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Studies investigating the correlation between particulate matter (PM) concentrations measured by a light scattering (LS) device
and environmental factors are crucial to identify LS values with significant errors. Herein, the relationship between PM2.5
obtained through beta attenuation monitoring (BAM) and LS was examined with respect to seven environmental factors.
Machine learning (ML) and general statistical methods were employed to reveal complex relationships. Data from five cities
were initially analyzed to understand the association between BAM measurements and environmental factors. Our findings
confirmed that wind direction (WD) had a strong nonlinear impact on short-term measurements, whereas temperature and
local pressure had similar effects on long-term PM2.5 measurements. Subsequently, a method was developed using general
statistical techniques to establish an environment wherein LS could maintain a relatively high accuracy level. Furthermore, ML
techniques were employed to determine that LS was more affected (by 8.2%) by the changes in WD compared with BAM,
emphasizing the importance of designing devices capable of responding to WD. Finally, LS was calibrated using four ML
algorithms, and through a quantitative evaluation of coefficient of determination, mean absolute error, and root mean square
error values, AdaBoost was identified as an effective algorithm for correcting LS measurements. With this understanding of the
correlation between PM2.5 and environmental factors, along with an efficient correction method, its widespread adoption in
future research concerning real-time PM measurement is anticipated.

1. Introduction

Particulate matter (PM) resulting from industrialization and
urbanization significantly impacts human health, with
smaller particles having more severe effects [1]. PM10, parti-
cles with a diameter of 10μm or less, accumulates in the
upper respiratory tract [2]. On the other hand, PM2.5, with
a diameter of 2.5μm or less, absorbs pollutants like heavy
metals, causing respiratory, cardiovascular, and neuropsychi-
atric diseases [3, 4]. PM2.5 remains suspended for extended
periods, posing prolonged human exposure risks, especially
over long distances [5]. Cities, grappling with PM2.5, face

challenges due to primary aerosols from combustion and
gaseous conversion [6].

To tackle PM2.5 concerns, a national measurement net-
work, modeled after the US system, employs accurate
methods like the Federal Reference Method (FRM) and Fed-
eral Equivalent Method (FEM). While FRM, known for its
accuracy, employs gravimetric measures for filter-based mea-
surements, it provides average concentrations over 24 hours
[7]. FEM, less accurate but offering hourly measurements
through methods like beta attenuation monitoring (BAM)
or tapered element oscillating microbalances (TEOM) [8],
adheres to standards outlined in 40 Code of Federal
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Regulations Part 50 for precision under changing environ-
mental conditions. These methods are adopted globally,
including by the US Environment Protection Agency (EPA)
and government agencies in China, Japan, Europe, and Korea
[9]. However, their professional handling, maintenance, and
high costs (USD 15,000–40,000) pose challenges. Moreover,
their weight and size limitations confine them to fixed loca-
tions [10]. Consequently, low-cost sensors (LCS) based on
light scattering (LS) are employed for real-time measurement
of PM2.5 in ambient air quality. However, ensuring the reli-
ability of measured values is challenging. The LS method
assesses real-time PM concentrations by measuring the
intensity of the scattered light produced when light irradiates
dust particles [11]. The intensity of the scattered light is influ-
enced by various factors, such as particle size and shape,
refractive index, scattering angle, and incident light wave-
length [12], which can fluctuate owing to atmospheric condi-
tions, thereby affecting the accuracy of LS measurements.
Previous studies have extensively investigated the errors
and causes associated with LS measurement under diverse
laboratory and outdoor environments (Table 1).

To address errors arising from unspecified factors in
diverse environments, machine learning (ML) techniques
are used calibration. ML, known for analyzing extensive data
and continuous learning for future event prediction, has
replaced regression and relative humidity (RH) correction
factors in correcting LS measurements, particularly in spe-
cific environments [13–18]. Feature selection, a crucial ML
step, enhances predictive accuracy and model suitability. It
efficiently handles high-dimensional datasets across domains,
improving algorithm accuracy and mitigating overfitting by
eliminating irrelevant or redundant features related to the
target variable [19, 20]. Feature selection falls into three cat-
egories: filter, wrapper, and embedded methods. The filter
method directly assesses each feature’s impact on the target
variable through a scoring mechanism, providing insight into
their influence [21].

