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The primary aim of this study is to explore the utility of machine learning algorithms for predicting personal PM2.5 exposures of
elderly participants and to evaluate the effect of individual variables on model performance. Personal PM2.5 was measured on five
consecutive days across seasons in 66 retired adults in Beijing (BJ) and Nanjing (NJ), China. The potential predictors were
extracted from routine monitoring data (ambient PM2.5 concentrations and meteorological factors), basic questionnaires
(personal and household characteristics), and time-activity diary (TAD). Prediction models were developed based on either
traditional multiple linear regression (MLR) or five advanced machine learning methods. Our results revealed that personal
PM2.5 exposures were well predicted by both MLR and machine learning models with predictors extracted from routine
monitoring data, which was indicated by the high nested cross-validation (CV) R2 ranging from 0.76 to 0.88. The addition of
predictors from either the questionnaire or TAD did not improve predictive accuracy for all algorithms. The ambient PM2.5
concentrations were the most important predictor. Overall, the random forest, support vector machine, and extreme gradient
boosting algorithms outperformed the reference MLR method. Compared with the traditional MLR approach, the CV R2 of
the RF model increased up to 7% (from 0 82 ± 0 13 to 0 88 ± 0 10), while the RMSE reduced up to 18% (from 19 8 ± 5 4 to
16 3 ± 4 5) in BJ.

1. Introduction

Accurate assessment of personal exposures to fine particu-
late matter (PM2.5) is essential to study its health effects
and provide risk assessments. Direct measurement of per-
sonal exposure to PM2.5 via wearable monitors is currently
regarded the most accurate exposure assessment method
[1, 2]. However, the collection of personal exposure data is
too logistically complicated and expensive for most budget-
constrained large-scale population. Instead, the outdoor
concentrations from nearby fixed-site monitors are used as
a proxy for exposure in many epidemiological studies
[3–5]. This approximation method leads to exposure mis-

classification as people usually spend greater than 80% of
their time indoors [6, 7], and indoor air quality can vary sub-
stantially from outdoor environments. This variation is often
driven by building ventilation rates and proximity to indoor
sources of pollution such as cooking, heating, cleaning activ-
ities, tobacco smoking, and other domestic combustion
sources [8, 9].

To overcome this significant limitation, investigators
have tried to develop personal exposure models accounting
for potential influential factors. Personal exposure surveys
have shown that measured PM2.5 concentrations can be cor-
related with influencing factors using statistical models that
can subsequently be applied to estimate personal exposures
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of new subjects [10]. The statistical algorithm used in model
development is one of the crucial factors influencing the
overall predictive power of the model. Multiple linear regres-
sion (MLR) has been the most commonly used method for
model development because of its lower computational cost
and ease of interpretability of the results [11, 12]. However,
MLR models also have disadvantages such as the inability
to capture complex and nonlinear interactions. Increased
computing power has enabled the development of advanced
machine learning algorithms to overcome some of the short-
comings of MLR models. To date, there have been hundreds
of machine learning algorithms described in the literature,
such as tree-based algorithms, artificial neural network
(ANN) algorithms, kernel-based algorithms, and Bayesian
method [13]. Recently, machine learning algorithms have
been used to accurately predict the concentrations of atmo-
spheric pollutants, and the performance of these algorithms
was generally better than the MLR method [14–19]. How-
ever, to the best of our knowledge, the application of
machine learning algorithms to estimate personal exposure
is still in the early stages [11, 20–23]. The application of this
approach in urban areas with a higher burden of ambient
PM2.5 pollution remains understudied [20].

Significant predictors of personal PM2.5 exposures have
been reported to be outdoor and indoor environmental con-
centrations, meteorological factors, personal and household
characteristics, and human activities such as cooking, heat-
ing, smoking, and air conditioner and air purifier use [12,
23–27]. However, the relative importance of these predictors
varied across investigations of different population groups,
regions (rural vs. urban), and atmospheric air pollution con-
ditions. In addition to selection of modeling algorithms, fea-
ture selection is another key process that can significantly
influence model prediction performance. Exclusion of the
effective determinants of personal exposure will reduce pre-
dictive accuracy, while inclusion of redundant and irrelevant
variables may lead to overfitting and decrease the generaliz-
ability of the model [28–30]. In addition, removing noisy
features will decrease the effort associated with collecting
information for these variables when the model is applied.
Several methods of feature selection are available for MLR
algorithms, such as best subset selection and backward and
forward stepwise selection. Statisticians have also developed
feature selection methods suitable for machine learning
algorithms, such as recursive feature elimination (RFE),
genetic algorithms, and simulated annealing [31, 32]. How-
ever, these methods have not been used to develop models
for estimating personal PM2.5 exposures [11, 20–23].

