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Buildings are major consumers of energy, accounting for a significant proportion of total energy use worldwide. This substantial
energy consumption not only leads to increased operational costs but also contributes to environmental concerns such as
greenhouse gas emissions. In the United States, building energy consumption accounts for about 40% of total energy use,
highlighting the importance of efficient energy management. Therefore, accurate prediction of energy usage in buildings is
crucial. However, accurate prediction of building energy consumption remains a challenge due to the intricate interaction of
indoor and outdoor variables. This study introduces the Partitioned Hierarchical Multitask Regression (PHMR), an innovative
model integrating recursive partition regression (RPR) with multitask learning (hierML). PHMR adeptly predicts building
energy consumption by integrating both indoor factors, such as building design and operational variables, and outdoor
environmental influences. Rigorous simulation studies illustrate PHMR’s efficacy. It outperforms traditional single-predictor
regression models, achieving a 32.88% to 41.80% higher prediction accuracy, especially in scenarios with limited training data.
This highlights PHMR’s robustness and adaptability. The practical application of PHMR in managing a modular house’s
Heating, Ventilation, and Air Conditioning (HVAC) system in Spain resulted in a 37% improvement in prediction accuracy.
This significant efficiency gain is evidenced by a high Pearson correlation coefficient (0.8) between PHMR’s predictions and
actual energy consumption. PHMR not only offers precise predictions for energy consumption but also facilitates operational
cost reductions, thereby enhancing sustainability in building energy management. Its application in a real-world setting
demonstrates the model’s potential as a valuable tool for architects, engineers, and facility managers in designing and
maintaining energy-efficient buildings. The model’s integration of comprehensive data analysis with domain-specific knowledge
positions it as a crucial asset in advancing sustainable energy practices in the building sector.

1. Introduction

In an era marked by escalating energy demands, the imper-
ative to enhance building energy efficiency has become
increasingly critical. The Department of Energy’s 2023
report underscores this urgency, highlighting that buildings
account for a substantial portion of total energy use in the
United States [1]. This situation presents not just a challenge
in resource management but also raises significant environ-
mental and economic concerns. The integration of wireless
sensors and IoT technologies has paved new avenues for

understanding and controlling building energy usage. When
combined with predictive analytics, these technologies show
considerable promise in forecasting energy consumption
and enabling the fine-tuning of building parameters to min-
imize waste.

Despite these technological advancements, the develop-
ment of effective predictive models for building energy con-
sumption is fraught with challenges, primarily due to the
dynamic and multifaceted nature of energy usage. While
recent studies, such as those by Himeur et al. [2, 3], Deng
et al. [4], Elnour et al. [5] , and Han et al. [6], have
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illuminated the potential of AI and big data in revolutioniz-
ing building energy management, they also reveal significant
gaps in current predictive modeling approaches. These stud-
ies highlight the need for models that can effectively navigate
the complex interplay between various indoor and outdoor
variables affecting energy consumption.

In response to this identified research gap, our study
introduces the Partitioned Hierarchical Multitask Regression
(PHMR) model. The PHMR model is designed to address
the complexities of building energy consumption by inte-
grating recursive partitioning regression (RPR) with multi-
task learning (hierML). This approach not only enhances
the accuracy of energy consumption predictions but also
facilitates the nuanced control and adaptation of building
parameters. Our model represents a significant advancement
from existing RPR models Chan et al. [7], Chaudhuri et al.
[8], Landwehr et al. [9], Loh [10], Loh [11], Zeileis et al. [12],
Rusch and Zeileis [13], filling a critical gap in the literature
and offering a more sophisticated tool for energy management.

The key contributions of this study are manifold. We
present the model formulation of PHMR, which bridges
recursive partitioning on outdoor variables with hierarchical
multitask learning to enhance prediction and control of
building energy consumption. The transformation of the
hierML algorithm into a convex optimization problem is
detailed, ensuring optimal and computationally efficient
solutions. Furthermore, the practical application of PHMR
in managing a modular house’s HVAC system in Spain
demonstrates the model’s utility in reducing unnecessary
energy consumption, aligning with the sustainable goals out-
lined in recent research by Borràs et al. [14] and Mehdizadeh
Khorrami et al. [15].

This paper is organized to detail the PHMR model for-
mulation, the algorithm used for model estimation, its com-
parison against other methods through simulation studies,
and its practical application in building energy prediction
and management.

2. Model Formulation for PHMR

The PHMR model consists of two components: (1) a tree-
growing process that utilizes the outdoor variables for recur-
sive partitioning and (2) hierML performed at each step of
the tree-growing process. In this section (Section 2), we will
discuss the hierML model at a fixed step (s-th step) of the
tree-growing process. The other steps use hierML in a simi-
lar manner. In the following section (Section 3), we will
present the algorithm that is used to estimate the model
parameters for hierML, which is integrated with recursive
partitioning to grow a tree.