This study is aimed at investigating the relationship
between seven environmental factors and the measurements
of PM2.5 using BAM and LS, employing ML and relative
accuracy assessment methods. To quantitatively assess the
impact of environmental factors on BAM, PM2.5 values from
BAM measurements and time data from environmental fac-
tors were collected in five cities from January 2021 to July
2021. The time data were categorized into short term
(monthly) and long term (3-month intervals). Pearson’s cor-
relation coefficient (PCC), a linear relationship assessment
tool, and the nonlinear evaluation tool RReliefF, both com-
monly used metrics in ML, were employed to understand
the relationships between BAM-measured PM2.5 and each
environmental factor.

Additionally, 39-day short-term measurements of BAM
and LS for PM2.5 were conducted at the same location. Sim-
ilar to the previous approach, PCC and RReliefF were used
to assess the contributions of the seven environmental fac-
tors and PM2.5 (measured by BAM and LS). If specific envi-
ronmental factors showed a significant contribution to LS
compared to BAM, it was interpreted as the need for supple-
mental information about these factors for LS. However,

relying solely on contribution metrics does not identify the
environmental conditions that enhance the accuracy of LS.
To address this, the environmental factors were divided into
3-5 sections, and a relative accuracy assessment with PM2.5
was performed for each section.

Finally, the optimal machine learning algorithm struc-
ture for LS correction was selected. Five machine learning
algorithms were employed, and PM2.5 calibration was car-
ried out using Orange 3.36. The correction accuracy was
evaluated using three metrics: R2, MAE (mean absolute
error), and RMSE (root mean square error).

2. Materials and Methods

This study focused on two aspects: “relationship between
BAM and environmental factors” and “comparison of
BAM and LS” (Figure 1). To achieve this, the study involved
actual measurements of PM2.5 values using BAM, which
provides accurate data, and LS, which yields less accurate
data. Complex data analyses were conducted using statistical
and ML methods. Simultaneous comparison of multiple
environmental factors, as demonstrated in this study, is con-
sidered useful for assessing their contribution to PM2.5 and
LS. Moreover, the utilization of RReliefF in this study
enabled the identification of nonlinear influences that may
have gone unnoticed using conventional statistical tech-
niques, thereby highlighting the impact of previously uncon-
sidered environmental factors.

2.1. Data Acquisition. To compare the typical correlation
patterns between PM2.5 and environmental factors, data
from GC and five cities located within a 60 km radius were
collected and analyzed. Figure 2 illustrates the spatial rela-
tionships between GC and the five cities. Each direction
included at least one city, with straight distances ranging
from 14.7 to 55.3 km from GC. Notably, the selected cities
exhibit diverse geographical characteristics: GC (suburban),
Seoul (S, urban), Suwon (SW, suburban), Yangpyeong (YP,
mountainous), Icheon (I, rural), and Incheon (IN, coastal).
Consequently, by comprehensively analyzing these cities,
we could investigate whether the influence of environmental
factors on PM2.5 varied depending on the geographical fac-
tors of GC. Although data from all cities were collected from
January 2021 to July 2021, variations in data loss occurred
owing to device errors and inspections at each measurement
station. As indicated in Table 2, approximately 5,000 data
points were available for each city.

Furthermore, to identify the inaccuracies of LS and
develop correction methods based on environmental factors,
an additional dataset of 267PM2.5 data points measured by
both BAM and LS was obtained over 39 d at the outdoor
monitoring station in GC. Figure 3 illustrates the location
of the measurement site, which faces a mountain on one side
and the city on the other. Consequently, the concentration
and environmental characteristics of PM2.5 were expected
to differ depending on the wind direction (WD). Through-
out the 39 d measurement period (May 24, 2021–July 2,
2021), a comprehensive dataset of LS and BAM readings
was collected on an hourly basis. However, during the
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preprocessing stage, LS PM2.5 data were excluded, resulting
in 267 remaining datasets. Table 3 lists the BAM and LS
datasets.

2.2. Devices Measuring Environmental Factors. In South
Korea, 102 automated synoptic observation system stations
operate across various cities. These stations automatically
measure environmental variables, such as temperature (T),
relative humidity (RH), and atmospheric pressure (P) simul-
taneously in each city. Additionally, a separate network of
600 atmospheric measurement stations specifically monitors
PM and air pollutants. Among these stations, PM2.5, mea-
sured using the BAM 1020 device, meets the US EPA Class
III PM2.5 FEM accuracy standards. BAM detects solid parti-
cles through beta radiation absorption. Its main principle is
based on the Boucher (Lambert Beer) law wherein the
amount of beta ray attenuation is solely influenced by mass
and not affected by density, chemical composition, or elec-
trical properties [28]. Consequently, BAM is considered the
most accurate method for PM measurement after the gravi-
metric method and is used as FEM to assess compliance with
the National Ambient Air Quality Standards (NAAQS) set

by the US EPA [29]. Notably, real-time measurements are
not currently feasible using BAM. In this study, hourly data
from January 2021 to July 2021 were downloaded and uti-
lized. Table 4 provides information on the measurement
errors and methods for each environmental factor and
PM2.5.

