
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all subjects. While the values of quanta emission
rate are different for all subjects and assigned only
once at the start of each iteration, the value of
CO2 emission rate is equal for all subjects and kept
constant for all scenarios (i.e., it is equal for all iter-
ations and simulations)

(ii) The concentration of CO2 in the classroom is set
equal to the ambient concentration, while the con-
centration of quanta is set equal to zero

(iii) All subjects are randomly categorized either as symp-
tomatic or as asymptomatic and as noninfected
(except for subject 0 who is the infected asymptom-
atic person, either a student or a professor)

(iv) A weekly random schedule for each professor is cre-
ated, ensuring 8 hours of lectures either in the
morning and/or in the afternoon. Since 5 professors
were considered to be involved, the 4 hours of Sat-
urday morning are assigned randomly to one of
the 5 professors (reaching a total of 12 lecture
hours)

(v) Two different inhalation rate values are associated
with the students and the professors, according to
the activities that are, respectively, performed (such
as standing and loudly speaking, activity usually
related to professors, or sitting without speakin-
g—related to the students)

After the initialization process, the simulation of the first
day starts at 0 am. At the beginning of the lesson at 8 am,
COVID-19 quanta are assumed to start being emitted
according to the emission rate previously associated with
subject 0.

During the simulations, all subjects emit CO2 and one or
more quanta of COVID-19, increasing both concentrations.
At each timestep, the ventilation is evaluated based on the
scenario’s settings. At the end of each simulation, the total
dose received from the subjects in the room is calculated as
in equation (1) [30]:

Dq = IR〠
t

n tð Þ, ð1Þ

where IR is the inhalation rate and nðtÞ is the quanta at each
time step. The dose received by the subjects is equal for all
the students but differs from the dose received by the profes-
sors, since the two categories of subjects have associated differ-
ent inhalation rates (0.49m3h-1 for students and 0.54m3h-1

for professors [44]. Furthermore, the dose received by each
professor depends on the lecture’s schedule: indeed, a profes-
sor may be present or not during the simulated day and only
for a part of the day. The same approach applies also to the
total quanta emitted in the classroom during occupancy hours,
since a professor may contribute to increase quanta concentra-
tion only if infected and if present in the classroom.

Once the dose received by all subjects is evaluated, it is
possible to assess the infection probability as in equation
(2) [30]:

Pi %ð Þ = 1 − e−Dq : ð2Þ

For each noninfected subject, a value between 0 and 100
is randomly extracted from a uniform distribution. If the
given value is equal to or less than the infection probability,
then a subject is considered to be infected. Then, four differ-
ent factors are evaluated for the newly infected subjects: (a)
quanta emission rate, (b) the symptom’s onset day, and the
(c) starting and (d) ending day of the contagious period.

At the end of each simulation, after the identification of
the newly infected subjects, the algorithm checks if someone
reaches the beginning or the ending of the contagious
period. If so, the quanta emission rate for the given subjects
is changed from 0 to the quanta emission rate evaluated dur-
ing the initialization process, or vice versa.

Finally, the iteration ending conditions are checked: if (i)
during a simulation, the onset day of an infected and symp-
tomatic subject is reached or (ii) all the infected subjects are
asymptomatic and not anymore contagious, the iteration
stops. Indeed, it is assumed that, at the symptoms’ onset,
the subject is immediately tested for COVID-19, and so,
the classroom is promptly quarantined. On the other hand,
if all the infected subjects reached the end of the contagious
period, no more infections are possible.

If the ending conditions are not met, some factors are
initialized for the simulation of the next day: it is checked
if the next day is either a weekday (or Saturday morning)
or Sunday. In case the next day is Sunday, all the internal
conditions of the classroom are reset: CO2 concentration is
set equal to the external ambient one and COVID-19 con-
centration to zero thanks to the infiltration rate. Otherwise,
if the next day is a weekday, the concentrations of the last
time step of the previous day (i.e., 23 : 59) are used as the ini-
tial value for the day after. It is worth mentioning that both
viral inactivation and particle deposition rates are consid-
ered in the analysis, with values of 0.63 h-1 and 0.24 h-1,
respectively [44].