The s-th step of the tree-growing process yields a tree Ts,
consisting of internal and leaf nodes. All nodes of Ts,
denoted as Vs, include the leaf nodes Vl,s, which do not have
any children in the tree. At each internal node of V, a Z var-
iable is used to partition the samples into left and right
branches. The leaf nodes correspond to different subdivi-
sions of the space defined by the outdoor variables, and for
each leaf node, there exists a regression model linking the
response with indoor variables: yvl =Xvl

βvl + εvl and vl ∈

Vl,s. Figure 1 provides an example of Ts with leaf nodes
Vs = 3, 5, 6, 7 .

In previous recursive partitioning regression (RPR)
models, including our SPR [16, 17], each leaf node’s regres-
sion model was fitted independently. However, in our pro-
posed hierML model, we incorporate the hierarchical
multilevel similarity structure of the leaf nodes to fit the
models jointly. According to the principle of recursive parti-
tioning, models at lower levels of leaf nodes should be more
similar to each other. For instance, in Figure 1, the model at
leaf node 6 should be more similar to the model at 7 than to
that at 5 and that at 3 (and in fact, less similar to 3 than to 5).
This is because the recursive partitioning process performs
easier splits at earlier stages, resulting in more dissimilar
branches and easier splits. As the split becomes later, it
becomes harder because the resulting branches become
more and more similar.

To jointly estimate regression models for the leaf nodes
while incorporating the hierarchical multilevel similarity
structure, a penalized formulation is proposed as follows:

B̂ = argmin
B

〠
vl

yvl −Xvl
βvl

T
yvl −Xvl

βvl + λ〠
j

〠
v

wv βj
Gv 2

,

1

where B = βvl vl∈Vl
.

The first part of equation (1) is the least-square error
loss. For simplicity, the subscript “s” has been removed from
all the notations in this section since we are focusing on a
single step in the tree-growing process. The second term in
equation (1) is the hierML penalty, and there are some addi-
tional notations that need to be defined before explaining the
penalty clearly. For each node in the tree, denoted as v ∈V,
Gv represents the set of leaf nodes that grow from node v.
Taking Ts in Figure 1 as an example, there are seven nodes
in the tree. The Gv for each node is G1 = 3, 5, 6, 7 , G2 =
5, 6, 7 , G3 = 3 , G4 = 6, 7 , G5 = 5 , G6 = 6 , and

G7 = 7 . Let βj
Gv

contain the set of regression coefficients
corresponding to the j-th predictor (i.e., j-th indoor vari-
able) in Gv. For example, βj

G1
= βj

3, β
j
5, β

j
6, β

j
7 , βj

G2
= βj

5,
βj
6, β

j
7 , and βj

G3
= βj

3 .
To jointly estimate the leaf node-wise regression models

while incorporating the hierarchical multilevel similarity struc-
ture, we propose a penalized formulation inspired by multitask
learning using L1/L2 regularization Obozinski et al. [18]. Specif-
ically, the set of leaf nodes growing from a given node v is
denoted asGv. By considering theGv as distinct tasks, we apply
a weighting strategy to L2-norm on βj

G1
, denoted as wv βj

Gv 2
,

where wv is a weight to be discussed later. They then put an
L1-norm outside the weighted L2-norm, i.e., ∑vwv βj

Gv 2
, to

enable the selection of regression coefficients contained in each
βj
Gv

as a group. Additionally, they put another L1-norm further
outside to enable the selection of regression coefficients corre-
sponding to the j-th predictor as a group, i.e., ∑j∑vwv βj

Gv 2
.

This completes the explanation of the hierML penalty, which
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is the second term in the formulation. λ in the formulation is a
tuning parameter that balances the least-square loss and the
proposed penalty [17].

In addition, we will explain how to select the weight wv
for each node v. When the tree splits into a left and a right
branch at each internal node, the regression models at the
two branches should exhibit some similarities because they
share the same internal node. However, the models should
not be identical, or else the internal node would not have
been split. For instance, at the lowest internal node, v = 4
in Figure 1, the tree splits into nodes 6 and 7 as the two
branches. The regression coefficients of the j-th predictor
in the models of nodes 6 and 7, βj

6 and βj
7, should be compa-

rable but not precisely identical.