To compare BAM and LS measurements at GC, BAM
1020 and the commonly used LS sensor, namely, SDS011,
were used. Figure 4 illustrates the structural arrangement
of the measurement devices. SDS011(Nova) can measure
PM2.5 within the range of 0.0–999.9μg/m3, with an error
range of up to ±15% or ±10μg/m3 under atmospheric con-
ditions of 25°C and 50% RH. However, previous studies have
shown significant variations in the accuracy of the SDS011
sensor, with coefficients of determination (R2) ranging from
0.47 to 0.98, depending on the application environment and
testing method [30–33]. Table 5 presents the manufacturer’s
specifications for BAM and LS.

2.3. Data Analysis

2.3.1. Pearson’s Correlation Coefficient and RReliefF. To
examine the relationship between PM2.5 and individual

Table 1: Literature on errors according to environmental factors of low-cost light scattering device.

Literature
Comparison

device
Environmental factor

Test
condition

Analysis method Influential factor

Wu et al.
[22]

BAM
TEOM

(i) Temperature (-10–50°C)
(ii) Relative humidity (20–95%)

Lab/field Statistic
(i) Particle size (1.1, 2.0, 2.5, 3.0, and

8.0 μm, PM1.0, PM2.5, and PM10)

Molnár
et al. [23]

BAM (i) Humidity (40–100%) Field Statistic —

Tryner
et al. [24]

TEOM
SMPS
APS

(i) Humidity (15–90%) Lab
(i) Statistic
(ii) PyMieScatt (Python)

(i) Contaminated sensor (PM2.5:
measured over 7300 μg/m3, PM10:
33,000μg/m3)

(ii) PM type (ammonium sulfate,
Arizona road dust, National
Institute of Standards and
Technology (NIST) Urban PM, and
wood smoke)

Han et al.
[25]

ELPI (i) Humidity (5–80%) Lab Statistic (i) PM type (fly ash and pure mineral)

Levy
Zamora
et al. [26]

BAM (i) Humidity (20–80%) Lab/field Statistic

(i) PM type (incense, oleic acid, NaCl,
talcum powder, cooking emissions,
and monodispersed polystyrene latex
spheres)

Olivares
and
Edwards
[27]

TEOM (i) Temperature (6–26°C) Lab
(i) Statistic
(ii) Openair R package

(R Team)
(i) Concentration (0–170μg/m3)

Present
study

BAM
LS

(i) Temperature (11–31°C)
(ii) Humidity (39–96%)
(iii) Pressure (989–1008 hPa)
(iv) Precipitation (0.0–0.4mm)
(v) Temperature–dew point

temperature (0.6–15.4°C)
(vi) Wind speed (0.0–4.9m/s)
(vii) Wind direction (16

directions)

Field
(i) Statistic
(ii) Machine learning

(Orange)

(i) Ambient environment
(ii) Omnidirectional inlet design of

device (to detect wind direction in
all directions)
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environmental factors in each city, a comprehensive analysis
was conducted using PCC and RReliefF methods, which are
a part of the filter method in the feature selection of ML. The
general filter method, which provides a feature rank, typi-
cally only allows for linear and one-dimensional analysis
between the feature and target and commonly includes the
use of PCC. RReliefF, on the other hand, is considered the
most advanced algorithm among relief-based algorithms,
which have evolved from one-dimensional interpretable
relief algorithms. It is recognized as the only individual eval-
uation filter algorithm that can identify functional dependen-
cies [21]. Therefore, this study is aimed at comprehensively
understanding the relationship between environmental fac-
tors and PM2.5 by utilizing both filter methods.

