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The air-conditioning systems have become an indispensable part of our daily life for keeping the quality of life. However, to
improve the thermal comfort and reduce energy consumption is crucial to use the air conditioners effectively with rapid
development of artificial intelligence technology. This study explored the correlation between the response of human
physiological parameters and thermal sensation voting (TSV) to evaluate the comfort level among various cold and hot
stimulations. The variations of the three physiological parameters, which were body surface temperature, skin blood flow
(SBF), and sweat area on the skin surface, and TSV values were all positively correlated with the stimulation amount under the
stimulation of cold wind, hot wind, and heat radiation, but the relationship was not completely linear. Among the three
physiological parameters, the forehead skin temperature has the closest relationship with TSV, followed by the SBF and sweat.
Among three stimulations, the cold wind stimulation causes the closest relationship between TSV and forehead temperature,
followed by the radiation and hot wind stimulations. Through three different machine learning models, namely, random forest
(RF) model, support vector machine (SVM) model, and neural network (NN) model, the stimulation of cold wind, hot wind,
and heat radiation was applied to investigate the variation of the three physiological parameters as the input of the models.
Moreover, the models were evaluated and verified by TSV. The results revealed that among the three different machine
learning methods, RF had the best accuracy. The established thermal comfort models can predict the real-time user’s thermal
comfort feeling, so that air-conditioning equipment’s performance can be optimized to create a healthy and energy-saving
comfortable environment.
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1. Introduction

According to Euromonitor statistics, the global home appli-
ance market in 2016 was approximately US$351 billion,
especially the Asia-Pacific region accounting for 44% of the
global market. Creating a comfortable environment, air-
conditioning equipment has become an indispensable part
of daily life. Nowadays, using air-conditioning system in an
effective and energy-saving way is an important issue. To
evaluate the air conditioner’s (AC’s) performance of
comfort, the standards such as International Organization
of Standardization (ISO) 7730 and American Society of
Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) standard 55 [1] have been proposed. ASHRAE
55 defines thermal comfort as “the psychological state that
are satisfied with the thermal environment.” However, this
definition only covers temperature and humidity as indica-
tors. Incorporating factors of the occupants’ objective states,
the first indoor comfort model, Fanger’s model [2], includes
the predicted average vote (PMV) and the predicted percent-
age of dissatisfaction (PPD), further considering the indoor
environment factors such as relative humidity, dry bulb
temperature, black bulb temperature, and wind speed and
human factors of activity and clothing. The model defines
the human body’s feeling of cold and hot in a quantitative
way, laying a foundation for thermal comfort evaluation.

PMV and PPD mainly consider the comfortable level of
environment objectively. However, the comfortable feelings
about the dwelling environment are also related to gender,
body mass index (BMI), age, activity level, and clothing
[3]. Therefore, people’s perception of the optimal tempera-
ture of the environment is very subjective, so it is incomplete
to use temperature/humidity as a comfort index alone. There
are many factors that cause human body heat loss and vari-
ation of the body surface temperature. Since the body sur-
face is most sensitive to the environmental changes, wind
speed, humidity, heat radiation, and other environmental
factors can influence the amount of body heat loss. There-
fore, the body surface temperature should be considered as
an important human body parameter for comfort level
assessment [4, 5]. When the body temperature is at a normal
temperature of 37°C, the blood flow is in a stable state. How-
ever, once the temperature changes significantly, the blood
flow state will also fluctuate with the temperature fluctua-
tions. Then, the heat balance of the body may be disturbed
since the blood flow transports the heat generated by cells
and muscles to the whole body. To modulate the body tem-
perature, when the ambient temperature drops, the blood
vessels near the skin will shrink and the shrinkage of the
blood vessels restricts the heat loss caused by the blood flow
and keeps the whole body warmer. Therefore, the blood flow
of the skin should be included as one of the important
parameters of the human body. With the ambient tempera-
ture variation, laser Doppler radar can precisely measure the
blood flow speed. When the normal temperature of the
human body is 37°C, the temperature regulation mechanism
of the body can keep the body in thermal balance. When the
ambient temperature increases, the human body regulate the
body temperature by sweat and dissipating heat to the envi-

ronment. On the contrary, in a cold environment, in order to
reserve heat and keep the body warm, the body does not sweat
easily. The sweat condition of the body is influenced by the
ambient temperature. Therefore, sweat as one of the physiolog-
ical parameters should be included so that human body ther-
mal sensation of the subject can be accurately identified [6].

In 2007, Wang et al. [7] proposed that taking the skin
temperature of the fingers, hands, and forearms may help
to monitor and predict the thermal comfort state of
individuals. Perceived temperatures for overall thermal com-
fort were collected by repeated surveys for subjects. When
the ambient temperature is low, the finger temperature
decreases and the blood vessels contract; when the ambient
temperature is high, the finger temperature rises and the
blood vessels expand since effectively providing an appropri-
ate temperature to peripheral vascular can improve the com-
fort level of the human body to the environment. In 2019,
Veselá et al. [8] reported that the physiological model pre-
dicts the influence of the blood flow near the skin surface
caused by the skin temperature since the accuracy of the heat
balance in local parts of the body may greatly affect the accu-
racy of the model, which contributes to effective thermal
comfort adjustments in buildings. In 2020, Omidvar and
Kim [9] argued that the original PMV model cannot predict
accurate thermal sensation, so they modified the calculation
method of heat loss from sweat evaporation in the original
PMV model, thereby improving the prediction precision of
the model. In the original PMV model, the sweat heat loss
of low-level exercise is assumed to be zero, and the over sim-
plification of the sweat heat loss results in structural flaws in
the Fanger model. Especially in hot environments, the influ-
ence of heat loss from sweat evaporation over the entire
body must be carefully considered in order to accurately
evaluate the comfort level. Building a strong correlation
between the environment and the human body by collecting
sufficient and useful environmental and human parameters
can facilitate comfort level control and create a healthy
environment.