Wj 4 ≜ g4 βj
6

2
+ βj

7
2
+ s4 βj

6 + βj
7 , 2

where βj
6

2 + βj
7

2
encourages the two coefficients to be

selected jointly to account for their similarity, while βj
6

and βj
7 encourage selection separately to account for their

difference. g4 and s4 are the corresponding weights. Using

the definition of βj
Gv
, (2) can be written as

Wj 4 = g4 βj
G4 2

+ s4 βj
6 + βj

7 3

Furthermore, we can move up to the next internal node,
i.e., v = 2. At node 2, the tree splits into a subtree rooted
from node 4 as the left branch and node 5 as the right
branch. Following a similar idea to (3), we can write down
the penalization on regression coefficients that simulta-
neously account for the similarity and difference between
the two branches, i.e.,

Wj 2 = g2 βj
G2 2

+ s2 Wj 4 + βj
5 4

In a similar way, the penalization associated with the
internal node v = 1 is as follows:

Wj 1 = g1 βj
G1 2

+ s1 Wj 2 + βj
3 5

To generalize the above scheme, we can write the defini-
tion of Wj v as

Wj v =
gv β j

Gv 2
+ sv 〠

c∈children v

Wj c if v is an internal node

βj
v if v is a leaf node

,

6

with gv + sv = 1 for identifiability consideration. Using this
definition, we can write the hierML penalty in (1) as

〠
j

〠
v

wv βj
Gv 2

=〠
j

W j vroot 7

By some algebraic operations, it can be demonstrated
that wv is associated with gv and sv in the following manner,
where vroot is the tree’s root node:

wv =

gv
m∈Ancestors v

sm if v is an internal node

m∈Ancestors v

sm if v is a leaf node

8

This completes the discussion on designing the weight
wv for the proposed hierML penalty. For better illustration,
take Ts in Figure 1 as an example. The right-hand side of
(7) can be shown to be:

Wj 1 = g1 βj
G1 2

+ s1 Wj 2 + β j
3

= g1 βj
G1 2

+ s1 g2 βj
G2 2

+ s2 Wj 4 + β j
5 + βj

3

= g1 βj
G1 2

+ s1 g2 βj
G2 2

+ s2 g4 βj
G4 2

+ s4 βj
6 + βj

7 + βj
5 + βj

3

= g1 βj
G1 2

+ g2s1 βj
G2 2

+ g4s1s2 βj
G4 2

+ s1s2s4 β
j
6

+ s1s2s4 βj
7 + s1s2 β

j
5 + s1 β

j
3

9

Comparing the above equation with the left-hand side of
(7), we can get w1 = g1, w2 = g2s1, w4 = s1s2g4, w6 = s1s2s4,

Tree Ts−1
at step s−1

Tree Ts
at step S Vs−1 = (1, 2, 3, 4, 5)

Vl, s−1 = (3, 4, 5)
Vs = (1, 2, 3, 4, 5, 6, 7)
Vl, s = (3, 5, 6, 7)

6

4

7

2

5

1

3

Figure 1: To simplify the presentation, an instance of the tree growth process and its corresponding symbols are displayed, showcasing only
two consecutive steps.
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w7 = s1s2s4, w5 = s1s2, and w3 = s1. It is easy to verify that
these weights comply with the formula in (8).

It is important to note that a coefficient can be penalized
in multiple groups using the proposed hierML penalty. For
example, βj

6 is penalized in four groups according to (9):
once by itself as βj

6 and three other times in groups G1,
G2, and G4, respectively. These groups have a nested struc-
ture, where 6 is a subset of G4, G4 is a subset of G2, and
G2 is a subset of G1. This is a general property of hierML,
where a regression coefficient of each leaf node is penalized
in multiple nested groups with each group corresponding
to an ancestor of the leaf node. However, the weighting
scheme proposed ensures that the weights corresponding
to the multiple nested groups for each leaf node sum up to
one, which balances the penalization of regression coeffi-
cients in all leaf nodes [17]. This property is presented math-
ematically in Proposition 1.

Proposition 1. For any leaf node vl, let Path vl be a set of
nodes including all the ancestors of vl and itself. For each v
∈ Path vl , let wv be the weight associated with node v in
the hierML penalty in (1). Then,

〠
v∈Path vl

wv = 1 10

Detailed proofs are available in a separate supplementary
document (Supplementary Material, Proposition 1 (available
here)) for clarity.

In summary, our proposed hierML model is defined by
the optimization in (1) with the weight wv given in (8),
which depends on the choice of gv and sv. To determine sv,
we suggest the following approach: recall that sv represents
the idea that the regression coefficients at each branch of node
v should be different, while gv assumes they should be similar.
Therefore, a larger value of sv implies that we want the coeffi-
cients to be estimated more independently of each other. The
proposed approach for choosing the weight sv is to make it
proportional to the distance between node v and the bottom
level of the tree. This is based on the idea that the farther away
a node is from the bottom of the tree, or the closer it is to the
root node, the more different the regression coefficients at
each branch of v should be. This is because recursive partition-
ing generally produces easier splits at earlier stages of the par-
titioning process, resulting inmore dissimilar branches. As the
split occurs at later stages, the resulting branches becomemore
similar, making the split more difficult. By making sv propor-
tional to the distance between node v and the bottom level of
the tree, the proposed approach takes into account this princi-
ple of recursive partitioning.