After the initialization of the variable for the next day, a
new simulation starts, and the whole process is repeated
until one of the two ending conditions is met. At the end
of each iteration, the total number of infected (symptomatic
or asymptomatic) is counted, as well as the number of days
needed to reach the ending condition.

A scheme of the proposed Monte Carlo model is reported
in Figure 1.

In the next paragraphs, more details are provided
regarding the four factors previously mentioned, evaluated
for the newly infected subjects: (a) quanta emission rate,
(b) symptoms’ onset day, and (c) starting and (d) ending
day of the contagious period. In addition, the (e) asymptom-
atic selection process is investigated and the (f) simplified
building model is described.

Quanta emission rates (a) depend on the subject’s activity.
Two possible activities are selected for the students: resting–
breathing, to consider the time spent by the students listening
to the lecture, and resting–speaking, to consider those moments
where the students speak to each other or to the professor
(Table 3). Two activities are selected also for the professors:
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resting–speaking and standing loudly–speaking. It is supposed
that the professor spends most of the time standing while
lecturing the students, with some moments when the professor
speaks to the students while sitting. It was then possible to clas-
sify the activities as a primary activity (the one that is performed
for most of the time) and a secondary activity, for both students
and professors. A weight between 0 and 1 is assigned to the sec-
ondary activity, randomly choosing each subject from a normal
distribution having a mean equal to zero and three standard
deviations equal to the maximum fraction of time that is possi-
ble to allocate to the secondary activity. The primary activity is
assumed to be performed for a fraction of time which is com-
plementary to the weight of the secondary one.

This allows us to estimate an individual average quanta
emission rate from the individual activity-related rates.
Quanta emission rates for each activity are assigned with a
lognormal distribution, the parameters of which, i.e., mean
and standard deviation of logarithmic values, depending
on the subject’s activity [30].

For the infected subjects, the individual quanta rate
emitted during the contagious period is selected randomly
by setting a maximum percentage of time that can be dedi-
cated to the secondary activity to 30%. The quanta emission
rates are assumed constant for all the occupancy hours
inside the contagious period.

Symptoms’ onset day (b) and start (c) and end (d) of the
contagious period are strictly related. Firstly, when a subject
is infected, the onset day is selected according to a gamma dis-
tribution whose parameters are a shape equal to 5.81 and a
rate of 1.06 [45]. Given the onset day, it is then possible to
evaluate the starting day of the contagious period according
to a gamma distribution whose parameters are a shape of
97.188, a rate of 3.719, and a shift of 25.625 [46]. In this case,
the starting day is evaluated with respect to the onset day. This
means that the starting day of the contagious period (i.e., the
number of days before the onset day) is always a negative or
null value, and so, an infected subject can be contagious even
before the symptoms’ onset day. This is representative of the
reality: in their study, He et al. [46] highlighted how infected
people can be contagious even 2-3 days before the symptom
onset. The contagious period may start before the symptoms’
onset day for both symptomatic and asymptomatic subjects.
Under no circumstances, the starting day may be set before
than two days apart from the infection day. The ending day,
on the other hand, is not evaluated randomly but set equal
to the 9th day after the symptoms’ onset day for all subjects,
in order to consider the worst-case scenario. In fact, after 8
days from symptom onset, the live virus can no longer be cul-
tured from infected subjects, indicating a significant infec-
tiousness decline [46].

The probability of being asymptomatic (e) is evaluated
by means of a Gaussian distribution with a mean of 40.5
and a standard deviation of 3.5 for each subject. Then, as
for the infection probability, a number in the range of 0-
100 is extracted for all subjects with a uniform distribution.
A subject is considered to be asymptomatic if the extracted
number is less than the probability value. The Gaussian dis-
tribution parameters have been developed accordingly to the
data provided by Ma et al. [47].