With the advancement of digital technology, incorporat-
ing artificial intelligence (AI) into the environmental com-
fort level control has been intensively studied. In 2016, von
Grabe [10] demonstrated that the neural network (NN)
method predicts thermal sensation votes on the ASHRAE
thermal scale. If the interaction module between occupants
and equipment in the building is provided, the energy con-
sumption of the building can be regulated and the comfort
level of the individual can be boosted. Although the thermal
sensation does not represent the satisfaction of the subject
with the thermal environment, it is often used as a method
to evaluate the thermal comfort level. To minimize the
energy consumption of buildings, it is necessary to predict
the impact of interaction. von Grabe found close relation-
ship between the gender and age of the subjects and the
climatic statistics of the area as parameters with the Pearson
coefficient ranging from 0.935 to 0.995 under the given
conditions. In 2019, Du et al. [11] proposed that local air
flow is a key factor to increase human comfort and affect
air-conditioning energy consumption. Three different local
air flowmethods were used in his model, including isothermal
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air supply, nonisothermal air supply, and floor fan. With
machine learning methods, Du et al. established a database
of 1305 samples, using the classification tree C5.0 model to
predict 83.99% as the optimal efficiency. The result indicated
that three environmental factors of temperature, air velocity,
and relative humidity have dominant influence on the sub-
jects’ thermal sensation voting. The research also confirmed
that machine learning is helpful for evaluating personal ther-
mal sensation. Zhou et al. [12] applied the support vector
machine (SVM) method to the thermal comfort database
RP-884. They developed an AC environmental model so that
natural ventilation and air-conditioning can be predicted by
AI. Furthermore, by quantifying indoor air temperature,
warmth with clothing, metabolic rate, and wind speed as the
input variables, the model reduced the sum of squares for
residuals (SSE) by 96.4% and improved the model fit by
83.7% compared with the traditional PMV model. However,
the model is not favorable under extreme environmental con-
ditions. As the reliability issues are taken into considerations,
it is necessary to consider expanding the number of samples
and diversity of the data to establish future models. Most
of the previous studies utilized AI technology, including
NN and SVM, to evaluate the personal thermal sensation
via environmental factors. Some discusses its relationship
with the gender, age, clothing, and metabolic rate.

The adopted keywords in the previous published papers are
examined for discussing the developmental history of AI strat-
egy applying on thermal comfort model-related research by
using VOSviewer [13]. Figure 1 shows the produced scientific
landscape, which is collected by coincidence of the keywords
in these papers. Based on the published year, five sections,
including environment, thermal sensation, prediction, local
skin temperature, and building, can be identified. The most
central and largest one is the environment, indicating that a
suitable environment is themost importantmatter for human’s
life and the research. The thermal sensations of subjects are dis-
cussed by occupants’ thermal sensation voting (TSV) or by
measuring their physiological parameters of skin temperature
and blood flow. SVM is often utilized to predict the skin tem-
perature of occupant. However, the response differences of var-
ious physiological parameters under extreme stimulations,
such as cold and hot air and radiation, are less investigated
and evaluated. Scant research applies AI strategy on the
build-up of thermal comfort model through multiple physio-
logical parameters under extreme and combined stimulations.
Therefore, this study utilizes three machine learning strategies
of random forest (RF), SVM, andNN to establish thermal com-
fort models through multiple physiological parameters. Three
stimulations, including cold and hot air and radiation, are uti-
lized to analyze the physiological response under extreme and
moderate conditions. As for the assessment of the comfort
level, to achieve a people-oriented comfortable environment,
the environmental parameters and human physiological
parameters are collected under Taiwan’s climate conditions.

2. Machine Learning Strategies

In this section, the principles and thermal comfort indexes
used in the experiment are introduced. Since PMV only

evaluates the thermal comfort state of current environment
objectively, three physiological parameters, including surface
temperature, skin blood flow (SBF), and sweat, are taken in
this study for assessing the thermal comfort state subjec-
tively. TSV is the user’s direct response to thermal changes
in the environment, so the relevant physiological parameters
that affect TSV are also collected to establish the more accu-
rate thermal comfortable model.

Our previous research found that among the physiolog-
ical parameters of the human body in a cold environment,
the TSV model could gain the most accurate prediction
and provide timeliest response by incorporating the fore-
head temperature, SBF, and sweat into evaluation [14].
Therefore, in this study, the same parameters of the thermal
comfort parameter-based model are collected in cold and
hot environments, and three machine learning strategies
are used for modeling and verification.

2.1. Random Forest (RF) Model. RF model was proposed by
Breiman [15]. This model adopts the concept of decision
tree used for regression and classification. This machine
learning algorithm is composed of a large number of deci-
sion trees with supervised learning and labeled data classify-
ing functions, as shown in Figure 2. The RF model has
advantages of fast processing, easy to use, and capable of
dealing with large data sets. However, the favorable data
selected by the decision trees may not be the optimal data.
Especially when the tree is deeper, it is prone to overfit.
Therefore, the best classification results cannot be effectively
obtained when the RF contains a large number of decision
trees. Still, the best solution can be approached by voting,
which can compensate the problem of overfitting.