The elderly is one of the most susceptible groups to air
pollution exposure, due to generally weaker immune sys-
tems, or undiagnosed respiratory or cardiovascular health
conditions [33–35]. However, most exposure studies con-
ducted with elderly participants have been carried out in
developed countries with relatively low ambient pollution
levels. Unfortunately, the results of these studies cannot be
directly extrapolated to elderly populations that suffer from
exposures to high levels of PM2.5 pollution in Chinese cities.
To better characterize the exposure characteristics of this
population, we conducted a repeated measurement study

of outdoor-indoor-personal exposure in Beijing (BJ) and
Nanjing (NJ) during 2015 and 2016. Our previous analyses
showed that measured personal exposure concentrations
were significantly lower than concentrations measured out-
doors, confirming that using nearby outdoor PM2.5 mea-
surements as a direct proxy for personal exposure would
inaccurately represent true exposures [12]. Therefore, a val-
idated personal exposure prediction model should be devel-
oped, tested, and used to further investigate exposure-health
effect relationships in at-risk populations. The primary aims
of this analysis include the following two aspects: (1) to
explore whether the use of machine learning algorithms
can improve the accuracy of exposure prediction models
and (2) to identify the key variables needed for accurate
PM2.5 prediction of elderly exposures in urban areas with
high background pollution levels.

2. Methods

2.1. Study Design and Subjects. A detailed description of this
PM2.5 exposure longitudinal panel study of the elderly has
been reported previously [12]. Briefly, this study was con-
ducted in urban districts of BJ and NJ during both the heat-
ing season (HS; Nov.–Mar.) and the nonheating season
(NHS; Jun.–Sep.) in 2015–2016. BJ is located in the northern
region of China, while NJ is in the southern region, leading
to distinct climate types (BJ: temperature monsoon climate,
NJ: subtropical monsoon climate). These climate differences
result in the use of different heating methods in winter (BJ:
centralized heating, NJ: no centralized heating) and behav-
ioral patterns, including window opening behavior and air
conditioning usage, all of which may influence personal
exposure. Outdoor-indoor-personal PM2.5 levels were mea-
sured simultaneously for five consecutive days in each sea-
son. The sampling periods covered both weekdays and
weekends as the participants generally exhibited distinct
activity patterns during these days [36, 37]. Previous studies
have also used this sampling strategy of monitoring expo-
sure for 3–7 consecutive days [38–42]. Household character-
istics and personal activity factors affecting exposure levels
were also collected during this time period. In each city,
thirty-three healthy, nonsmoking retired adults were
recruited through leaflets placed in residential communities.
In BJ, 31 and 30 participants were monitored during the HS
and the NHS, respectively, with 85% (28/33) of the partici-
pants completing the monitoring in both seasons. Similarly,
31 participants in NJ were monitored during each season,
with 88% (29/33) taking part in both seasons. The study
was approved by the Human Investigation Committee of
National Institute of Environmental Health, China CDC,
and all participants signed informed consent.

2.2. Measurement of PM2.5. The personal-indoor-outdoor
exposure to PM2.5 was simultaneously measured with RTI
MicroPEM (v3.2, RTI International, NC, USA) for five con-
secutive days including weekends and weekdays during both
heating and nonheating season. The MicroPEMs allow for
gravimetric (filter-based) sampling while simultaneously
logging real-time data via nephelometry. The MicroPEMs
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were operated at a nominal flow rate of 0.5 L/min and were
programmed to sample using a 25% duty cycle (1min on
and 3min off for every 4min cycle) to prolong battery life
and prevent filter overloading. The MicroPEMs measuring
personal exposure were worn in a shoulder bag, and the
sampling inlet of the MicroPEM was extended into the
breathing zone with a 0.3m length of conductive silicone
tubing. Participants were instructed to carry the shoulder
bag with them at all times with the exception of sleeping,
dressing, bathing, or performing other activities that did
not allow for the bag to be carried. During these time
periods, they were asked to place the bag nearby (<2m).
Indoor monitors were located in the household area in
which the participant reported spending most of their wak-
ing hours. The outdoor MicroPEM was placed near a win-
dow in the residence, and the sample inlet was extended
approximately 0.5m out of the window using conductive sil-
icone tubing. To minimize the influence of indoor air flow
on the measurement of outdoor PM2.5, any openings around
the window used for outdoor monitoring were sealed with
adhesive tape. All monitors were installed in the partici-
pant’s residence by trained technicians, and monitoring typ-
ically started between 8 and 10 a.m. and ended at
approximately the same time following the 5-day sample
period.