2.3.2. Scenarios. All 24 scenarios introduced in Section 2.2.2
were run with the Monte Carlo model coupled with the
simplified building model. Some hypotheses, equal for all
scenarios, were made prior to the start of the iterations. As
a first hypothesis, all the students do not change classrooms
during the day or during the week. The students stay in the
classroom from 8 am to 12 pm (all weekdays including Sat-
urday) and from 2pm to 6pm (from Monday to Friday).
During the occupancy hours, a professor is always present,
and he/she may change from morning to afternoon and
from day to day, with a random schedule created before run-
ning the simulations and thus equal for all of them. It has
been hypothesized that 5 professors teach in the classroom,
for a total of 8 hours each plus the 4 hours on Saturdays that
are assigned randomly to one of the professors.

It was also necessary to consider the typology of the start-
ing infected subject (student or professor), since it affects the
quanta emission rate and the occupancy hours of the infected
subjects in the classroom, increasing the number of scenarios
to 48. Furthermore, all scenarios were evaluated again (1) with
the hypothesis that both students and professor are wearing
masks and (2) by considering the simultaneous occurrence
of two subjects 0 (in this case, both students) without mask
utilization, representative of amore advanced stage of progres-
sion of the pandemic. The final number of scenarios is 96, for a
total of 96000 iterations and circa 1344000 building simula-
tions. It is worth underlining that in this research, the overall
risk of contagion for the occupants in the classroom was
assessed, without a specific distinction between the contagion
risk for professors and for students.

2.3.3. Postprocessing of the Results. As mentioned before, the
attack rate of the classroom was calculated at the end of each
iteration. However, in order to properly compare the results,
it was necessary to cluster them by means of the number of
students, since the attack rate is relative to the total number
of susceptible subjects.

For simplicity, as for the list of scenarios, the results are
reported with the same designations for both typologies of
subject 0 with an additional letter “p” or “s”, which stands
for “professor” and “student,” respectively.

Furthermore, the graphs reporting CO2 and quanta con-
centrations for different scenarios were obtained by consider-
ing only one infected subject (i.e., subject 0) in the classroom,
without the possibility for other subjects to be infected at day
0. Quanta emission rate for the infected subject represented
in the charts was set equal to themean value of the distribution
curve related to his main activity, while CO2 emission rates
were not changed.

3. Results and Discussion

3.1. CO2 Concentration and Operative Temperature.
Figures 2 and 3 report CO2 concentrations and operative
temperatures for each scenario. In each box, the horizontal
line represents the median value, while the upper and lower
part of the boxes represent, respectively, the 5th and 95th per-
centiles of the data. Simulated data refer only to the occu-
pancy time during the whole year.
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Building Model

Is the last time
step?

INPUTS: mask utilization, subject 0 typology, maximum fraction of time
for secondary activities, occupancy schedule, number of professors,
outdoor ambient conditions and number of MC iterations.

SCENARIO INITIALIZATION: number of
students, typology of ventilation, door status
and CO2 concentration threshold are selected.

ITERATION INITIALIZATION: quanta emission
rates and asymptomatic status (y/n) are
randomly selected for all subjects as well as
lecture schedules for the professors.

SIMULATION INITIALIZATION: initial CO2
and quanta concentrations are selected.
Constant total quanta emission rate is
calculated based on the number of infected
and their individual quanta emission rate.

Evaluation of:

CO2 and quanta concentrations are updated with
the respective mass balances.

Time-step updated: “i = i+1”

no

yes

Dose received Risk of infection New infection
cases

no

Is the last
iteration?

no

yesIs the last
scenario?

SIMULATION
START

time-step “i = 0”

no
END

yes

yes

Ending Conditions:

Is one of the
ending conditions

met?

Total number of infected subjects and
elapsed days from the iteration start are
counted.

OUTPUT: Iterations with the same number of final
infected subjects are counted and their attack rate
is evaluated.

Symptoms onset
day

Starting and ending days
of contagious period

MATLAB/AIRC tool 

Mechanical and natural ventilation fresh air volume rate.
CO2 and quanta generation.
Additional fresh air volume rate by CO2
concentration-based control.

(i)

(iii)
(ii)

All subjects are no longer contagious.

An infected subject reaches
its symptoms onset day.

(i)

(ii)

Figure 1: Scheme representation of the proposed Monte Carlo model.