Since RF model is composed of many decision trees,
information gain (IG) is an important factor in determining
how to select trees from the acquired data. The factors affect-
ing IG are Gini impurity and entropy. The higher IG is, the
more complete the classification will be; the greater the Gini
value is, the more chaotic the data will be; the larger the
entropy is, the more irregular of the representative data sort-
ing will be. The Gini impurity corresponds to the probability
of wrong classification from selecting samples. The closer the
Gini value approaches zero, the better classification will be.

2.2. Support Vector Machine (SVM) Model. SVM was pro-
posed by Cortes and Vapnik [16] in 1995. T model belongs
to supervised learning and can be used for classification
and regression problems. If the input label is a continuous
value, regression is performed. If the input label is discontin-
uous, classification is performed. The classification is mainly
based on the characteristics of the samples, and the hyper-
plane is used to separate the samples, as shown in Figure 3.
Moreover, the samples in the feature space are classified with
the maximum grid distance (margin, M) as the best classifi-
cation. The greater the distance between the categories is, the
better the classification will be because the learning strategy
is to maximize the distance between the hyperplane and the
samples.

Assuming that the data set is a data set x1,i, x2,i with n
points in the set, where i = 1, 2,⋯, n and xi are real numbers,

3Indoor Air



it is expected to find a linear equation to cut the data so that
the data point yi = +1 is located on one side of C1, and the
data point yi = −1 is located on the other side of the plane
C2. The calculation process of the distance from the hyper-
plane is shown in the following formulas [17].

Hyperplane = x1, x2 : w1x1 +w2x2 + b =H x ,

wTx + b ≥ +1when yi = +1, x ∈ C1,

wTx + b ≤ −1when yi = −1, x ∈ C2,

M ≤
yiH xi

w
,

max

w1 w = 1

min

i
yiW xi ,

M w = 1

1

2.3. Neural Network (NN) Model. NN was proposed by
McCulloch and Walter in 1943 [18], which is a learning

method that imitates the brain. The basic elements in the
neural network are composed of many neurons (nodes) con-
nected to each other, as shown in Figure 4. The purpose of
simulating the structure of a biological neural network is to
simulate the ability of the biological brain to process infor-
mation. After a large number of data calculations in the
input layer, hidden layer, and output layer, the NN can learn
the relationship with the sample by itself.

The main feature of NN is that it can learn from past
experience and can also classify disordered data through
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Figure 1: Landscape related to thermal comfort research by the publications.
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Figure 2: Simplified drawing of RF model, including sample input,
decision trees, average of voting, and final result.
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learning. The structure of a neural network is composed of
many neurons, and each layer of neurons has input between
them. Between the input layer and output layer, the connec-
tion between neurons is called synapse, the weighted value
on the synapse that affects the output result is called weight
(w), and the activation function is introduced at the final
output. If there are n input nodes x1 x2 ⋯ xn , the corre-
sponding weights are w1 w2 ⋯wn , the activation function
is nonlinear, say Sigmoid function, and then, the output for-
mula of the neuron is shown in

Output =〠 input × weight + bias = x1 ∗w1 + x2 ∗w2+⋯xn ∗wn + b,

z = 〠
n

i=1
xnwn + bias,

σ z =
1

1 + e−z

2

2.4. Confusion Matrix (CM). The CM is a performance indi-
cator for judging the machine learning classification model.
The CM can be composed of binary classification or multi-
class classification. It is used to measure whether the recall
rate, precision, and accuracy are quite effective. The evalua-
tion method of the confusion matrix is divided into true pos-
itive (TP), false positive (FP), true negative (TN), and false
negative (FN), as shown in Figure 5. TP and TN presented
as the actual and predicted results are the same, while FP
and FN are the opposite. Precision is defined as the rate of
data that are factually positive in all predicted positive data.
Recall is defined as how many positives are correctly pre-
dicted in all positive data [19]. For samples with different
characteristics, different evaluation indicators need to be
selected. Precision is suitable for accurate prediction in
applications, such as this establishment of the comfort
model, while the actual thermal sensation voting value of
the subject is the same as the judgment and prediction value
of the model. Recall is suitable for detecting the presence of

cancer cells in the human body. The correct prediction result
is very important. The F score is also a measure of the
model’s accuracy and the level imbalance, calculated from
the precision and recall of the CM. When β = 1, which is
called F1 score, the precision and recall are considered
equally. F1 score is the harmonic mean of the precision
and recall. The mathematical formula definition of the eval-
uation index is shown in

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

Accuracy =
TP + TN

TP + TN + FP + FN
,

F – score = 1 + β2 precision × recall
β2precision + recall

3

3. Experiments

This research method consists of two parts. The first part is
the research equipment used in the experiment, including
the measuring instruments used to monitor the physiologi-
cal parameters and the machine learning platform used in
the subsequent establishment of the comfort model. The sec-
ond part is the experimental process and conditions, includ-
ing the arrangement of the experiment, the setting of the
venue, and the conditions for selecting subjects.

3.1. Measuring Equipment and Machine Learning Platform.
In this study, a comfort model was established including
three physiological parameters of the subject’s body surface
temperature, SBF, and sweat volume on the skin surface, as
shown in Figure 6. The equipment for measuring the three
parameters is described as follows. The forehead tempera-
ture was taken by a thermocouple (SG 900, GIGARISE,
Taiwan). The sensing wire was made of Teflon wire with
characteristics of corrosion-resistant, acid-alkali-resistant,
high-temperature, and high-pressure resistant. The surface
temperature measuring piece was made of steel and copper
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electroplating material capable of fast response, heat resis-
tance, and precision. The variation of the body surface tem-
perature was observed under different cold and heat stimuli,
since the body surface temperature was the basic physiolog-
ical parameter of PMV and one of the important parameters
for subsequent establishment of comfort model.