Once the sv for all the nodes are specified, wv can be
obtained using (8). Next, we use the example in Figure 2 to
explain how the weight for node 6, w6, is obtained. Because
node 6 is a leaf node, we need to specify su for all u ∈
Ancestors 6 which include nodes 1, 2, and 4. Node 1 is
three levels up from the bottom level, so s1 = 3. Likewise,
we can get s2 = 2 and s4 = 1. Normalize these weights to war-
rant the equality in (10) to hold, we can get s1 = 1, s2 = 0 67,

and s4 = 0 33. Then, w6 = 0 22 using (8). The weights corre-
sponding to other nodes can be obtained in a similar way.
Eventually, we can get the hierML penalty term in (1) writ-
ten as

〠
j

〠
v

wv βj
Gv 2

= 0∙ βj
G1 2

+ 0 33 βj
G2 2

+ 0 45 βj
G4 2

+ 0 22 βj
6 + 0 22 βj

7 + 0 67 βj
5 + βj

3

11

3. Algorithm for Model Estimation of PHMR

To solve the optimization problem in (1), our first step is
to convert it into an alternative convex optimization fol-
lowing a similar idea proposed by Bach [19] for solving
group lasso, i.e.,

B̂ = argmin
B

〠
vl

yvl −Xvl
βvl

T
yvl −Xvl

βvl + λ 〠
j

〠
v

wv βj
Gv 2

2

12

The optimization in (12) is convex but with a non-
smooth penalty, which is difficult to solve directly. We
relax the penalty term as follows:

〠
j

〠
v

wv βj
Gv 2

2

≤〠
j

〠
v

d−1j,v wv βj
Gv 2

2
, 13

where ∑j∑vdj,v = 1 and dj,v ≥ 0.

Proposition 2. The equality of (13) holds, i.e., ∑j∑vwv

βj
Gv 2

2 =∑j∑vd
−1
j,v wv βj

Gv 2

2
, if and only if dj,v =wv

βj
Gv 2

/∑ j∑vwv βj
Gv 2

.

The findings of this study align with the theory pre-
sented in Supplementary Proposition 1 (Supplementary
Material, Proposition 1). Detailed proofs are available in a
separate supplementary document (Supplementary Material,
Proposition 2) for clarity [17].

Using the results in Proposition 2, we can write the opti-
mization in (12) into an equivalent format with a smooth
penalty term, i.e.,

B̂, D̂ = argmin
B,D

〠
vl

yvl −Xvl
βvl

T
yvl −Xvl

βvl

+ λ〠
j

〠
v

d−1j wv βj
Gv 2

2
,

14

subject to ∑j∑vdj,v = 1 and dj,v ≥ 0.
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D = Diag ∑vd1,v,⋯,∑vdj,v ,⋯,∑vdJ ,v . (14) can be
solved using an iterative algorithm that alternates between
solving B and D. Given D, B can be solved analytically, i.e.,

βvl = XT
vl
Xvl

+ λD
−1
XT

vl
yvl 15

Given B, dj,v can be obtained using the result in Propo-
sition 2. The tuning parameter λ is selected based on a line
search from 0 to Λ, where 0 is the smallest possible value
and Λ is the largest value that no further improvement can
be made by increasing this value. The optimal λ is chosen
by minimizing the mean squared prediction error (MSPE)
on the validation set or via a cross-validation scheme. We
summarize the above estimation procedure for the hierML
model in Algorithm 1. Note that Algorithm 1 provides the
model estimation method for hierML at each step of the
recursive partitioning process for growing the tree. Next,
we present the steps involved in the entire process, which
compose the algorithm for constructing the PHMR model.
Input to the algorithm includes a training set and a valida-
tion set on the indoor variables X, outdoor variable Z, and
response variable Y . At each step, the algorithm needs to
select an outdoor variable, Zj, to split the samples belonging
to a leaf node vs into a left and a right branch (a.k.a. the left

child and right child node), Zj ≤ zj and Zj > zj , respec-
tively. zj is the splitting point. To choose the optimal outdoor
variable and the associated splitting point, our algorithm goes
through each outdoor variable included in the dataset and
each candidate splitting point and chooses the ones to be such
that the empirical risk reduction evaluated on the validation
set is the largest. The empirical risk reduction is computed as
follows:

ΔR̂
j
val = R̂val β vs

tr − R̂val β Zj≤z j
tr − R̂val β Zj>z j

tr ,

16

where β vs
tr contains regression coefficients for leaf node vs

estimated using the training set, which has been obtained in

the previous step. β Zj≤z j
tr and β Zj>z j

tr contain coefficients
of the regression models at two child nodes of vs, respectively.
The child nodes are obtained by using Zj to split vs according

to the splitting point zj. β
Zj≤z j

tr and β Zj>z j
tr are estimated by

the hierMLmodel or two lasso models for computational ease.
A commonly used empirical risk function R̂val ∙ is the sum of
squared prediction errors over all the samples in the validation
set. Suppose that the outdoor variable Zj∗ and associated
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Figure 2: (a) True tree structure partitioned by Z1 and Z2. (b) Pattern of regression coefficients within each leaf node of the tree.
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splitting point zj∗ are found to be leading to the highest empir-
ical risk reduction, then our algorithm will split the leaf node
using Zj∗ , zj∗ . This creates two new leaf nodes correspond-
ing to Zj∗ ≤ zj∗ and Zj∗ > zj∗ , respectively. Algorithm 1
will be used to refit the hierML model for all the leaf nodes.
This completes the partitioning at one leaf node. The parti-
tioning will be recursively performed on each newly generated
leaf node until no reduction in the empirical risk function can
be found and the algorithm stops [17]. We summarize the
above-described recursive partitioning tree-growing process
in Algorithm 2.

4. Simulation Studies

The efficacy of the Partitioned Hierarchical Multitask
Regression (PHMR) model was rigorously evaluated
through a series of simulation studies designed to reflect var-
ious complexities encountered in real-world data. This sec-
tion details the data generation process, compares PHMR
against existing methods, and provides an in-depth analysis
of the results.

4.1. Data Generation. Data for the simulation studies were
generated to mimic a real-world scenario with one indoor
variable (I), five outdoor variables (Z1 to Z5), and a response
variable (Y). Z1 and Z2 were the true partitioning variables,
dividing the outdoor variable space into distinct subdivi-
sions, while Z3 to Z5 were included as noise. The 75 input
variables followed a multivariate normal distribution with a
correlation structure in Σ75×75 set to σij = 0 5 i−j , i, j = 1,⋯,
75. This setup aimed to test the robustness and adaptability
of PHMR in a controlled yet complex environment.

PHMR’s performance was compared against Single Par-
tition Regression (SPR), model-based recursive partitioning
(MOB), and Generalized, Unbiased, Interaction Detection
and Estimation (GUIDE) [16, 17]. The selection of these
methods provided a diverse range of comparison points,
from traditional regression approaches to more modern par-

titioning techniques. The tuning parameters for all models
were optimized based on the mean squared prediction error
(MSPE) on a validation set, ensuring a fair and consistent
evaluation framework.

4.2. Result Analysis and Model Performance. The mean
squared prediction error (MSPE) of each method on the test
set is reported in Table 1.

The results show that PHMR outperforms the other
methods significantly, particularly in smaller training sizes.
This superior predictive accuracy and efficiency are attrib-
uted to its hierarchical structure, facilitating information
sharing across nodes and enhancing prediction capability.

The recovery rate of the true tree structure, detailed in
Table 2 and visualized in Figure 2(a), further demonstrates
PHMR’s proficiency in revealing and representing complex
data relationships. This was attributed to its hierarchical
structure, which allows for information sharing across differ-
ent nodes and enhances the overall prediction capability.
The recovery rate of the true tree structure further demon-
strated PHMR’s ability to uncover and represent complex
data relationships. A nuanced examination of the MSPE
and Pearson correlation within each leaf node, as shown in
Table 3, illustrates the model’s adaptability across varying
data segments. Nodes closer to the root exhibited better
prediction performances, with smaller MSPEs and larger
Pearson correlations, than those nearer the bottom of the
tree, like nodes 8 and 9. However, even in these challenging
nodes, PHMR achieved high Pearson correlations between
the true and predicted responses on test data, underscoring
its robustness.

In 100 independent simulations, we assessed the recon-
struction frequency of the actual tree structure (Figure 2(a))
by SPR and PHMR, with outcomes and MSPE of fully-
reconstructed runs detailed in Table 2. PHMR notably
outperformed SPR in replicating the ground-truth structure,
primarily because SPR often prematurely terminates node
splitting. Further analysis of PHMR’s performance across out-
door variable subdivisions (nodes 2, 4, 6, 8, and 9) showed that

Input: A set of L leaf nodes, vl ’s, and their associated data (training and validation) of indoor
variables Xvl

and response variable yvl . A set of weights wv for each node v of the tree
Initialize:

Initial value of D as D 0 and start from iteration t = 1.
Iterate for all the values of λ:

for λ ∈ 0,Λ do

while t < tmax and B̂ t+1 − B̂ t
F > ϵ do

Update β t+1
v1

by solving β t+1
v1

= XT
vl
Xvl

+ λD t −1XT
vl
yvl

Update D̂ t+1
using Proposition 2

end while

Calculate MSPEval λ on validation set using B λ
end for

Output B λ with the smallest MSPEval λ
Output: Regression coefficients’ estimation for each leaf node B = βv1 ,⋯,βvL .