Table 3: Lognormal distribution curve’s parameters for different activities.

Activity Log mean Log std. Subjects Type

Resting–breathing -0.43 0.73 Students Primary

Resting–speaking 0.24 0.72 Student and professors Secondary

Standing loudly–speaking 1.08 0.72 Professors Primary
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As observed in the charts, CO2-based controls (indicated
with the letters B and C) have little effect on the CO2 con-
centrations in the classroom when the door is left open
and the occupancy density is low or average (i.e., 8–16 stu-
dents). Case 2C is an exception, and if the CO2-based con-
trols are set to keep the IAQ category 1, the 95th percentile
value of CO2 concentration lowers significantly. On the con-
trary, CO2-based controls are necessary if the occupancy
density is high (i.e., 24 students), even when the door is
open, to lower the CO2 concentrations below either IAQ cat-
egories 1 and 2 thresholds (see cases 3B and 3C).

In the case of closed door and low occupancy density,
CO2-based controls are needed only to achieve IAQ category
1 target (case 4C, represented in Figure 4), and natural venti-

lation is enough to guarantee category 2. However, with
medium or high occupancy density, the mechanical ventila-
tion system struggles to provide enough fresh air to lower
the CO2 concentration below the prescribed thresholds (see
cases 5B, 5C, 6B, and 6C represented in Figures 5 and 6).
For this reason, it is necessary to adopt a mixed ventilation
strategy by coupling mechanical ventilation with natural
ventilation. Nevertheless, even with the additional supply pro-
vided by the occasional opening of the windows, it is possible
to achieve only IAQ category 2 targets in the case of medium
occupancy density (see cases 5D and 5E). In the case of full
occupancy and closed door, the only way to satisfy the IAQ
targets is to leave the windows open during the whole period
of occupancy. As a result, it is possible to reduce the median
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Figure 2: Boxplots representing the CO2 concentrations during occupancy time. The boxes indicate the 5th-95th percentile range, and the
horizontal line is the median. Light blue, blue, and dark blue represent, respectively, the group of cases with 8, 16, and 24 students with the
open door. On the contrary, light yellow, yellow, and dark yellow indicate the same groups with the closed door.
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Figure 3: Boxplots representing the operative temperatures during occupancy time. The boxes indicate the 5th-95th percentile range, and the
horizontal line is the median. Light blue, blue, and dark blue represent, respectively, the group of cases with 8, 16, and 24 students with the
open door. On the contrary, light yellow, yellow, and dark yellow indicate the same groups with the closed door.
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value of CO2 concentration to a slightly larger value with
respect to the outdoor one.

Regarding the indoor operative temperature, as expected,
it increases with a trend that is proportional to the number
of occupants and inversely proportional to the rate of fresh
air supply. The operative temperature can reach values larger
than 30°C during the summermonths and in the earliest occu-
pancy hours, if the room is at full capacity, and values as low as
15°C in the winter months if the windows are left open for all
the occupancy period. Cold and hot temperatures are due to
the capacity of the simulated system, which has the same fea-
tures as the actual one.

The number of occupants affects also the heating and cool-
ing needs. Considering the standard occupancy-based controls
for mechanical ventilation (indicated by the letter A), it can be
noticed that the heating energy required by the classroom
ranges from a minimum of 254kWh (cases 3A and 6A with
24 students) to a maximum of 690kWh (cases 1A and 4A with
8 students) and from 1696kWh (1A and 4A) to2484 kWh
(cases 3A and 6A) for the cooling (Figure 7). CO2-based con-
trols can have a significant effect on the energy needs: in fact,
we can observe an increase in the energy for space heating with
respect to the cases with occupancy-based controls, respec-
tively, by +99% for case 3C, +65% for 5B, +104% for 5C,
+133% for 6B, and+145% for 6C. For the same cases, the
energy required for cooling lowers by a range from 15% to
25%, depending on the specific configuration (Figure 8). Win-
dows opening further increases the energy required for heating

(5D: +289%; 5E: +324%; 5F: +309%; 6D: +471%; 6E: +552%;
and 6F: +542%) while decreasing the cooling needs with a
lower magnitude (5D: -28%; 5E: -34%; 5F: -94%; 6D: -34%;
6E: -36%; and 6F: -93%). It is also interesting to notice that
the constant opening of windows during the whole occupancy
time has no significant impact on the heating needs, with an
increase for cases 5F and 6F even lower than cases 5E and 6E;
on the contrary, it can have a remarkable effect on the cooling
needs, reduced by more than 90%, i.e., almost three times more
compared to the other cases.