Teflon sample filters were equilibrated in a chamber
(Binder, Germany) with constant environmental conditions
(25 ± 1°C, 50 ± 5% RH) for a minimum of 24 hours (CN
HJ 656-2013) and then weighed using a microbalance with
1μg precision (XP6, Mettler Toledo International Inc., Swit-
zerland) before and after sampling. Each filter (25mm, 3.0μ
m porosity polytetrafluoroethylene with support ring, Pall
Corporation, Mexico) was sampled for five days, and the
five-day integrated PM2.5 mass concentration was calculated
by dividing the PM2.5 mass collected on the filter (μg) by the
corresponding air sample volume (m3). These filter concen-
trations were then used to post-correct and calibrate the cor-
responding real-time concentrations for each individual
sample using the following equation.

C = C0 ×
Cgav
Cnep

, 1

where C is the corrected real-time PM2.5 concentration, C0 is
the raw real-time concentration from the nephelometer, Cgav
is the five-day weighted mass concentrations measured by
the gravimetric method, and Cnep is the concurrent five-
day mean concentration calculated using the raw real-time
nephelometer data. The 24h time-weighted PM2.5 concen-
trations were calculated using these calibrated real-time data.

2.3. Ambient Air Quality and Meteorological Data. Ambient
PM2.5 data were retrieved from the China National Environ-
mental Monitoring Center Network, which provides hourly
PM2.5 concentrations from local air quality monitoring sta-
tions (AQMS). The straight-line distance between partici-
pant’s address and local AQMS was calculated. Data from
the closest AQMS to each participant’s address was used to

produce 24h time-weighted PM2.5 concentrations corre-
sponding to the sampling periods for personal exposure. In
addition, meteorological data (temperature, relative humid-
ity, atmospheric pressure, and wind speed) was also obtained
from government-run monitoring sites in BJ and NJ.

2.4. Questionnaire and Time-Activity Diary (TAD). Prior to
deployment of the sampling equipment, a standardized
questionnaire was used to gather subjects’ demographics
(e.g., gender, age, and household income), home description
(e.g., floors, room volume, building age, number of inhabi-
tants, pet ownership, and primary cooking fuel), and lifestyle
(e.g., window opening, cooking and cleaning frequency, and
air conditioner and air purifier use), which potentially affect
personal PM2.5 exposures. The participants were also
instructed to complete a daily TAD during sampling periods.
Time-location information, as well as certain activities of
pollutant-generating (i.e., cooking, cleaning, and environ-
mental tobacco smoke (ETS) exposure), was recorded on
the standardized time-based diaries.

A global position system (GPS) data logger (model BT-
Q1000XT, Qstarz International, Taiwan, China) was carried
by each participant to collect timestamped data on position
(latitude, longitude) every 10 s. The recorded GPS track
was displayed in Google Maps to verify the trips manually
recorded in the TADs. When any inconsistencies between
TAD recordings and GPS data were identified, the individ-
ual participants were contacted immediately for information
confirmation. If the inconsistencies could not be clarified
with the participant, the more objective GPS data were used
for microenvironment identification. Finally, potential pre-
dictors of exposure levels and patterns were extracted from
the manually inspected pooled GPS-TAD data.

2.5. Quality Assurance and Quality Control. The nephelom-
eter baseline and nominal flow rate of MicroPEMs were cal-
ibrated before sampling and measured again at the
conclusion of sampling. Filters were weighed in duplicate,
and the values were averaged to obtain the final weight.
The duplicate weights are needed to be within 4.0μg of each
other; otherwise, the filter was reweighed. Field blanks were
collected at a rate of 10% of the samples. The method detec-
tion limit (MDL) for gravimetric method was estimated as
three times the standard deviation (SD) of the field blanks
divided by the nominal sample volume, and all the masses
of samples greatly exceeded the MDL (4.3μg/m3). Field
duplicate samples were collected for 6% of the samples.
The difference between the time-weighted average PM2.5
concentrations of duplicate samples was within 10% or 5μ
g/m3 in all cases. During HS, some real-time personal expo-
sure data was lost due to an unknown source of instrument
failure likely due to large temperature swings and the poten-
tial for condensation within the MicroPEM. This was more
frequently an issue with BJ, which has colder outdoor tem-
peratures during HS (BJ: -8.5°C to -7.7°C, NJ: 4.0°C to
10.4°C). Additionally, some samples were stopped early on
request from the participant and scheduling considerations.
Therefore, the calculated daily exposure from the calibrated
real-time measurements was considered valid only if the
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sample contained more than 22 h of valid data within a 24h
period. In total, 89% (271/305) and 96% (297/310) of the
daily data were included in this analysis for BJ and NJ,
respectively.