The SBF of fingers was measured by using laser Doppler
flowmeter (LDF, moorVMS-LDF1, Moor Instruments, UK)
with optical fiber of low-energy laser light as light source.
To calculate the flow rate, the output was a continuous elec-
tronic signal, which was linearly related to the number of red
blood cells passing through a certain cross-section. The out-
put signal bandwidth is 3 kHz, and the time constant is 0.1
second. The sampling depth depending on the probe design
and tissue characteristics was around 1mm. The sweat vol-
ume of the palm was measured by using a digital universal
serial bus (USB) microscope (EMSA, Neon, Taiwan), with
magnification rates ranging from 50x to 500x. The micro-
scope had an effective focal length of 10mm~250mm and
eight white LED lights as auxiliary light source. The trans-
mission interface was USB 2.0, and the auxiliary software
could be used to take pictures, record videos, and store and

exchange dynamic images on the Internet. This experiment
was used to measure the amount of sweat on the surface of
the subjects and observe the changes in the amount of sweat
when the human body received different heat and cold stim-
uli. Further, sweat pores could be viewed by the microscope,
and subsequent image processing was performed through
MATLAB.

This research used the Azure Machine Learning Studio
(AMLS) machine learning platform to analyze physiological
parameters and build models, including abnormal detection
and classification, clustering, regression, and other methods.
Data could be uploaded to the cloud system, and function
blocks were used for various program combinations. The
established comfort model could be uploaded to the cloud
for subsequent use. The system was quite user-friendly and
capable of cloud access. In this study, three machine learning
strategies, including RF, SVM, and NN, were used to build
and verify models.

This study has been approved by the Taipei Medical
University, Institutional Review Board for Human Subject
Research (TMU-IRB), and the subjects included 30 adults
aged from 20 to 30 years old. The conditions excluded the

(a) (b)

(c) (d)

Figure 6: Measuring instruments for physiological parameters: (a) skin temperature, (b) SBF, (c) laser Doppler flowmeter, and (d) digital
USB microscope for sweat.
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possibility of skin diseases, fever and symptoms, or the use of
skin drug products known to interfere with the evaluation of
skin physiology. The subjects were prohibited from strenu-
ous exercise and drinking coffee or wine at least two days
before the test, and a signed contract was required before
the start of the experiment. The test subjects all agreed that
the information was kept completely confidential.

3.2. Experimental Procedures and Conditions. The experi-
mental field was in the environmental control laboratory of
the Everlight Building, National Taipei University of Tech-
nology. The ambient temperature was controlled at an
indoor temperature of 22°C, and the relative humidity of
60% RH was set through the Hitachi RAS-22NB split-type
air conditioner. The subject was located in front of an exper-
iment recorder, and there was a partition board between the

two to avoid possible interference. A cooling/heating fan and
an electric heater were placed in front of the subject as a
source of cold and heat stimulation, providing a warm and
cold environment for human thermal comfort experiment.

The experimental process as shown in Figure 7 is as fol-
lows: after the subjects arrived at the experimental testing
location, there was a ten-minute adjustment period to allow
the subjects to adapt to the test environment, followed by a
20-minute test of stimulation 1. The conditions included
three types of stimulation of cold wind stimulation (temper-
ature 20°C, wind speed 2.42m/s), hot wind stimulation
(temperature 33°C, wind speed 0.26m/s), and thermal radi-
ation stimulation (temperature 25°C, wind speed 0.00m/s)
in a consecutive sequence. After that, the subjects experi-
enced a 20-minute recovery time after the end of stimulation
1. Then, the subjects would experience a 20-minute second-
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stage test of stimulation 2. The conditions were cold wind
stimulation (temperature 20°C, wind speed 3.83m/s), hot
wind stimulation (temperature 40°C, wind speed 0.26m/s),

and thermal radiation stimulation (temperature 32°C, wind
speed 0.00m/s), and there was a 20-minute recovery period
after the end of the second stage. The total length of the
experiment was 90 minutes.

The physiological parameters of forehead skin tempera-
ture, SBF, and sweat are measured by a surface thermometer,
a laser Doppler flowmeter, and a digital USB microscope.
These physiological parameters are recorded per second.
During the experiment, the subjects voted for the thermal
sensation of the current environment by filling out the ques-
tionnaire every minute. The thermal sensation vote was
made according to the ASHRAE 55 standard [1, 20], and
the thermal sensation level of the human body was divided
into 7 levels of -3, -2, -1, 0, 1, 2, and 3, respectively, corre-
sponding to whether the human body was cold, cool, slightly
cool, moderate, slightly warm, warm, and hot. The evalua-
tion of heat by voting was an important indicator of the sub-
jects’ physiological feelings about the indoor environment.
The measured physiological parameters and TSV were pre-
sented in the form of the mean value and the root mean
square error. In order to compare the physiological parame-
ters with TSV, the three physiological parameters were nor-
malized. The correlation coefficients and p values of each
normalized physiological parameter between levels 1 and 2
and the four physiological parameters in each stimulation
are analyzed by utilizing Pearson’s method with significance
level set at p < 0 05.

4. Results and Discussions

4.1. Physiological Parameters and TSV under Various
Stimulations. In the first condition, the influence of cold
wind stimulation with different wind speeds on the physio-
logical parameters and TSV of the subjects was studied.
The averaged results are shown in Figure 8.