3.2. Modelling of the SARS-CoV-2 Infection Risk. This section
has been furtherly subdivided into chapters, grouping the
results under 6 categories in order to better understand the
impact of (1) subject-0 typology, (2) door status (open or
closed), (3) ventilation strategies, (4) mask adoption, and (5)
number of initial infected. Attack rate results are reported in
Figures 9–11.

3.2.1. Subject-0 Type. The first aspect taken into consider-
ation is if the presence of a different initial infected subject,
either a professor or a student, has a significant impact on
the results. Figures 9–11 compare the attack rate in the case
the initial infected subject is either a student (label “s” in the
charts, on the left) or a professor (label “p” in the chart, on
the right). It is possible to notice that the difference in terms
of attack rate is generally small or negligible. This could be
explained by the fact that, although higher quanta emission
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Figure 5: CO2 concentration profiles for those scenarios with 16 students, closed door, without natural ventilation, and schedule-based (5A)
or CO2-based mechanical ventilation, either with a threshold of 1220 ppm (5B) or 970 ppm (5C).
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rates characterize the professors’ activities, this is balanced by
the fewer hours of presence in the classroom. Themajor differ-
ence lies only in the cluster with 24 students (comparing, for
instance, 3As with 3Ap and 6Ds with 6Dp), with a slightly
larger attack rate if the initial infected subject is a student.
Despite these differences, cases 5A and 6A were identified as
the worst cases, both for students and professors.

It can be concluded that, considering the overall conta-
gion risk in the case study environment, it could be generally
safer to limit exposure time between susceptible subjects
rather than to act on the activities performed to lower the
quanta emission rate of the infected subjects.

The elapsed days from the start of each iteration are
reported for those scenarios with one infected student as sub-
ject-0, without mask utilization (Figures 12–14). The count
neglects all those cases where subject-0 did not infect any other
subject. It is possible to observe that in all scenarios, regardless

of the number of students, door status, or ventilation strategy,
the median of elapsed days is always equal to 10. This is related
to the evaluation process of the ending day of the contagious
period: in order to consider the worst-case scenario, the
elapsed time from the symptoms’ onset day to the last day of
the contagious period was set equal to 9 for all the infected
subjects. Nonnegligible is the count of iterations that ended
during the contagious period of subject-0. This aspect is par-
tially related to the probability for an infected subject to be
contagious also before the symptoms’ onset day, highlighting
the necessity of high ventilation rates as a prevention strategy.

3.2.2. Door Status. The second analysed aspect was the
impact of the state of the door, open or closed. As shown
in Figure 11, it can be observed that it has a significant
impact on the attack rate for both median and maximum
values when the occupancy density of the classroom is high
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Figure 7: Energy needs for space heating in each scenario. Light blue, blue, and dark blue represent, respectively, the group of cases with 8,
16, and 24 students with open door. On the contrary, light yellow, yellow, and dark yellow indicate the same groups with a closed door.
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Figure 9: Boxplots indicating the 25th-75th percentile range representing the attack rate for those scenarios with 8 students. “s” and “p”
indicate student or professor as the initial infected subject.
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Figure 10: Boxplots indicating the 25th-75th percentile range representing the attack rate for those scenarios with 16 students. “s” and “p”
indicate student or professor as the initial infected subject.
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(24 students, scenarios 3Cs and 6Cs): when the door is open,
indeed, the attack rate is the lowest.

It can be concluded that, since keeping the door open is
an easily employable strategy to reduce the concentration of
contaminants in the room, it should be adopted regardless of
the number of occupants.