(1) PCC. PCC was used to assess the linear relationship
between a feature and its target. The rank value obtained
through this algorithm typically converges to a value close

to 1 for features that exhibit a strong positive correlation
with the target, -1 for features that demonstrate an inverse
proportion, and 0 for features that have no influence. How-
ever, if the relationship between the feature and the target is
nonlinear, such as in the case of quadratic equations or
higher, the PCC value tends to be close to zero. Therefore,
caution should be exercised before unconditionally exclud-
ing features with PCC values close to zero. Generally, when
the PCC value is 0.5 or higher, the feature and target are
related, and a value of 0.7 or higher indicates a high correla-
tion degree [34, 35]. Notably, the PCC value cannot be cal-
culated when the evaluated features are not numerical. In
this study, to derive the PCC value of WD, 16 directions
were converted into numerical values ranging from 1 to 16,
starting with N and increasing clockwise. PCC was calcu-
lated using the following equation:

PCC = ∑ xi − x yi − y

∑ xi − x 2∑ yi − y 2
, 1

where x and y represent the feature and target, respectively,
the bar indicates the average value, and i represents the data-
set number. The PCC value was obtained using the PCC-
based heatmap algorithm coding method provided by
Seaborn.

(2) RReliefF. RReliefF determines the contribution of indi-
vidual features to the target using the nearest neighbor algo-
rithm. It can detect interactive interactions and analyze

Figure 2: Location of the measuring station and other cities.

Relation between
BAM and environment factors

Comparison of
BAM and LS

BAM & LSBAM

PCC⁎⁎
RReliefF

PCC⁎⁎
RReliefF

N/A

Relative−
accuracy

Relative−
accuracy

Environment factors
adapted at

4 Machine learning
algorithms

Note. GC: Gwacheon (city) 1 PCC : person correlation coefficient

Inaccurate
LS (PM2.5)

Accurate
BAM (PM2.5)

At GC⁎

Data acquisition

National institute of
meteorological sciences

In six cities (including GC⁎)

Device

Analysis
method

Calibration
method

+

Figure 1: Flow chart of the study.
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relationships beyond linear ones, making it suitable for var-
ious types of features (such as numerical and categorical).
RReliefF is widely recognized as a highly effective prepro-
cessing algorithm for ML regression applications [36].

It calculates the feature relevance based on the probabil-
ity theory using the following Bayesian rule, where F repre-
sents the extracted feature set and WF represents the weight
set of F [37].

WF =
PdiffC diff FPdiff F

PdiffC
−

1 − PdiffC diff F Pdiff F

1 − PdiffC
,

PdiffC = P diffC NI ,

Pdiff F = P diff F NI ,

2

where diffC and diff F represent different predictions and
values of F, respectively, and NI represents the nearest
instance. The quantitative values of RReliefF can vary
depending on project characteristics; moreover, there is no
specific threshold value [38, 39]. Therefore, establishing
appropriate criteria requires rational judgment by analysts.
The individual feature weights obtained from RReliefF can
be interpreted as contributions to explain the target value
when the sum of the feature weights is adjusted to a scale
of 1 [40]. In this study, the RReliefF values for each environ-
mental factor were calculated using Orange 3.32.0, a data
mining, and ML tool. Additionally, considering that the con-
tribution of all environmental factors was 14.3% when they
made equal contributions, a contribution value of 20% or
higher was deemed to have a significant effect on PM2.5.

(3) Feature Value Interpretation Methods. The PPC values
and RReliefF contributions can be categorized into four
types (Figure 5) as follows:

(1) PCC score ≥ 0 5 , RReliefF contribution ≥ 20%

Because a linear correlation exists that exerts a stronger
influence than other environmental factors, the PM2.5 con-
centration value increases or decreases according to the cor-
responding increase or decrease in the feature value.

(2) PCC score ≥ 0 5 , RReliefF contribution < 20%

Although a linear correlation exists, an increase or
decrease in the feature value marginally affects the increase
or decrease in the PM2.5 concentration value, because its
influence was similar to or less than that of other environ-
mental factors.

(3) PCC score ≥ 0 5 , RReliefF contribution ≥ 20%

Owing to the nonlinear correlation, the width of PM2.5
concentration value, which increases or decreases, varies
for specific sections of the feature. For instance, if we

Table 2: Data size and range by city.