Figure 8(a) shows the variation of forehead temperature.
Based on the data collected in three time intervals of
10-30min, 30-50min, and 70-90min, all the subjects’ tem-
peratures were able to return to the state at room temperature
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Figure 9: TSV and normalized physiological parameters under
stimulations of (a) cold wind, (b) hot wind, and (c) radiation.

Table 1: Correlation coefficient between TSV and physiological
parameters under various stimulations.

Stimulation type TSV-temperature TSV-SBF TSV-sweat

Cold wind 0.97 0.77 0.62

Hot wind 0.86 0.62 0.68

Radiation 0.90 0.65 0.68

Table 2: p values of physiological parameters between levels 1 and
2 of various stimulations.

Physiological
parameters

Cold wind
stimulation

Hot wind
stimulation

Radiation
stimulation

TSV 0.000 0.000 0.000

T 0.000 0.000 0.000

SBF 0.000 0.800 0.807

Sweat 0.685 0.000 0.000
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within a recovery period of 20 minutes. When the cold stimu-
lus with wind speed of 2.42m/s was introduced at 10-30
minutes, the body surface temperature dropped by 2.10°C;
when the cold wind stimulus with wind speed of 3.83m/s
was introduced at 51-70 minutes, the body surface tempera-
ture dropped by 2.27°C. The degree to which the subject’s
body surface temperature was affected by cold wind stimula-
tion and the temperature drop was positively correlated with
the wind speed.

Moreover, Figure 8(b) shows the variation of the SBF.
During the adjustment and two recovery periods, the aver-
age SBF of the subject was 132.23, 64.54, and 50.07 PU,
respectively. It can be observed that the SBF cannot return
close to the initial stage during the 20-minute recovery
period. The short-term physiological adaptation may be
the reason [21] [22],. To adjust to the variations of the envi-
ronment, the human body will preserve the thermal regula-
tion through shrinkage or expansion of blood vessels. The
averaged SBF dropped from 132.23 to 34.0 and 19.79 PU
under cold stimulations 1 and 2, respectively. And the aver-
aged SBFs at recoveries 1 and 2 are 64.54 and 50.07, respec-
tively. This information indicates that the averaged SBF
decreases with the strength of cold wind stimulation.

Figure 8(c) presents the variation of the average sweat
areas of the subjects. During the adjustment and two recov-
ery periods, the average sweat areas were 1100, 1300, and
1800mm2. The drop between the initial stage and stimula-
tion 1 and the drop between the recovery 1 and stimulation
2 were 134.69 and 486.16mm2, respectively. It can be
observed that the amount of sweat of the subjects was posi-
tively correlated with the wind speed. When the cold wind
stimulation was high, the subject’s sweat volume decreased
drastically. Figure 8(d) shows the variation of TSV. The
TSV value of the subjects in the adjustment and two recov-
ery periods returned close to 0. By contrast, in the first and
second stages of cold wind stimulation, the TSV of the sub-
jects dropped to -1.6 and -2.4. It can be seen that the degree
of TSV decline was directly proportional to the intensity of
cold wind stimulation. Nevertheless, because of the adjust-
ment mechanism of the human body, the human body
would gradually adapt to the temperature change of the
external environment. When the external stimulation ended,
the body remained in short-term thermal adaption [22].
Therefore, the physiological values of the subject changed
slowly and did not return to the initial state in time, which
caused a delay. To sum up, the changes of the three physio-
logical parameters and TSV were all related to the intensity

of cold wind stimulation, but the relationship was not
completely linear.

Figure 9 shows TSV and normalized physiological
parameters under stimulations of (a) cold wind, (b) hot
wind, and (c) radiation. The variation of the three physiolog-
ical parameters and TSV values was all positively correlated
with the stimulation amount under the stimulation of hot
wind and heat radiation, but the values and units between
the physiological parameters and TSV values were different.
For comparison, the following three physiological parame-
ters were normalized and variation analysis was performed,
as shown in Figure 9. Figure 9(a) presents the variations of
four parameters when the subject was exposed to cold wind
stimulation. All the three physiological parameters were
obviously fluctuating and dropped with the drop of the
TSV. Cold stimulation can cause the SBF at a low level
owing to the contraction of the blood vessels for heat loss
prevention. Furthermore, the heat loss through sweat evapo-
ration can also be lessened because of the contraction of cap-
illary pores. However, as the cold stimulation level increases,
the sweat quantity will further decrease because of the
response of cold sensors in the body. On the other hand,
hot stimulation can cause the increase of the SBF level for
heat dissipation because of the temperature-regulated mech-
anism since heat can be dissipated through sweat evapora-
tion and SBF. The temperature-regulated mechanism of
the human body can spontaneously modulate heat conserva-
tion and dissipation by adjusting various physiological
parameters during cold or hot stimulation.

By contrast, Figure 9(b) shows the changes under hot
wind stimulation. The three physiological parameters and
TSV all changed with hot wind stimulation, but the degree
of change was smaller than that of cold wind stimulation
because the wind speed could counter the effect of heat
generation. When stimulated, blood vessels expanded to
increase SBF, and the skin temperature increased to dissipate
heat to the outside ambient. Moreover, the increase of sweat
on the skin surface also allowed the body to dissipate heat to
the outward environment. Figure 9(c) shows the changes
under thermal radiation stimulation. The three physiological
parameters and TSV all changed with thermal radiation
stimulation, and the degree of change was larger than that
of hot wind stimulation because of the removal of the wind
counter effect. The SBF and the sweat area on the skin sur-
face were both reduced. Furthermore, the change of the
sweat area in the first stage of thermal radiation stimulation
was larger than that of the first stage of hot wind stimulation.