3.2.3. Ventilation Strategies. Focusing on the different venti-
lation strategies, a strict correlation with the occupancy den-
sity and with the status of the door is noticed.

Looking at the results of the cases with a student as
subject-0, if the number of students is 8 (Figure 9), it seems
unnecessary to adopt advanced CO2 concentration-based
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Figure 11: Boxplots indicating the 25th-75th percentile range representing the attack rate for those scenarios with 24 students. “s” and “p”
indicate student or professor as the initial infected subject.
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Figure 12: Boxplots indicating the 25th-75th percentile range representing the number of elapsed days for those scenarios with 8 students.
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controls since they have no effects on the attack rate. This
can be explained, for instance, considering the simulated
profiles of CO2 concentration discussed in Section 3.1: both
CO2 thresholds (either 1220 ppm or 970 ppm) are never
reached, and so, no additional fresh air is supplied compared
to the standard scheduled control of the mechanical ventila-
tion. The difference in the results for case 1Bs compared to

cases 1As and 1Cs is to be attributed to the probabilistic
approach used for the evaluation of the number of infected
subjects.

This is not the case for the cluster with 16 students
(Figure 10): for instance, considering the cases 5As and
5Ap with the door closed, it can be noticed that the sched-
uled control of the mechanical ventilation is not adequate,
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Figure 13: Boxplots indicating the 25th-75th percentile range representing the number of elapsed days for those scenarios with 16 students.
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Figure 14: Boxplots indicating the 25th-75th percentile range representing the number of elapsed days for those scenarios with 24 students.
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Figure 15: CO2 and COVID-19 quanta concentration profiles for scenarios 5A and 5E.
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Figure 16: CO2 and COVID-19 quanta concentration profiles for scenarios 5A and 5E.
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Figure 17: COVID-19 quanta concentration profiles for scenarios 5A, 5E, and 5F.
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Figure 18: Boxplots indicating the 25th-75th percentile range representing the attack rate for those scenarios with 8 students and mask
utilization and subject-0 being a student. As a comparison, the results of the same scenarios without mask utilization can be found in
Figure 9, Section 3.2.
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Attack rate: 16 students, 1 infected, mask utilization
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Figure 19: Boxplots indicating the 25th-75th percentile range representing the attack rate for those scenarios with 16 students and mask
utilization and subject-0 being a student. As a comparison, the results of the same scenarios without mask utilization can be found in
Figure 10, Section 3.2.
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Figure 20: Boxplots indicating the 25th-75th percentile range representing the attack rate for those scenarios with 24 students and mask
utilization and subject-0 being a student. As a comparison, the results of the same scenarios without mask utilization can be found in
Figure 11, Section 3.2.
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and more advanced solutions are needed. In fact, by looking at
Figure 15, it can be noticed that even with the combined action
of CO2-based controls and the opening of windows, it is barely
possible to keep the CO2 concentrations around 1000ppm.
COVID-19 quanta concentration can be lowered almost to
zero, but as soon as the windows are closed, it increases quickly.

Finally, by considering the cluster with 24 students
(Figure 16), it is possible to observe that the combined action
of CO2 concentration-based mechanical ventilation and win-
dows opening is incapable to obtain the same results found
in the case of lower occupancy density if the door is closed.
Consequently, all available means to provide additional fresh

1As 1Bs 1Cs 4As 4Bs 4Cs

0

10

20

30

40

50

60

A
tta

ck
 ra

te
 p

er
ce

nt
ag

e (
%

)

Attack rate: 8 students, 2 infected

Figure 21: Boxplots indicating the 25th-75th percentile range representing the attack rate for those scenarios with 8 students and 2 subjects-0.

2As 2Bs 2Cs 5As 5Bs 5Cs 5Ds 5Es 5Fs

0

10

20

30

40

50

60

A
tta

ck
 ra

te
 p

er
ce

nt
ag

e (
%

)

Attack rate: 16 students, 2 infected

Figure 22: Boxplots indicating the 25th-75th percentile range representing the attack rate for those scenarios with 16 students and 2 subjects-0.
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air, including natural ventilation solutions, should be always
used to reduce the probability of infection.