2.6. Statistical Analysis. Five state-of-the-art machine learn-
ing algorithms were tested to identify the most effective algo-
rithm at predicting personal PM2.5 exposure. The selected
algorithms included commonly used algorithms with differ-
ent underlying principles that have been shown to have good
predictive ability for estimating outdoor or indoor air quality
[10, 13, 14]. These algorithms included ANN with a single
hidden layer, random forest (RF), support vector machine
with Gaussian kernels (SVM), extreme gradient boosting
(XGBoost), and gradient boosting machine (GBM). The
MLR algorithm served as a reference method for compari-
son of the results. To meet the normality requirements of
MLR, all 24 h PM2.5 concentration data were natural log-
transformed. Grid search optimization was used to tune
the hyperparameters for each of the machine learning algo-
rithms. To this end, we defined a wide range of variance
for each of the hyperparameters (Table S1). The model
performance for each combination of hyperparameters was
evaluated using a cross-validation (CV) method, and the
one with the best performance was selected for the final
model.

All candidate predictors are listed in Table S2 and were
divided into three categories according to the data source
and difficulty of information acquisition: routine monitoring
(including ambient concentrations and meteorological
factors), basic questionnaire (including personal and
household characteristics), and TAD (including time-
location information and certain activities). Dummy coding,
using the dummyVars function, was applied to handle the
categorical variables as the machine learning algorithms are
unable to process these variables. A series of prediction
models were developed with different sets of potential
predictors, beginning with those that are easiest to collect
(routine monitoring) and followed by increasingly complex
data (basic questionnaire and TAD). The improvement of
model performance following the inclusion of additional
more complex information was assessed by comparing
between models.

The RFE method was applied for feature selection from
each set of candidate predictors for the MLR and machine
learning-based models. The RFE method is a search algo-
rithm that treats the predictors as the inputs and uses
model performance as the output to be optimized. Ini-
tially, the algorithm fits the model to all predictors. Each
predictor is ranked using its importance to the model. Let
S be a sequence of ordered numbers which are candidate
values for the number of predictors to retain S1 > S2,⋯ .
At each iteration of feature selection, the Si top ranked
predictors are retained, the model is refit, and the perfor-
mance is assessed. The value of Si with the best perfor-
mance is determined, and the top Si predictors are used
to fit the final model [31]. The method was implemented
by function RFE using the “caret” package in R software
(version 3.5.1).

To better understand the relative influence of each pre-
dictor on model performance, variable importance (VI)
scores and variable importance plots (VIPs) were con-
structed based on individual conditional expectation (ICE)
curves [43–45]. This method identifies VI as the flatness of
ICE curves in which the flatter curves represent the lower
relative VI for the predictor of interest [44]. This analysis
was performed by R software (version 3.5.1) with “vip”
package.

A nested CV strategy was employed to evaluate the per-
formance and generalization errors associated with the pre-
diction models. This method overcomes the bias in
performance evaluation caused by information leakage when
the same data are used to tune model hyperparameters and
evaluate model performance in non-nested CV [29]. The
nested CV strategy contains an inner loop CV nested in an
outer CV. The inner loop is responsible for hyperparameter
tuning as mentioned above, while the outer loop is for error
estimation [46]. For our analysis, 10% of samples were used
for validation in the outer loop (10-fold CV), and 20% of
samples were used for validation in the inner loop (5-fold
CV). Measurements from the same participant were forced
into the same group in each sampling procedure, and thus,
artificial increases in the fitting degree related to repeated
measurements of the same participant were eliminated.
The coefficient of determination (R2), root mean square
error (RMSE), and mean absolute error (MAE) between
the measured and model predicted values were calculated
and used for model comparison.

3. Results

3.1. Personal Characteristics. The median participant age was
62 and 59 in BJ and NJ, respectively. All participants were
nonsmokers, but exposure to ETS was recorded for 12.9%
(35/271) and 27.3% (81/297) person-days in BJ and NJ,
respectively. All subjects lived in apartment, and natural
ventilation was the only ventilation mode. Window opening
was more prevalent in NJ than BJ due to differences in cli-
mate. Air purifiers were not frequently used and accounted
for less than 3% (BJ: 8/271, NJ: 6/297) of monitoring
person-days in both cities. Air conditioner usage time
accounted for 23.2% (63/271) and 16.5% (49/297) in BJ
and NJ, respectively.

According to time-activity data from pooled GPS-TADs,
the participants spent more than 90% (median) of their time
at home (BJ: 90.4%, NJ: 92.8%), followed by transportation
(BJ: 3.1%, NJ: 1.9%), outdoors (BJ: 1.7%, NJ: 1.7%), and
indoor public places (BJ: 0.9%, NJ: 1.1%). Other characteris-
tics of subjects, their residences, and time-activity patterns
that may influence personal exposure to PM2.5 are shown
in Table S3.