Algorithm 1: Algorithm for hierML model estimation.
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nodes nearer the root had better predictions with lower MSPE
and higher Pearson correlation than those at the bottom, as
documented in Table 3. Despite smaller sample sizes in lower
nodes, PHMR achieved high Pearson correlations, indicating
its robust predictive capability across varied data segments.

4.3. Implications. The simulation studies underscore the
robustness and practical applicability of PHMR in predicting
complex phenomena. Its ability to accurately capture and
represent underlying data structures makes it a valuable tool
for various domains. Moreover, the insights gained from
these studies provide a solid foundation for further research,
suggesting avenues such as extending the hierML model to
accommodate nonlinear relationships and developing more
efficient algorithms for tree growth in the PHMR approach.
These simulation studies provide a comprehensive under-
standing of PHMR’s capabilities and advantages. The
model’s superior performance, coupled with its methodolog-
ical sophistication, positions it as a promising approach for
tackling intricate predictive tasks in real-world scenarios.

5. Application of PHMR in Predictive
HVAC Management

5.1. Dataset Description and Experimental Settings. This study
utilized a dataset from a modular house in Madrid, Spain, col-
lected every 15 minutes over 42 days, resulting in 4,137 sam-
ples to predict indoor temperature. The dataset was collected
from the SML system, a prototype dwelling equipped with
cutting-edge energy-saving features (Bache and Lichman
[20] and Zamora-Martinez et al. [21]). Figure 3 provides a
comprehensive depiction of the sensors and actuators
employed in the study. This dataset included six indoor vari-
ables like CO2 and relative humidity, and six outdoor variables

Input: A training set Dtr and a validation set Dval on the indoor variable X, outdoor variable Z
and response variable Y .

Initialize:
Fit a lasso model at the current node vs using Dtr to obtain the current empirical risk

R̂val β
vs
tr

Assume that there are Q outdoor variables,
for j = 1 to Q do

Split the data of node vs into left and right child node, Zj ≤ zj and Zj > zj , respectively;
Fit two lasso models in both child nodes and obtain the coefficients of the regression

models, β Z j≤z j
tr and β Zj>z j

tr ;

Calculate empirical risk reduction ΔR̂
j
val = R̂val β

vs
tr − R̂val β

Zj≤z j
tr − R̂val β

Zj>z j
tr .

end for

if (ΔR̂
j
val < 0 for all j) then
Stop

else
Choose outdoor variable Zj∗ and associated splitting point zj∗ leading to the

largest empirical risk reduction ΔR̂
j∗

val ;
Split the data of node vs into two new leaf nodes, Zj∗ ≤ zj∗ and Zj∗ > zj∗ ,
respectively;
Apply Algorithm 1 on all leaf nodes to obtain hierML estimation;
Re-calculate empirical risk for each leaf node on Dval by using new estimates
βvl from hierML;

Select the leaf node with largest R̂val βvl .
end if

Output: A set of leaf nodes and fitted regression models in each leaf node.

Algorithm 2: Algorithm for constructing the PHMR model.

Table 1: MSPE on test data for four methods under two different
training sample sizes.

Sample size = 2000 Sample size = 1000
GUIDE 39.32 45.20

MOB 1.80 10.61

SPR 0.73 3.11

Proposed method
(PHMR)

0.49 1.81

Table 2: Recovery rate of the true tree structure and MSPE of fully
recovered run sizes.

# of full recovery out
of 100 runs

MSPE

Sample
size: 2000

Sample
size: 1000

Sample
size: 2000

Sample
size: 1000

SPR 69 57 0.54 1.99

Proposed
method
(PHMR)

94 81 0.45 0.90
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such as outdoor temperature and sun irradiance, detailed in
Table 4. The data were split into a training set (50%), a valida-
tion set (25%), and a test set (25%). PHMR was applied to this
dataset, creating a significant tree structure (depicted in
Figure 4) that highlighted the importance of variables such
as Sun_light, Sun_irradiance, and Outdoor_temp in predict-
ing indoor temperature variations [17]. This section elaborates
on the dataset’s specifics, the variable importance as discov-
ered by PHMR, and the model’s implementation details.