As mentioned above, natural ventilation can be useful to
further reduce the risk of contagion for those scenarios with
a high number of susceptible subjects, where the combination
of mechanical ventilation and the open door fails to keep the
concentration level under an acceptable threshold. It is inter-
esting to notice in the chart of the COVID-19 quanta concen-
trations (Figure 17) that opening the windows occasionally
during the occupancy time (case 5Es) is more effective than
opening them just every two hours and during the lunch break
(case 5Ds). Considering the integral mean value of the quanta
concentration, significantly lower values are calculated in case
5Es (8:0E − 4 quanta m-3) with respect to case 5Ds (6:7E − 4
quanta m-3). The quanta concentration is, as expected, negligi-
ble in case 5F, since the windows are left open during the
whole occupancy time (6:9E − 6 quanta m-3).

3.2.4. Mask Utilization. Further analyses focused on measures
were adopted to reduce the risk, such as the adoption of facial
masks. Since it was established that higher attack rate values
may be expected in those cases with a student as the initial
infected subject when the occupancy density is high, only those
scenarios with a student as subject-0 were evaluated again by
taking into account also mask utilization. It was hypothesized
that masks are used by all subjects all the time, and their effect
was accounted for by reducing the probability of being infected
by 33% [44]. The results are depicted below in Figures 18–20.

The results show that mask utilization can be useful to
further reduce the risk of contagion, and in particular, it
has the potential to reduce the probability of unacceptable

outcomes especially in those scenarios with a crowded class-
room. As expected, the effect of mask utilization is negligible
when few students are present in the room. This result is
expected since the way masks are accounted for is by reduc-
ing the individual probability of infection by a percentage
value applied to the risk. For this reason, if the probability
of infection is already low because of the low number of
occupants in the classroom, mask utilization has a reduced
effect on the attack rate.

3.2.5. Number of Initial Infected Subjects. Finally, other 24 sce-
narios have been run, by increasing the number of initially
infected students from 1 to 2 (i.e., at day 0 in the classroom,
two subjects-0, both students, are present simultaneously).
The results are reported below in Figures 21–23 and show that
the contagion risk rises significantly, especially if the occu-
pancy density is high. In fact, in all scenarios, the median value
is equal to or greater than 10%, with values close to 20% in
some cases. In the case of low-density occupancy, a strong
impact on the results is given by the door status: if it is closed,
then it is possible to reach attack rate values of more than 50%
(5 people infected), contrary to the case with only one subject-
0 with a maximum of about 20%. In case two asymptomatic
subjects are simultaneously present in the classroom at their
symptoms’ onset day, a combination ofmechanical ventilation
with CO2-based controls and natural ventilation is always nec-
essary to maintain the risk acceptable. By considering scenario
6As (Figure 23), where neither of these two ventilation strate-
gies is employed, the 75th percentile of attack rate is about
40%, meaning that it is possible for more than 9 subjects to
be infected before the school is closed or before all the subjects

3As 3Bs 3Cs 6As 6Bs 6Cs 6Ds 6Es 6Fs

0

10

20

30

40

50

60

A
tta

ck
 ra

te
 p

er
ce

nt
ag

e (
%

)

Attack rate: 24 students, 2 infected

Figure 23: Boxplots indicating the 25th-75th percentile range representing the attack rate for those scenarios with 24 students and 2 subjects-0.
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become no longer contagious. The median value of the attack
rate is about 20%, meaning that 5 infected subjects are expected
before an ending condition.

4. Conclusions

In this work, the efficacy of three standard and dynamic ven-
tilation strategies has been investigated, which are convention-
ally used for CO2 concentration reduction, to mitigate the
SARS-CoV-2 infection risk in a case study university class-
room for 25 students (classroom E5.21 of Free University of
Bozen-Bolzano, Italy). A Monte Carlo model has been devel-
oped to overcome the limitations of the state-of-the-art tools
for COVID-19 risk assessment, related to the uncertainty of
the boundary conditions, and coupled with building simula-
tions to perform a dynamic assessment of the contagion risk.