3.2. PM2.5 Concentrations. Table 1 shows the summary sta-
tistics of ambient, outdoor, indoor, and personal PM2.5 con-
centrations by city. Though large variations existed within
each city, high levels of PM2.5 pollution were observed in
both cities. Overall, 95% of person-day measurements
exceeded the World Health Organization (WHO) guideline
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of 15μg/m3 (BJ: 90%, NJ: 100%). Regional differences in
PM2.5 exposures were found. The personal PM2.5 concentra-
tions in NJ were statistically significantly higher than BJ
(p < 0 001), which was consistent with the indoor and out-
door PM2.5 measurements.

Figure 1 illustrates the relationships among personal,
indoor, outdoor, and ambient measurements. The residen-
tial outdoor PM2.5 concentrations measured by MicroPEM
were highly correlated with the ambient levels of the nearest
AQMS, with the Spearman correlation coefficient of 0.94
and 0.96 in BJ and NJ, respectively. The personal PM2.5
exposures were most related to indoor PM2.5, followed by
outdoor and ambient measurements.

3.3. Model Performance with Different Predictors and
Algorithms. Table 2 shows the nested CV results for the pre-
diction models based on different algorithms and candidate

predictors. Overall, the prediction models performed better
for the data collected in BJ than in NJ. Model 1 (including
only ambient PM2.5 and meteorological factors), based on
either traditional MLR or machine learning algorithms, per-
formed well with the CV R2 ranging from 0.82 to 0.88 in BJ
and from 0.76 to 0.80 in NJ. Model performance, including
different candidate predictors, was then compared. How-
ever, the addition of variables from basic questionnaire
(model 2) and TAD data (model 3) did not improve the
model performance for all algorithms and in some
instances slightly diminished model accuracy, possibly due
to overfitting caused by redundant variables. For example,
model 1 which is based on an RF algorithm, has a higher
CV R2 (0 88 ± 0 10) and lower RMSE (16 3 ± 4 5μg/m3)
and MAE (12 0 ± 2 4μg/m3) than the corresponding model
3 (R2: 0 85 ± 0 12, RMSE: 16 3 ± 5 5μg/m3, MAE: 11 6 ± 2 6
μg/m3) in BJ.

Table 1: The daily ambient, outdoor, indoor, and personal PM2.5 measurement (μg/m3) by city.

N Mean Standard deviation
Percentiles

Min P10 P25 P50 P75 P90 Max

BJ

Ambient PM2.5 271 65.4 51.4 6.6 11.8 31.3 56.2 90.8 111.8 341.5

Outdoor PM2.5 271 64.6 56.1 4.5 15.4 26.2 54.8 85.7 118.1 389.9

Indoor PM2.5 271 49.8 36.3 3.6 14.4 23.5 40.6 65.3 93.1 256.0

Personal PM2.5 271 53.5 39.5 4.2 15.1 26.2 45.2 68.5 99.7 285.0

NJ

Ambient PM2.5 297 59.7 31.8 16.4 28.3 34.2 52.3 74.2 105.8 156.6

Outdoor PM2.5 297 71.9 44.3 16.0 27.7 37.3 58.1 95.5 137.2 210.4

Indoor PM2.5 292a 62.7 37.9 16.3 27.4 35.8 52.7 79.3 108.3 232.0

Personal PM2.5 297 65.7 40.2 16.4 27.8 36.0 51.8 82.0 123.2 218.9

Notes: N : the number of person-day; Min: the minimum value; Max: the maximum value; P10, P25, P50, P75, and P90: the 10th, 25th, 50th, 75th, and 90th
percentiles, respectively. aFive days of indoor PM2.5 concentrations from a single subject was missing due to instrument failure in nonheating season.
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Figure 1: The correlation matrices of daily ambient, outdoor, indoor, and personal PM2.5 measurements in BJ (Beijing) and NJ (Nanjing).
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Compared with a traditional MLR algorithm, the
machine learning-based models performed similarly or
slightly better as indicated by a higher R2 and lower RMSE
and MAE. These results also demonstrated that RF and
SVM were the most effective algorithms tested. As shown
in Table 2, the CV R2 of RF model increased by 7% (from
0 82 ± 0 13 to 0 88 ± 0 10), while RMSE decreased by 18%
(from 19 8 ± 5 4 to 16 3 ± 4 5) compared to the traditional
MLR approach in BJ. In addition, the lower SD of model
performance metrics suggested that the performance of the
RF and SVM algorithms was more stable.

3.4. Variable Importance. Figure 2 and Table S4 illustrate the
relative variable importance in predicting personal PM2.5
exposure based on different algorithms (model 3). Across all
algorithms and cities, the ambient PM2.5 was consistently the
most import predictor and its contribution was much larger
than any other factors. However, the other variables included
in final models were quite different between cities and
algorithms. For example, outdoor relative humidity (RH)
was the only variable included in all models in BJ, while it
was less important in NJ, where exposure to ETS played a
more important role than other variables except ambient
PM2.5.