5.2. Model Performance and Key Findings. The model’s per-
formance was evaluated against Single Partition Regression
(SPR), with PHMR demonstrating a 37% improvement in
prediction accuracy, evidenced by a lower mean squared

prediction error (MSPE) of 4.57 compared to SPR’s 7.27.
This performance is depicted in a scatter plot (Figure 5)
illustrating the relationship between predicted and actual
temperatures. Key findings from this application include
the crucial role of sunlight-related variables in temperature
prediction and the model’s ability to fit different outdoor
temperature bins, enabling the HVAC system to adjust its
activation/deactivation strategy efficiently. This subsection
details the performance metrics used, the comparative anal-
ysis with other models, and the critical insights gained from
applying PHMR to the real-world dataset.

5.3. Practical Implications. The application of PHMR in pre-
dictive HVAC management has underscored its substantial

Table 3: MSPE and Pearson’s correlation on testing data for each leaf node (mean (std) over 100 simulation runs) size.

MSPE Pearson’s correlation (ρ)
Sample size: 2000 Sample size: 1000 Sample size: 2000 Sample size: 1000

Node 2 0.25 (0.01) 0.26 (0.02) 1.00 (0.00) 1.00 (0.00)

Node 4 0.26 (0.02) 0.26 (0.02) 1.00 (0.00) 1.00 (0.00)

Node 6 0.26 (0.03) 0.30 (0.24) 1.00 (0.00) 1.00 (0.00)

Node 8 2.08 (2.86) 5.00 (3.94) 0.99 (0.02) 0.96 (0.03)

Node 9 2.18 (2.76) 5.60 (3.92) 0.99 (0.02) 0.96 (0.03)

Energy meter

Actuator

Sensor

Toilet
KitchenWest

facade

MCS

TV

Technical
box

Power generation

Power generation

HVAC

Power generation

DHW

Appliances

Home electronics

Irrandiance

Wind

Lighting

Energy subsystem

Lighting

Lighting

East
facade

Dinning
room

CO2

Humidity

Flow

Temperature

Shower

Location

Bedroom

DHW
closet

Weather
station-solar

panels

Figure 3: SML system, a prototype house with advanced energy-saving technologies and actuator maps [21].
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potential for enhancing building energy efficiency. By pro-
viding accurate indoor temperature forecasts, PHMR allows
HVAC systems to operate more strategically, significantly
reducing energy consumption while maintaining comfort
levels. This achievement not only highlights the practical
utility of the model but also its contribution to advancing
sustainable energy practices in building management. The
robustness and adaptability of PHMR, as demonstrated by
its superior performance over conventional models like
SPR, suggest its wide applicability and potential to revolu-
tionize various predictive tasks within the energy manage-
ment domain.

In light of the discussions on the PHMRmodel’s capability,
it is pertinent to highlight its adaptability and precision in pro-
cessing diverse datasets. The model’s design allows it to seam-
lessly accommodate a broad spectrum of variables, including
those indicative of occupancy levels, such as CO2 concentra-
tions. While the current case study’s findings showed CO2
levels in dining and living areas as not significantly influencing
the model’s predictions relative to other variables, this should
not be construed as diminishing the potential relevance of
CO2 in different contexts or datasets. The PHMR model’s
robust architecture is well-equipped to handle controlled and
uncontrolled variables, demonstrating its applicability across
a wide range of building types and environmental conditions.
This ensures the model’s utility in capturing the nuanced
dynamics of indoor environments, reaffirming its broad
applicability and value in predictive HVAC management and
beyond.

As we look to the future, this study opens new avenues
for research and development. Enhancing PHMR to accom-
modate nonlinear relationships could lead to even more
precise predictions in complex scenarios, and optimizing
the algorithms for tree growth and model selection could
improve its computational efficiency and scalability. Fur-
thermore, integrating PHMR with other building manage-
ment systems could provide a comprehensive approach to
intelligent building operations. Collaborative efforts with

Table 4: Abbreviation and physical meanings of indoor, outdoor, and response variables in the application case study.

Variable abbreviation (unit) Physical meaning

Indoor variables

CO2_dining (ppm by volume) CO2 in the kitchen area

CO2_living (ppm by volume) CO2 in the living room area

RH_dining (%) Relative humidity in the kitchen area

RH_living (%) Relative humidity in the living room area

Light_dining (Lux) Lighting in the kitchen area

Light_living (Lux) Lighting in the living room area

Outdoor variables

Outdoor_temp (°C) Outdoor temperature

Outdoor_humidity(%) Outdoor relative humidity

Rain
The proportion of the last 15 minutes where rain was

detected (a value in range (0, 1))

Wind speed (m/s) Wind speed

Sun_light (Lux) Sunlight

Sun_irradiance (W/m2) Sun irradiance

Response variable Indoor temperature (°C) Indoor temperature

Sun_light ≤ 312.8

Sun_irradiance ≤ 545.2 Sun_irradiance > 545.2

Outdoor_temp ≤ 19.7 Outdoor_temp > 19.7

Outdoor_temp ≤ 14.6 Outdoor_temp > 14.6

Sun_light > 312.81

2 3

4 5

76

8 9

Figure 4: Tree structure found by PHMR.
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industry practitioners will be crucial in validating the
model’s effectiveness and exploring its full potential. Ulti-
mately, this research not only validates PHMR’s effective-
ness in a real-world scenario but also sets the stage for its
broader application in creating energy-efficient and intelli-
gent building systems.