A total of 96 scenarios have been evaluated, considering
different ventilation strategies, door status, typology of sub-
ject-0, mask utilization, and the number of students in the
classroom. For each scenario, 1000 Monte Carlo iterations
have been run, counting the final number of infected
subjects for each iteration and dividing it by the number of
susceptible subjects, calculating in this way the attack rate.
The Monte Carlo model has been coupled with a building
model, to dynamically assess the dose received by the suscep-
tible subjects, and with the airborne infection risk calculator
(AIRC) tool, to evaluate the individual infection risk.

From the results, it is possible to conclude that

(i) For a classroom with 8–24 students, the outcome of
an outbreak is independent of the subject-0 being a
student or a professor if the latter is present for a
limited amount of time (for these scenarios, about
20% of the students’ occupancy time)

(ii) The door status (open or closed) has a significant
effect on the attack rate, both on the average num-
ber of infected occupants and on the likelihood of
an unacceptable outcome to happen

(iii) A strict correlation between ventilation strategies and
occupancy density has been highlighted by the
results. CO2-based strategies are effective if the occu-
pancy density is medium–high (16-24 students) but
struggle to reduce the risk of infection if the density
is low, since it is more difficult to reach the activation
thresholds to activate the mechanical ventilation. For
this reason, it is necessary to combine different solu-
tions (e.g., mixed-mode ventilation and facial masks)
to limit the risk for both students and lecturers. Fur-
thermore, in case of high density, if it is not possible
to keep the door open, it may be necessary to increase
the ventilation rate by opening the windows as well to
ensure an acceptable risk of infection

(iv) The number of elapsed days needed to complete the
risk assessment for a scenario highlights the neces-
sity of high ventilation rates as a prevention strat-
egy. In fact, in some cases, an iteration requires
more than two or three weeks before meeting an

ending condition, usually involving a high number
of infected asymptomatic subjects present in the
classroom. These subjects increase the risk of conta-
gion not only for other students and professors,
with the potential to lead to unacceptable outcomes
if more than one is present in the classroom at the
same time, but also for other people outside the
university

(v) Facial masks have the potential to reduce the prob-
ability of unacceptable outcomes, especially in those
scenarios with high occupation density

(vi) If two subjects-0 are present simultaneously at day
0, then the combined action of mechanical ventila-
tion with CO2-based control and natural ventilation
is always required to maintain the risk acceptable

Finally, some additional considerations can be made. It is
important to limit the number of students that can be present
in the classroom simultaneously, especially when only mechan-
ical ventilation is available, and the door cannot be left open.
Furthermore, even in a low-crowded classroom, mechanical
ventilation may not be sufficient to keep COVID-19 quanta
concentrations within acceptable levels if CO2 concentration-
based controls are adopted. For these cases, it is mandatory to
keep the door open and/or to introduce natural ventilation,
since the effect on infection probability reduction given bymask
utilization is not as effective as for rooms with high occupancy
density.

In those cases where the mechanical ventilation was not
sized properly, then natural ventilation may be helpful, espe-
cially for a crowded classroom, when aided by an open door,
to reduce the quanta dose received by the subjects to accept-
able levels. In this case, the windows should be opened shortly
and often during occupancy hours, rather than for a longer
interval of time but only during break hours. Finally, mask uti-
lization is helpful in terms of risk reduction since it has the
effect to reduce the attack rate spread, lowering the probability
of unacceptable outcomes, especially for crowded classrooms.

The presented methodology may be used also for more
complex cases to compare different ventilation strategies
especially if it is not feasible to adopt a deterministic
approach for risk assessment. Furthermore, other distribu-
tion curves can be implemented to consider the emission
rates related to different activities also in the case of
COVID-19 variants, for example, the Delta and Omicron
variants. Total and partial vaccinations may also be consid-
ered for different variants and for different percentages of
vaccination coverage of the susceptible subjects. Finally, it
is possible to extend the risk assessment also to multizone
cases thanks to the coupling of the presented Monte Carlo
model with building simulation software able to dynamically
evaluate the airflows in a building.

Data Availability

The data regarding the simulations’ results used to support
the findings of this study are available from the correspond-
ing author upon request.
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