4. Discussion

MLR models were used for reference purposes during our
development of machine learning algorithms for the predic-
tion of personal PM2.5 exposures. The nested CV results
indicate that our MLR models yielded accurate 24h expo-
sure estimates. This MLR approach has been used exten-
sively for PM2.5 exposure prediction in previous studies,
but the majority of these studies have been carried out in
urban areas of developed countries with low air pollution

levels, such as North America and Europe [47–49]. Recently,
more research studies have been carried out in rural areas of
developing countries (e.g., Kenya, India, Lao PDR, and
China) [11, 21, 23, 27, 50, 51]. The predictive ability of the
models included in these studies varied greatly with CV R2

values ranging from 0.09 to 0.76. Compared with the studies
mentioned above, our MLR model displayed stronger pre-
diction ability as indicated by the higher nested CV R2

values (BJ: 0.82, NJ: 0.78). This result was mainly due to
the following two reasons. First, the personal exposure
levels of our subjects covered a much broader range (BJ:
4.2-285.0μg/m3, NJ: 16.4-218.9μg/m3) than that studied
in the developed countries. Second, ambient PM2.5 was
the dominant exposure source for our subjects, which
has been accurately monitored and included in our MLR
models. Contrary to our study, strong indoor sources
(e.g., solid fuel combustion, cooking fumes, and ETS)
and local outdoor source (e.g., vehicle emissions) also con-
tributed a considerable proportion of exposure for partici-
pants in studies conducted in urban areas of developed
countries [47–49, 52] or rural areas of developing coun-
tries [11, 21, 23], and the influence of these sources on
personal exposure was difficult to accurately estimate.

A primary aim of this analysis was to explore whether
the utility of machine learning algorithms could improve
the accuracy of PM2.5 exposure prediction compared to
MLRmethods. Our analysis found that all of the five machine
learning algorithms we tested could provide accurate predic-
tion with an R2 ranging from 0.76 to 0.88 (model 1). The RF
and SVM algorithms generally performed better than our
MLR models with the same candidate explanatory variables,
especially in BJ. To our knowledge, only a few studies have
applied machine learning algorithms to predict personal
PM2.5 exposure [11, 20–23]. Among these studies, RF was
the most commonly used algorithm. For example, in the

Table 2: Nested CV results of prediction models with different algorithms and predictors.

City Algorithm
Model 1 Model 2 Model 3

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

BJ

MLR 0 82 ± 0 13 19 8 ± 5 4 13 6 ± 2 6 0 80 ± 0 15 20 4 ± 6 0 13 9 ± 2 8 0 81 ± 0 10 19 7 ± 6 9 13 5 ± 3 3
RF 0 88 ± 0 10a 16 3 ± 4 5a 12 0 ± 2 4 0 84 ± 0 11 18 3 ± 5 6 12 8 ± 3 8 0 85 ± 0 12a 16 3 ± 5 5 11 6 ± 2 6
SVM 0 87 ± 0 11a 17 3 ± 5 8 12 4 ± 4 2 0 83 ± 0 16 19 3 ± 5 9 13 6 ± 4 3 0 83 ± 0 16 18 6 ± 5 9 13 4 ± 3 9

XGBoost 0 84 ± 0 15 18 2 ± 5 5 12 8 ± 3 2 0 85 ± 0 12 18 0 ± 6 5 12 7 ± 4 8 0 84 ± 0 14 18 1 ± 6 3 13 0 ± 4 7
GBM 0 82 ± 0 12 21 3 ± 8 1 14 4 ± 3 2 0 80 ± 0 18 23 1 ± 8 9 17 3 ± 6 3 0 85 ± 0 12a 29 0 ± 13 8 24 9 ± 12 2a

ANN 0 84 ± 0 10 19 7 ± 7 5 14 5 ± 4 9 0 82 ± 0 13 21 6 ± 7 5 15 9 ± 4 7 0 84 ± 0 08 22 0 ± 11 8 15 2 ± 5 6

NJ

MLR 0 78 ± 0 17 21 1 ± 10 7 15 5 ± 8 4 0 78 ± 0 18 19 5 ± 5 1 13 5 ± 3 1 0 78 ± 0 18 20 1 ± 6 8 14 4 ± 4 9
RF 0 79 ± 0 16 20 5 ± 9 7 14 4 ± 7 7 0 79 ± 0 17 21 1 ± 8 1 14 8 ± 6 3 0 79 ± 0 15 20 5 ± 8 4 15 0 ± 6 6
SVM 0 80 ± 0 15 21 1 ± 10 1 14 6 ± 7 6 0 76 ± 0 20 21 8 ± 10 2 15 5 ± 7 8 0 78 ± 0 18 20 7 ± 10 8 14 9 ± 8 2