Table 3: p values of physiological parameters under levels 1 and 2 of various stimulations.

Physiological parameters
Cold wind stimulation Hot wind stimulation Radiation stimulation

Level 1 Level 2 Level 1 Level 2 Level 1 Level 2

TSV_SBF 0.000 0.000 0.047 0.000 0.112 0.000

TSV_Sweat 0.000 0.000 0.000 0.847 0.000 0.000

TSV_T 0.000 0.000 0.000 0.008 0.000 0.000

T_SBF 0.041 0.003 0.196 0.001 0.000 0.000

T_Sweat 0.718 0.001 0.000 0.112 0.011 0.166

SBF_Sweat 0.0268 0.090 0.000 0.000 0.000 0.001
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It can be referred that the wind mitigated the impact of heat.
The correlation coefficients between TSV and normalized
physiological parameters under various stimulations are
presented in Table 1. Among the three physiological param-
eters, the forehead skin temperature has the closest
relationship with TSV, followed by the SBF and sweat.
Among three stimulations, the cold wind stimulation causes
the closest relationship between TSV and forehead tempera-
ture, followed by the radiation and hot wind stimulations.

The p values of each normalized physiological parameter
between levels 1 and 2 and the four physiological parameters
in each stimulation are presented in Tables 2 and 3, respec-
tively. In Table 2, the p value of sweat between levels 1 and 2
under cold wind stimulation is 0.68 (>0.05), indicating that
the difference of sweat between levels 1 and 2 is not statisti-
cally significant. However, the p values of SBF between levels
1 and 2 under hot wind and radiation stimulations are 0.80
and 0.81, respectively. Both p values indicate that the
difference of SBF between levels 1 and 2 under these two
stimulations is not statistically significant. In Table 3, only
the p values of TSV_temperature (T) at levels 1 and 2 of

three stimulations are less than 0.05, indicating that the
differences between these two physiological parameters
under the three stimulations are statistically significant.
Therefore, the forehead skin temperature is the main indi-
cator of TSV among the three stimulations. However, the p
values of T_Sweat at level 1 and SBF_Sweat at level 2 of
cold wind stimulation, T_SBF at level 1, TSV_Sweat and
T_Sweat at level 2 of hot wind stimulation, TSV_SBF at
level 1, and T_Sweat at level 2 of radiation stimulation
are larger than 0.05, indicating that the differences between
these two physiological parameters under the mentioned
stimulations are not statistically significant. These phenom-
ena may cause misjudge of machine learning strategies
during their prediction. Even though these p values are
larger than 0.05, the SBF and sweat exist the complemen-
tary action under cold and hot stimulations. This action
benefits the prediction of machine learning strategies under
cold and hot stimulations. The correlation coefficient
results in Table 1 and p value analysis in Tables 2 and 3
describe the same tendency for the four parameters under
the three stimulations.
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Figure 10: CM of thermal comfort model under cold wind stimulation established by (a) RF, (b) SVM, and (c) NN.
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4.2. Thermal Comfort Model under Cold Wind Stimulation.
Through three machine learning methods, namely, RF,
SVM, and NN, 80% data of the subjects’ responses to cold
wind stimulation, hot wind stimulation, and heat radiation
stimulation were used to establish a physiological parameter-
based TSV model, and another 20% of the data were used to
find out the best machine learning method for building the
model. Finally, the performances of the established models
under the combined stimulation were compared with recent
related research results.

Under the stimulation of cold wind, there were four
levels of TSV feedback from the subjects, 0 (moderate), -1
(slightly cool), -2 (cool), and -3 (cold), which were estab-
lished through three machine learning strategies. The model
presented through the CM of the prediction and actual value
comparison is shown in Figure 10.

Figure 10 shows CM of thermal comfort model under
cold wind stimulation established by (a) RF, (b) SVM, and
(c) NN. It can be observed that in the case of TSV = −2,
the accuracy predicted by RF in Figure 10(a) is more accu-
rate than other classes and other models. According to the

analysis of physiological parameters, TSV, environmental
conditions, and experimental process, the strong cold wind
stimulation in the second stage caused the significant change
of subjects’ TSV value, which is related to the response of
physiological parameters. Therefore, the accuracy of random
forest classification at TSV = −2 was relatively high. At
TSV = −1, because the value of physiological parameters
was close to the degree of coolness, the response was rela-
tively unclear. Further, at TSV = −3, because the responding
number and period were not large and the value of the
physiological parameters was close to the degree of coolness,
it affected the judgment of RF in the classification.
Figure 10(b) presents the model established by SVM. At
TSV = 0, the accuracy predicted by SVM was relatively high,
followed by TSV = −2. The prediction results of TSV = −3
and -1 were completely as cool. It can be noted that only a
small number of TSV values of the subjects fallen in the cool
and the slightly cool situation was predicted as moderate,
since the values of physiological parameters had no obvious
differences at this stage. Figure 10(c) presents the model
established by NN. At TSV = 0, the prediction by NN still

RF

0

3

2

1

0
Ac

tu
al

Cl
as

s

1 2
PredictClass

Thermal sensation vote

3
0.0

0.2

0.4

0.6

0.8

1.0

(a)

SVM

0

3

2

1

0

Ac
tu

al
Cl

as
s

1 2
PredictClass

Thermal sensation vote

3
0.0

0.2

0.4

0.6

0.8

1.0

(b)

NN

0

3

2

1

0

Ac
tu

al
Cl

as
s

PredictClass
1 2

Thermal sensation vote

3
0.0

0.2

0.4

0.6

0.8

1.0

(c)

Figure 11: CM of thermal comfort model under hot wind stimulation established by (a) RF, (b) SVM, and (c) NN.
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had high accuracy. The model also had a good performance
at TSV = −2, but there was no prediction value at TSV = −3
and -1, because the physiological parameters did not differ
significantly at this stage. The prediction accuracies of the
three machine learning methods were 0.788 (RF), 0.67
(SVM), and 0.669 (NN), respectively. Therefore, the model
established by RF was the most suitable one for cold wind
stimulation.