6. Conclusion

This study introduced the PHMR model, a significant
advancement in predictive modeling, tailored to optimize
building energy management. PHMR’s innovative integration
of recursive partitioning for outdoor variables with a hierar-
chical machine learning (hierML) model for indoor variables
at each partitioning node has demonstrated its strength. Nota-
bly, the model’s ability to incorporate multilevel hierarchical
similarity structures into the joint model fitting process has
led to improved prediction accuracy and robust performance,
outperforming traditional methods in both simulated and
real-world datasets. The successful application of PHMR in
accurately predicting building energy usage underscores its
potential as a powerful tool in the field, opening new avenues
for intelligent, data-driven decision-making in building man-
agement systems.

6.1. Limitations and Future Directions. Despite its promising
capabilities, PHMR comes with limitations that future
research should aim to address. The current model relies on
linear relationships within the hierarchical structure, poten-
tially limiting its ability to capture more intricate, nonlinear
interactions prevalent in complex data. Additionally, the scal-
ability and computational efficiency, particularly concerning
larger datasets and real-time applications, require enhance-
ment to make PHMR more accessible and practical for
broader usage. Future developments might include extending
the hierML model to encompass nonlinear relationships,
thereby broadening the model’s applicability and accuracy.
Enhancements in tree growth algorithms and model selection
processes are also critical to improving PHMR’s computa-
tional efficiency and scalability. These improvements are not
just enhancements; they are necessary steps to evolve PHMR
into a more comprehensive tool for various predictive model-
ing applications.

6.2. Broader Applications beyond Building Energy Prediction.
Beyond building energy management, the PHMR model
holds the potential for impactful applications across diverse
industries. In healthcare, leveraging PHMR could lead to
breakthroughs in predictive diagnostics and personalized
treatment plans, providing a more nuanced understanding
of patient data. The financial sector could benefit from the
model’s predictive accuracy in areas like risk assessment
and market trend analysis, making more informed and stra-
tegic decisions. Manufacturing and supply chain operations
can harness PHMR to predict maintenance needs and opti-
mize production processes, thereby enhancing efficiency
and reducing operational costs. Environmental sciences
could utilize the model for more accurate climate modeling
and effective pollution control strategies, contributing to

conservation and sustainability efforts. These various appli-
cations not only demonstrate PHMR’s versatility but also
emphasize its potential to drive significant advancements
in numerous fields, making it a valuable tool for researchers
and practitioners alike.

Nomenclature

Acronyms

PHMR: Partitioned Hierarchical Multitask Regression—a
predictive modeling approach used for building
energy prediction

HVAC: Heating, Ventilation, and Air Conditioning—a
technology of indoor environmental comfort

hierML: Hierarchical machine learning—a machine learn-
ing approach that considers hierarchical structures
within data

RPR: Recursive partition regression—a regression
method that involves partitioning data recursively

SPR: Single Partition Regression—a regression method
involving a single partition of data

MOB: Model-based recursive partitioning—a statistical
method for recursive partitioning using model-
based criteria

GUIDE: Generalized, Unbiased, Interaction Detection and
Estimation—a method for detecting and estimat-
ing interactions in nonlinear models

MSPE: Mean squared prediction error—a measure of
prediction accuracy in statistical models.

Parameters and Variables

I: Indoor variable—represents an indoor measure-
ment or condition in the study.

Z1 to Z5: Outdoor variables—variables representing out-
door conditions, where Z1 and Z2 are specifically
the true partitioning variables

Y : Response variable—typically represents building
energy consumption or indoor temperature in the
study

βvl : Regression coefficients—coefficients for the leaf
node vl in the regression model

εvl : Error term—represents the error term for the leaf
node vl in the model

λ: Regularization parameter—used in the PHMR
model to control the complexity of the model

σij: Correlation matrix elements—elements of the
correlation matrix for the input variables.

Mathematical Notations

Σ75×75: Correlation matrix—a 75 × 75 matrix representing
the correlations between the 75 input variables

B: Coefficient vector—a vector of regression coeffi-
cients across all leaf nodes in the PHMR model

Gv : Set of leaf nodes—represents the set of leaf nodes
that grow from node v in the tree structure of the
model.
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Data Availability

The SML2010 data used to support the findings of this study
have been deposited in the UCI repository. The hyperlink is
available as follows: https://archive.ics.uci.edu/dataset/274/
sml2010.
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