Symbol Definition
Number of
data points

T (°C) RH (%) T-D (°C) WS (m/s) P (hPa) R (mm)
PM2.5
(μg/m3)

Minimum/median/maximum

GC

Gwacheon
(where BAM

and LS
measurements
were conducted
simultaneously)

267 11.1/18.5/31.2 39/83/96 0.6/3.0/15.4 0.0/0.9/4.9 989/999/1008 0.0/0.0/0.4 6/19/68

S Seoul 5034 -18.5/13.7/36.3 19/63/100 0.1/6.9/24.9 0.0/2.3/8.3 987/1005/1024 0.0/0.0/64.7 1/19/172

SW Suwon 4959 -18.3/12.8/36.3 19/72/100 0.0/4.9/23.7 0.0/1.7/9.7 993/1011/1031 0.0/0.0/20.1 0/16/146

YP Yangpyeong 4918 -19.0/13.3/34.6 10/70/100 0.0/5.3/30.4 0.0/1.1/7.6 992/1010/1030 0.0/0.0/18.7 1/16/114

I Icheon 5053 -21.1/13.2/35.6 12/70/100 0.0/5.3/29.4 0.0/1.0/6.0 988/1006/1026 0.0/0.0/19.2 1/22/197

IN Incheon 4887 -17.5/12.0/34.0 10/61/97 0.5/7.3/33.0 0.0/2.6/12.0 989/1007/1026 0.0/0.0/18.3 1/17/150

Note. T : temperature; RH: relative humidity; T-D: temperature–dew point temperature; WS: wind speed; P: pressure; R: precipitation (rain).

Figure 3: Geographical characteristics of GC.

Table 3: Data points of BAM and LS at the monitoring site in GC.

Symbol Definition
Number of
data points

PM2.5 (μg/m
3)

Minimum/median/
maximum

BAM
PM2.5 value of

BAM
267 6/19/68

LS PM2.5 value of LS 267 2/12/56
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Table 4: Accuracy of the measurement method by devices.

Symbol Definition Accuracy of the measurement method

PM2.5

PM2.5 PM2.5 measurement value
Exceeds US-EPA Class III PM2.5 FEM standards for

additive and multiplicative bias

Temperature

T Outdoor temperature Metal sheath type of platinum resistance thermometer

T-D Outdoor (temperature–dew point temperature) Includes temperature and relative humidity errors

Relative humidity

RH Outdoor relative humidity 1% @ 10–95%

Wind

WS Wind speed Uses the average of 10min

WD Wind direction Uses the average of 10min

Other elements

P Pressure ±0.1 hPa
R Precipitation 20mm ± 5%

360°
PM2.5inlet

PM2.5inlet

PM2.5outlet

Controller

BAM 1020

IR diode
IR LED

LCS (SDS011)

Heater

IR LED

Figure 4: Configuration diagrams of BAM and LS.

Table 5: Characteristics of PM measurement devices used in the study.

BAM 1020 LCS (SDS011)

Manufacturer Met One Instruments Nova Fitness

Approximate price USD 12,000–21,000 USD 20

Measurement parameters PM2.5, PM10 PM2.5, PM10

Range 0.0–1,000 μg/m3 0.0–999.9μg/m3

Ambient temperature range -40–55°C -20–50°C

Corresponding time 1 h 1 s

Minimum resolution of particle 0.1 μg/m3 0.3 μm

Counting yield Lower detection limit of <4.8 μg/m3 70% @ 0.3 μm
98% @ 0.5 μm

Relative error
Exceeds US EPA Class III PM2.5 FEM standards for

additive and multiplicative bias
Maximum of ±15% and ±10 μg/m3

@ 25°C, 50% RH

Product size 31 × 43 × 40 cm 7 1 × 7 0 × 2 3 cm
Power supply voltage 100–230VAC, 50/60Hz, 0.4 kW, 3.4 A max @110V 5V
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consider a threshold temperature of 25°C, PM2.5 may
increase rapidly up to 25°C and have marginal effect above
25°C.

(4) PCC score ≥ 0 5 , RReliefF contribution < 20%

Because of the absence of a significant linear or nonlin-
ear relationship, this factor has minimal impact on the
increase or decrease in PM2.5 concentration value.

2.3.2. Relative Accuracy. The relative accuracies of BAM and
LS were compared using GC to assess the level of error in LS
for each environmental factor category. Relative accuracy is
a numerical measure that indicates the proximity of the
measured value to the standard value under comparable
conditions and is calculated as follows:

Relative accuracy = 100% × measurement value
real value

= 100% × LS
BAM

3

Here, the substituted value represents the median value
for each BAM and LS category. To analyze the trends within
each category, a minimum of 3–5 sections were classified.

2.4. Correction Method of LS. The correction value for LS
was obtained using four ML algorithms based on environ-
mental factors. The dataset was divided into training and test
sets at a ratio of 8 : 2, and 10-fold cross validation was per-
formed to address the issue of overfitting.