4.3. Thermal Comfort Model under Hot Wind Stimulation.
The TSV stimulated by the hot wind had four levels of 0
(moderate), 1 (slightly warm), 2 (warm), and 3 (hot) with
the feedback of the subjects. Figure 11 shows CM of thermal
comfort model under hot wind stimulation established by
(a) RF, (b) SVM, and (c) NN. It can be observed that the
accuracy predicted by RF, as shown in Figure 11(a), in the
case of TSV = 1 was the worst case compared with other
classes. The SBF and the sweat volume tended to fluctuate
at TSV of 0 and 1, so it was easy to make wrong predictions
during classification. By contrast, while TSV = 2, the physio-
logical parameters had a clear response to external stimuli,

and the accuracy of classification was higher than the accu-
racy when TSV = 1. Moreover, when TSV = 3, the accuracy
was the highest, because the TSV of the subjects in this case
was very consistent.

In Figure 11(b) of SVM, both TSV = 0 and 3 had the
good prediction accuracy, but TSV = 1 was poor in predic-
tion. Some physiological values at class = 1 were predicted
as TSV = 2 (0.019), because the physiological parameters
did not change significantly corresponding to the subject’s
TSV when the subjects received external stimuli. The pre-
dicted result of TSV = 2 is 0.462, and part of physiological
values at class = 2 fell into the predicted value at TSV = 1
(0.019), because the thermal sensation did not follow with
the response of physiological parameters. In Figure 11(c) of
NN, both TSV = 0 and 3 had the good prediction accuracy,
but TSV = 1 and 2 were not good in prediction accuracy.
The reason was the same as in SVM prediction. The predic-
tion accuracies of the three machine learning strategies were
0.79 (RF), 0.667 (SVM), and 0.676 (NN), respectively.
Therefore, RF was still the most suitable model for hot wind
stimulation.
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Figure 12: CM of thermal comfort model under radiation stimulation established by (a) RF, (b) SVM, and (c) NN.
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4.4. Thermal Comfort Model under Thermal Radiation
Stimulation. The TSV stimulated by thermal radiation had
four levels of 0 (moderate), 1 (slightly warm), 2 (warm),
and 3 (hot) with the feedback of the subjects. Figure 12
shows CM of thermal comfort model under radiation stim-
ulation established by (a) RF, (b) SVM, and (c) NN. In
Figure 12(a) of RF model, TSV = 0 had the highest predic-
tion accuracy, followed by TSV = 2. The prediction accuracy
of TSV = 1 was the lowest of 0.395. Part of the TSV = 1 pre-
diction was from physiological class 0 (0.109), because the
stimulation from the heat radiation was relatively low at
the initial stage, which made it difficult for the subjects to
judge. But when the subjects received enough heat from
radiation, the physiological response of the body was consis-
tent with the thermal sensation as TSV is larger than 2. The
prediction accuracy at TSV = 3 was 0.65, because the thermal
radiation stimulation did not reach a very hot level. The predic-
tion patterns of Figure 12(b) (SVM model) and Figure 12(c)
(NNmodel) were similar to that in Figure 12(a), but the predic-
tion accuracy was not as good as that in Figure 12(a). There-
fore, SVM and NN were not good methods for establishing a

thermal comfort model. The prediction accuracies of the three
machine learning strategies were 0.78 (RF), 0.763 (SVM), and
0.696 (NN), respectively. Therefore, both RF and SVM were
more suitable for modeling under thermal radiation stimula-
tion than NN.

4.5. Thermal Comfort Model under Combined Stimulation.
The characteristics of various physiological parameters are
not the same, and most of them equips nonlinear responses
under cold or hot stimulations. To establish the physiological
thermal comfort model under both cold and hot stimulations
through linear regress may not be proper and have the high
accuracy. It is our interesting to combine the TSV models
under cold wind, hot wind, and radiation stimulations by
machine learning strategies due to their excellent abilities for
nonlinear data. Figures 13(a)–13(c) show the prediction of
the cold and hot mixed stimulation based on the three
machine learning strategies. The comparisons of the three
models in various stimulations are shown in Tables 4 and 5.

Figure 13 shows the CM of the thermal comfort model
under combined stimulation established by (a) RF, (b)
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Figure 13: CM of thermal comfort model under combined stimulation established by (a) RF, (b) SVM, and (c) NN.
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SVM, and (c) NN. The data indicated that the TSV = 0 state
had the highest accuracy. The high accuracy was due to the
fact that within the total experiment time of 90 minutes, 50
minutes was under no stimulation state. As mentioned in
the previous description about model comparison in various
stimulations, the predictions of the RF model were more
accurate than the other two strategies. The TSV predictions
in the warm and cool conditions were more accurate than
that in the slightly cool and slightly warm conditions. The
reason was no obvious response of physiological parameters
in the initial stage of stimulation. The minor changes in
physiological parameters could not stir up the human body’s
thermal sensation and may cause human misjudgment in
TSV. Short-term thermal adaption in a change of stimula-
tions would also cause the asynchronous phenomena
between physiological parameters and TSV.