XGBoost 0 79 ± 0 17 20 5 ± 9 0 14 7 ± 7 1 0 79 ± 0 16 22 4 ± 12 7 16 0 ± 9 7 0 78 ± 0 18 20 8 ± 8 9 15 5 ± 6 8
GBM 0 76 ± 0 17a 23 0 ± 11 2 17 2 ± 9 4a 0 73 ± 0 22 25 9 ± 9 2a 20 6 ± 8 1a 0 73 ± 0 22 22 8 ± 6 7 17 0 ± 5 9
ANN 0 78 ± 0 16 21 1 ± 9 8 15 9 ± 7 7 0 73 ± 0 18a 22 0 ± 4 8 16 5 ± 3 8a 0 71 ± 0 17a 25 4 ± 11 1a 18 2 ± 7 5a

Note: model 1 included variables for ambient PM2.5 from the nearest AQMS and meteorological factors. Model 2 included both variables in model 1
and variables from basic questionnaire. Model 3 included both variables in model 2 and variables from TAD. The values were mean ± SD from nested
cross-validation. aStatistically different from referenced MLR method.
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Relationships of Indoor, Outdoor, and Personal Air (RIOPA)
study, MLR and RF were used to predict chemical elements in
48h personal PM2.5 samples. Consistent with our findings,
RF analysis performed better than MLR for most elements
[22]. In rural Lao PDR, the mean 48h PM2.5 exposure con-
centrations for female cooks were estimated using machine
learning models. These models produced an observed vs.
CV predicted R2 between 0.26 and 0.31, and the best candi-
date learner was RF, followed by cForest [21]. This, along
with our findings, suggests that RF is a promising technology
for personal exposure estimation for its ability to uncover and
harness complex variable interrelationships to produce more
accurate predictions [21]. However, inconsistent results were
reported in a study conducted in rural area of Kenya. In this
study, all five tested five machine learning algorithms
(including RF, XGBoost, SVM, Rpart, and Glmnet) per-
formed worse than MLR. The poorer machine learning
model performance in this study may be partly explained
by the relatively small sample size (~50) and failure to adopt
appropriate variable selection methods [23]. Unlike the anal-
ysis presented here, a variable selection method specific to
machine learning algorithms was not adopted in the Kenya
study, but the same variables as MLR model were included,

potentially limiting the predictive ability of the machine
learning algorithms. Therefore, a suitable variable selection
method is essential to improve the predictive power of the
models based on machine learning algorithms. In a recent
study conducted in Tianjin, a heavily polluted city in north-
ern China, a total of 117 older adults over 60 years of age were
recruited and their PM2.5 exposures measured. Four model-
ing techniques, including time-integrated activity modeling,
Monte Carlo simulation, ANN modeling, and combined
use of principal component analysis (PCA) and ANN model,
were used to evaluate their ability to predict PM2.5 exposures
in this study setting. The authors found that the combined
use of PCA and ANN produced the most accurate results,
yielding an R2 of 0.99 and RMSE lower than 15μg/m3, while
the traditional time-weighted activity modeling showed the
lowest correlation with measured values with R2 of less than
0.6. The high accuracy of the model used in this study may
be very likely attributed to the inclusion of measured indoor
PM2.5 levels as predictors [20]. However, the indoor PM2.5
measures were not used in our study, since only ambient
measures can be accessed easily. In addition, contrary to the
results in the Tianjin study, the prediction accuracy of our
ANN model was slightly lower than MLR and the preprocess
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Figure 2: Bar plots of relative variable importance for personal PM2.5 exposure prediction based on calculating flatness of partial
dependence plot curves in BJ (Beijing) and NJ (Nanjing). MLR: multiple linear regression; RF: random forest; SVM: support vector
machine; GBM: gradient boosting machine; XGBoost: extreme gradient boosting; ANN: artificial neural network.
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method of PCA did not improve the model fit of ANN or any
other machine learning based model.

Our comparison among models developed with different
candidate predictors showed that the inclusion of variables
from the basic questionnaire, and even the participant’s
TAD, could not improve prediction accuracy. The variable
importance evaluation results also confirmed the rationality
of this result. Our result may be of great practical signifi-
cance as it shows that we can obtain the same prediction
model performance for the elderly without the added burden
needed to gather those data. However, extrapolating the cur-
rent results to other age groups requires caution. In our
study, the majority of participants were over 60 years old,
and almost all of their time was spent at home (~90%), with
only a small percentage spent during transportation (~3%)
or in public places (~3%). It is noteworthy that their time-
activity patterns significantly differ from other subgroups,
such as office workers and school-age children. Thus, factors
associated with time-activity patterns, such as commuting
status and exposure to indoor pollution sources in public
places, might assume greater significance. A study by
Rojas-Bracho et al. found that personal PM2.5 exposures
increased by 2.5μg/m3 for each hour spent in a motor vehi-
cle [48]. Our PM2.5 real-time concentration data indicates
that personal exposure levels are higher than environmental
background levels during cycling or walking, with a per-
sonal/outdoor ratio of approximately 1.1 [53]. Moreover,
our findings highlight that individuals frequenting restau-
rants were exposed to elevated levels of PM2.5, as evidenced
by considerably higher ratios of personal to outdoor PM2.5
(BJ: 1.48, NJ: 1.37) [53]. This is consistent with previous
studies conducted in Seoul [54, 55]. Taken together, it is
important to consider that differences in time-activity pat-
terns may significantly influence personal exposure models
for populations other than the elderly.