Linear regression determines the relationship between
one or more independent variables and a dependent vari-
able. It can derive a simple predictive equation, such as y =
ax + a′x′ + a″x″ +⋯+b, where “a” is the slope and “b” is
the intercept. In this study, an equation with an intercept
was utilized and regularization was not considered.

kNN (k nearest neighbors) selects a specified number of
nearest neighbors and calculates the distances to predict that
similar factors are located close to each other [41]. In this
study, the number of neighbors was set to five. The Euclid-
ean distance was calculated as follows:

Euclidean distance

= a1 − b1
2 + a2 − b2

2 + a3 − b3
2+⋯+ ap − bp

2

4

Furthermore, a tree algorithm with forward pruning
was employed, which is a straightforward algorithm that
splits data into nodes based on the mean squared error
(MSE). The minimum number of instances in the leaves
was set to 2, and subsets with <5 instances were not fur-
ther divided. In addition, the maximum tree depth was
limited to 10.

AdaBoost is an ML algorithm developed by Yoav Freund
and Robertson–Schapire. It is an ensemble meta algorithm
that combines multiple weak learners and adapts to the
“hardness” of each training sample. A weak basic classifier,
denoted as ht x , was transformed into a strong classifier
using a linear combination configuration. The formula for
AdaBoost is as follows [42]:

H x = sign 〠
T

t=1
αtht x ,

ht x : χ⟶ −1,+1

5

3. Results and Discussion

3.1. Relation between BAM and Environmental Factors.
Figure 6 shows that the PCC values of all environmental fac-
tors did not exhibit a significant linear relationship, whereas
the RReliefF contributions of some environmental factors
indicated a strong nonlinear influence on PM2.5. This was
particularly observed in the short-term measurements of
WD and long-term measurements of T and P. The following
analysis examines the quantitative ranges of the PCC values
and RReliefF contribution values across the entire city.

(1) PCC value ≥ 0 5 , RReliefF contribution ≥ 20%
(2) PCC value ≥ 0 5 , RReliefF contribution < 20%

Both (1) and (2) were only observed at the maximum
values of T , H, and temperature–dew point temperature
(T-D) in January and February, which represent a small
portion of the data. Therefore, there was almost no linear
relationship between the environmental factors and PM2.5.

(3) PCC score < 0 5 , RReliefF contribution ≥ 20%

The contribution of WD to RReliefF in the short-term
analysis from January to July was satisfactory. However,
when analyzing the periods of January–April and May–July
separately, the contribution value decreased significantly.

Shape of
data graph

PCC (RReliefF)

Corresponding
feature

≥ ǀ0.5ǀ (≥ 20%) ≥ ǀ0.5ǀ (< 20%) < ǀ0.5ǀ (≥ 20%) < ǀ0.5ǀ (< 20%)

Other
features

Corresponding
feature

Other
features

Corresponding
feature

Other
features

Corresponding
feature

Other
features

④① ② ③

Figure 5: Example of distribution of PCC value and RReliefF contribution by range.
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This indicated that PM2.5 maintained a clear nonlinear rela-
tionship with WD during short-term measurements of
approximately one month.

Conversely, the RReliefF contribution value increased
during long-term measurements for T and P.

(4) PCC score < 0 5 , RReliefF contribution < 20%

All environmental factors, except for short-term WD
data and long-term T and P data, showed a significant linear
or nonlinear relationship with PM2.5.

This indicated that the effect of environmental factors on
PM2.5 differed between short-term and long-term measure-
ments, with environmental factors having a greater influence
during short-term measurements. Specifically, WD had a
significant nonlinear effect on PM2.5 during short-term mea-
surements. Therefore, when designing an LS that provides
simple measurements, minimizing the accuracy reduction
caused by WD factors is important.

Moreover, it was observed that the nonlinear contribu-
tions by WD are higher in YP and I, the two cities with
the least geographical extent and population among the five.
Regions like YP and I, characterized as “mountain” or
“rural” areas, maintain lower density of factors such as traf-
fic, businesses, and heating/cooling systems that induce PM
within the urban center compared to other cities. These
areas, designated as “mountain” or “rural,” implying a lack
of urbanization, experience a lower density of factors such
as traffic, businesses, and heating/cooling systems that
induce particulate matter within the urban center compared
to other cities. Consequently, when PM generated in adja-
cent cities is transported by wind, it is anticipated to impact
urban particulate matter concentrations. This situation
might be the reason for the observed high nonlinear rela-
tionship between short-term WD-PM2.5 measurements.