In Table 4, the thermal comfort models established by
RF strategy under various stimulations present the higher
accuracy than other two machine learning strategies. In
Table 5, the level imbalance of thermal comfort models
established by these three machine learning strategies are
presented through the F1 score. The F1 score is also a mea-
sure of the model’s accuracy, calculated from the precision
and recall of the CM. The highest F1 score appears at level
3 of SVM model. Level -3 of SVM and NN models and level
-1 of NN model present lowest F1 score, due to zero preci-
sion and recall values caused by none of the physiological
and TSV data collected by these two strategies. The F1
scores of RF model at levels -3, -2, and 3 are larger than
0.80, indicating high accuracy appearing at extreme stimula-
tions. From levels -3 to 3, the F1 scores of RF model are
larger than other two strategies, and level differences among
the various levels are less. Both results indicate the better
accuracy and less level imbalance of RF model.

4.6. Comparison with Related Studies. Table 6 lists the results
of other related studies. Wang et al. [23] used RF to predict
the comfort level of residents in nursing homes. Six environ-
mental variables (temperature, CO2 concentration, air veloc-
ity, illuminance, health status, and residence time) and skin
temperature of five parts (head, forearm, thigh, chest, and
back) were set as the model input. Liu et al. [4] only used
local skin temperatures (head, face, chest, abdomen, upper
arm, lower arm, hand, thigh, calf, and foot) to establish the
model by SVM. As indicated in Table 1, the skin tempera-
ture has the closest relationship with TSV. Chaudhuri et al.
[24] used five physiological parameters (hand skin tempera-
ture, galvanic skin response, pulse rate, oxygen saturation
level, and blood pressure) and four subjective responses
(thermal comfort voting, thermal preference, humidity sen-
sation voting, and airflow sensation voting) combined with
the thermal sensation voting value. But they only discussed
the model from the cold stimulation to neutral condition.
In this study, the response differences of three various phys-
iological parameters under extreme stimulations, such as
cold and hot air and radiation, are investigated and evalu-
ated. Three machine learning strategies of RF, SVM, and
NN are utilized to establish thermal comfort models through
three physiological parameters under extreme and combined
stimulations.

4.7. Limitations and the Future Research Outlook. Limita-
tions for applying these established models lie in the charac-
teristics of subjects, types of stimulations, and the selected

Table 5: F1 score of thermal comfort models established by
machine learning algorithms under combined stimulation.

Level RF SVM NN

-3 0.849 Null Null

-2 0.866 0.434 0.088

-1 0.577 0.086 Null

0 0.582 0.438 0.339

1 0.651 0.325 0.026

2 0.698 0.665 0.308

3 0.812 0.916 0.512

Table 4: Accuracies of thermal comfort models established by
machine learning algorithms under various stimulations.

Stimulation type RF SVM NN

Cold wind stimulation 0.788 0.67 0.669

Hot wind stimulation 0.79 0.667 0.676

Radiation stimulation 0.78 0.763 0.696

Combined stimulation 0.89 0.678 0.73

Table 6: Comparison of related research results.

Authors
Thermal
comfort
index

Input parameters
Algorithms
(accuracy)

Wang et al.
[23]

TSV

Air temperature
Air velocity

CO2 concentration
Illuminance

Health condition
Living time in aged-care

homes
Local skin temperatures

RF (0.77)

Liu et al.
[4]

TSV

Skin temperatures (head,
face, abdomen, thorax,
upper arm, lower arm,
hand, upper leg, lower

leg, feet)

SVM (0.92)

Chaudhuri
et al. [24]

TSV
TCV

Hand skin temperature
Hand skin conductance

Pulse rate
Blood oxygen saturation

Blood pressure
Humidity sensation
Airflow sensation

RF (0.93/0.94)

This
research

TSV
Front head temperature

SBF
Skin sweat

RF (0.89)
SVM (0.678)
NN (0.73)
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artificial intelligence strategies. There are 30 young Asian
students in healthy condition selected as the subjects in this
study, and their ages are between 20 and 30 years old. The
selected stimulations include cold wind stimulation (temper-
ature 20°C, wind speed 2.42m/s), hot wind stimulation
(temperature 33°C, wind speed 0.26m/s), and thermal radi-
ation stimulation (temperature 25°C, wind speed 0.00m/s).
The selected season for test is from September to December
2019 in Taipei City, Taiwan. The selected machine learning
strategies are RF, SVM, and NN for establishing thermal com-
fort models through three selected physiological parameters.
The responses of physiological parameters and TSV of the
selected subjects to the various cold wind/hot wind/radiation
stimulations are discussed. Future research works will extend
the study to subjects of other age levels and under various states.

5. Conclusions

In this study, the physiological parameters including fore-
head skin temperature, SBF, sweat on the skin surface, and
thermal sensation voting value are collected through AMLS
under cold wind stimulation, hot wind stimulation, and
thermal radiation stimulation. The three machine learning
strategies, such as RF, SVM, and NN, are used to analyze
physiological parameters, establish models, and verify the
thermal comfort level. As for the physiological parameter,
the correlation between the forehead skin temperature and
TSV is the highest, followed by SBF and sweat area. Among
the three stimulations, cold wind stimulation shows the
highest correlation coefficient with TSV. As for three ther-
mal comfort models established through three machine
learning strategies, when physiological parameters and TSV
are used as the training data and labels, the accuracy of
SVM under the combined stimulation is the lowest value
of 0.678. The thermal comfort model established by RF pre-
sents the highest accuracy and less level imbalance. This
information would benefit real-time prediction and control
of air-conditioning equipment.
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