In previous studies, exposure to ETS was found to be
another important factor affecting overall PM2.5 exposure
[47, 48]. However, the ETS contribution to the prediction
model is not evident in this analysis. It was reported that
exposure to ETS for 1 h would increase the 24 h mean con-
centration of PM2.5 exposure by about 4μg/m3 [47, 48, 56].
In our study, only 3.6% and 6.7% of participants in BJ and
NJ were exposed to ETS for more than 1h a day, which
means its impact on PM2.5 exposure levels was far less than
ambient air and may be masked by the variation of ambient
PM2.5. Cooking behavior can lead to a sharp increase in
indoor PM2.5 level in a short period of time, which is also
another important contributor of PM2.5 exposure especially
in rural areas in previous studies [21, 23, 48]. Chang et al.
reported that cooking for 1 h increased 24h personal expo-
sures to PM2.5 by about 4μg/m3 [47, 48, 57]. However, it
should be noted that the magnitude of impact cooking can
have on overall exposure is also strongly affected by the type
of cooking, fuel type, who is cooking (participant or other),
ventilation status, and building structures [57]. This suggests
that a simple variable such as cooking duration could not
accurately characterize its contribution to exposure. The
TAD results from our study show that the median (P25,
P75) daily cooking duration in subject’s homes was 1.5 (1.0,

1.9) h and 1.5 (0.9, 2.1) h in BJ and NJ, respectively. Unfor-
tunately, our questionnaires only included a cooking ques-
tion related to fuel type. Natural gas was the dominant
cooking fuel in both BJ and NJ. This uncertainty reduces
the prediction ability of the family cooking time variable
on individual exposure levels. Lack of detailed information
on cooking behavior and high levels of background PM2.5
pollution have reduced the role of cooking behavior in pre-
dicting personal exposure in our study, and future studies
should attempt to collect more detailed information on
cooking activities and patterns to better understand the
potentially important relationship between household cook-
ing and residential exposures.

Window opening was regarded as a predictor related to
an increase in indoor and personal concentrations in previ-
ous reports [58–60], since window opening has a strong
influence on air exchange rate, as well as increasing penetra-
tion by permitting ambient air to enter the indoor environ-
ment. However, we did not find that the inclusion of
relevant variables of window opening behavior (window
opening time and window opening width) had a significant
impact on the accuracy of our models. A potential reason
for this can be attributed to meteorological factors (e.g., tem-
perature and wind speed), which can indirectly capture the
opening windows status to a certain extent. In fact, our data
indicated that more than 50% of the total variation of win-
dow opening time can be predicted by variables of tempera-
ture, humidity, and wind speed in BJ.

To our knowledge, this is the first study to develop pre-
diction models for personal PM2.5 exposure using multiple
machine learning approaches in urban locations with high
levels of ambient PM2.5 pollution. This study was conducted
in two Chinese megacities with uniform study design and
measurement methods, and the consistent results between
cities indicate that our findings are robust. However, we also
note that the models in BJ and NJ did not include the same
predictors, which suggests the need to develop city-specific
assessment models. There were several limitations of this
study. First, our study was only conducted with retired
adults residing in urban areas, and as such, caution should
be applied when extrapolating our results to other age
groups with different time-activity patterns and people living
in rural areas who are exposed to different PM2.5 sources.
Second, the sample size is relatively small, which is not con-
ducive to developing machine learning models, especially for
neural network models with complex structures. However,
even with a relatively small number of training samples,
the RF and SVM algorithms show advantages over the tradi-
tional MLR algorithm. Therefore, the machine learning
approach shows promise for predicting personal air pollu-
tion exposures.

5. Conclusions

Our nested CV results showed that the models containing
only predictors from routine air quality and meteorological
monitoring data can accurately predict the personal PM2.5
exposures of the elderly adults residing in urban areas with
elevated levels of air pollution. The addition of individual
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and household characteristics as well as time-activity infor-
mation had a limited effect of predictive ability. The compar-
ison statistics between MLR and machine learning models
for the same data set indicated that the latter algorithms
have advantages over the classic MLR method even at lim-
ited training sample sizes. Our results suggest that the
machine learning approach could be a promising technology
for predicting personal air pollution concentrations.
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