3.2. Comparison of BAM and LS. Figure 7 shows the com-
parison results of BAM and LS measurements, highlighting

Pearson᾽s correlation coefficient RReliefF contribution
Regional marking

Seoul Suwon

T

T-D

Temperature & humidity factor

RH

Yangpyeong IncheonIcheon
1

0.5

0.5

0

−0.5

1

0

−0.5

0.5

1

0

−0.5

WS

Wind factor

WD

P

ETC. factor

Month Month

R

1 2 3 4 5 6 7 1-4 5-7

1 2 3 4 5 6 7 1-4 5-7

1 2 3 4 5 6 7 1-4 5-7 1 2 3 4 5 6 7 1-4 5-7

1 2 3 4 5 6 7 1-4 5-7

1 2 3 4 5 6 7 1-4 5-7

40

30

20

10

0

40

30

20

10

0

40

30

20

10

0

(%
)

(%
)

(%
)

Figure 6: Overlapping of monthly PCC and RReliefF scores analyzed by five cities.
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the need for a comprehensive analysis of each environmental
factor in relation to PM2.5. The LS values showed a pattern
of alternating overestimation and underestimation com-
pared to the BAM values, with a higher error rate observed
during the underestimation by LS. Despite measuring the
same parameter, the PCC value (0.36) indicated a weak lin-
ear relationship between the BAM and LS values. Given the
established influence of environmental factors on this error,
this study determined the relative accuracy of LS measure-
ments based on environmental factors and assessed the con-
tribution of these factors to LS measurements.

3.2.1. PCC and RReliefF Contribution. BAM and LS exhibited
minimal linear relationships with individual environmental
factors but demonstrated a clear nonlinear relationship with
WD (Figure 8). This observation was supported by the anal-
ysis of the PCC values and RReliefF contributions, which
were divided into the following sections.

(1) PCC value ≥ 0 5 , RReliefF contribution ≥ 20%

(2) PCC value ≥ 0 5 , RReliefF contribution < 20%

This section does not reveal a linear relationship between
all BAM and LS measurements and environmental factors,
indicating that the relationship between environmental fac-
tors and PM2.5 is not linear.

(3) PCC value ≥ 0 5 , RReliefF contribution ≥ 20%

In both BAM and LS, the RReliefF contribution values of
WD were 37.4% and 45.6%, respectively, indicating a strong
nonlinear relationship. Furthermore, the influence of LS was
8.2% more than that of BAM. This difference in values
reflected the contribution of individual environmental fac-
tors, suggesting that LS may under or overmeasure PM2.5,
in relation to WD compared to other environmental factors.

This can be attributed to the significant differences
observed in the LS values and PM2.5 concentrations com-
pared to BAM, particularly in the lateral directions, exclud-
ing the east, south, and northwest directions.
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(4) PCC value ≥ 0 5 , RReliefF contribution < 20%

All environmental factors, except WD, were applicable,
making identification of a significant linear or nonlinear
relationship between environmental factors and PM2.5 diffi-
cult during the measurement period.

In other words, during short-term measurements, par-
ticularly when using LS for PM2.5, WD had the most signif-
icant impact.

3.2.2. Relative Accuracy. As shown in Figure 9, the relative
accuracy of LS compared to that of BAM varied across dif-
ferent sections of the environmental factors. Generally, the
relative accuracy remained consistently high at 0.7 and 0.9
for RH and T , respectively, when the environmental condi-

tions exceeded the critical thresholds of 40% RH and 20°C,
respectively. However, T-D, which combined both RH and
T , exhibited larger variations in the error rates across differ-
ent sections, including a section with an accuracy close to 1.
Therefore, when correcting PM2.5 concentration values
measured by LS, the relative accuracy can be improved by
considering a comprehensive correction approach that
incorporates dew point temperature, instead of solely relying
on individual corrections for RH and T , which have their
own limitations. Furthermore, the relative accuracy of wind
speed (WS) was similar within the range of 0–2m/s; how-
ever, beyond this range, the relative accuracy decreased as
WS increased, which can be attributed to the additional air-
flow caused by the external WS exceeding the airflow capac-
ity determined by the suction fan in the measurement
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device. Additionally, LS slightly overestimated PM2.5 under
low P conditions (990Pa or less), whereas it underestimated
PM2.5 when the P exceeded 995Pa, thereby decreasing the
relative accuracy. Analysis for WD was conducted in 16
directions, including N, E, S, and W that represented north,
east, south, and west, respectively. The relative accuracy of
WD was 0.966 for S, which was similar to that of BAM.
However, the largest error occurred, indicating a clear spec-
ificity for each direction. This can be attributed to the LS

being in the form of a hexahedron with the inlet installed
on only one side, which poses limitations in accurately
measuring PM2.5 when winds blow from directions other
than south.

3.3. Calibration of LS. By calibrating the LS values using envi-
ronmental factors as calibration factors, consistent calibra-
tion values can be obtained using the AdaBoost algorithm.
Figure 10 illustrates the distribution and performance
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metrics of the LS calibration values obtained using these
algorithms. For the original LS values, the R2 value was neg-
ative, and the root mean squared error (RMSE)/mean abso-
lute error (MAE) ratio was relatively small (1.53), indicating
a consistent under measurement issue [43]. However, all
algorithms successfully addressed this problem. The R2

value improved from 0.171 to 0.784, and the RMSE/MAE
ratio decreased from 1.37 to 1.49. Among the algorithms,
linear regression, tree, and kNN showed R2 values of
0.171, 0.463, and 0.468, respectively, which described the
data better than the original LS values. However, the MAEs
were approximately 10% of 60μg/m3, which is a high con-
centration value in the measurement environment, making
it difficult to consider them as suitable algorithms. Con-
versely, AdaBoost demonstrated an R2 value of 0.784, which
was 4.6 times better than linear regression, and an MAE
value of approximately 6.8% of 60μg/m3. Furthermore, the
RMSE/MAE ratio was evaluated as 1.372. Therefore, when
calibrating the PM2.5 values of an LS device using environ-
mental factors, the AdaBoost method is recommended to
be used in the ML algorithm.

4. Conclusion

This study analyzed the impact of environmental factors on
PM2.5 measurements obtained from BAM and LS measure-
ments. Several steps were taken to achieve this goal. First,
to understand the relationship between general environmen-
tal factors and PM2.5, the contribution of each environmen-
tal factor was analyzed using ML techniques for each city
within a 60 km radius of GC. This analysis was conducted
on a monthly basis over a three-month period. Next, each
environmental factor for BAM and LS measurements was
comprehensively analyzed using both conventional methods
and ML approaches. Overall, the objective of this study was
to identify important considerations when using LS mea-
surements. Finally, the LS values were calibrated using four
different algorithms based on environmental factor data.
The results of this calibration process are summarized as
follows:

(i) Relation between BAM and environmental factors

(a) PCC and RReliefF: a strong linear relationship
between PM2.5 and environmental factors could
not be established in the monitoring site, as
there were only a few periods that met the stan-
dard value for the PCC value. On analyzing the
nonlinear relationships using the contribution
of RReliefF, we observed that PM2.5 was signifi-
cantly influenced by WD during short-term
measurements, such as 1 month, while T and
P exhibited a strong impact during long-term
measurements

(ii) Comparison of BAM and LS

(a) PCC and RReliefF: with nearly the same conclu-
sion as the analysis of the measurement site, no

significant linear or nonlinear relationship was
determined between PM2.5 and environmental
factors, excluding WD, during short-term mea-
surements. Moreover, LS had a higher RReliefF
contribution value (8.2%) compared to BAM,
indicating that WD significantly influenced the
PM2.5 value measured by LS

(b) Relative accuracy: LS measurements indicated
under measurements compared with BAM
measurements. Thus, an omnidirectional inlet-
designed LS is recommended for use in environ-
ments where the relative accuracy is relatively
high, specifically when the following conditions
are met: RH > 40%, T > 20°C, T −D > 20°C,
WS < 2m/s, and P < 990Pa

(iii) Calibration of LS: calibration was conducted based
on environmental factors, and the original and cali-
brated LS values were quantitatively compared with
the BAM value. Compared with the original LS, all
algorithms showed improvements in R2, MAE,
and RMSE. The AdaBoost algorithm yielded R2,
MAE, and RMSE values of 0.784, 4.073, and 5.587,
respectively, which were satisfactory

In summary, this study is aimed at refining the PM2.5
values measured by LS to closely align with those obtained
from BAM through three distinct approaches. The first
method was related to modifying the physical structure of
LS, and we particularly confirmed the essential need for a
device design in LS capable of capturing all wind directions.
The second method concentrated on enhancing LS measure-
ment accuracy by establishing seven environment-specific
conditions via relative accuracy. Lastly, the third method
involved the application of ML algorithms to update the soft-
ware structure of LS. In scenarios where LS fails to measure
forward wind direction, considering calibration through the
AdaBoost algorithm could contribute to improved accuracy.
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EPA: Environment Protection Agency
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