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Introduction. Previous COVID-19 prognostic models have been developed in hospital settings and are not applicable to COVID-
19 cases in the general population. �ere is an urgent need for prognostic scores aimed to identify patients at high risk of
complications at the time of COVID-19 diagnosis.Methods. �e RDT COVID-19 Observational Study (RCOS) collected clinical
data from patients with COVID-19 admitted regardless of the severity of their symptoms in a general hospital in India. We aimed
to develop and validate a simple bedside prognostic score to predict the risk of hypoxaemia or death. Results. 4035 patients were
included in the development cohort and 2046 in the validation cohort. �e primary outcome occurred in 961 (23.8%) and 548
(26.8%) patients in the development and validation cohorts, respectively.�e �nal model included 12 variables: age, systolic blood
pressure, heart rate, respiratory rate, aspartate transaminase, lactate dehydrogenase, urea, C-reactive protein, sodium, lymphocyte
count, neutrophil count, and neutrophil/lymphocyte ratio. In the validation cohort, the area under the receiver operating
characteristic curve (AUROCC) was 0.907 (95% CI, 0.892–0.922), and the Brier Score was 0.098. �e decision curve analysis
showed good clinical utility in hypothetical scenarios where the admission of patients was decided according to the prognostic
index. When the prognostic index was used to predict mortality in the validation cohort, the AUROCC was 0.947 (95% CI,
0.925–0.97) and the Brier score was 0.0188. Conclusions. �e RCOS prognostic index could help improve the decision making in
the current COVID-19 pandemic, especially in resource-limited settings with poor healthcare infrastructure such as India.
However, implementation in other settings is needed to cross-validate and verify our �ndings.

1. Introduction

Infection with severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has high morbidity and mor-
tality [1]. Since late 2019, the rapid spread of SARS-CoV-2
has put enormous pressure on national health systems
worldwide.

�e clinical spectrum of coronavirus disease 2019
(COVID-19) produced by SARS-CoV-2 is wide. In a large
study from China including 72314 cases, 81% had mild
disease, 19% had severe disease with deterioration of the
respiratory function, and 2.3% died [2]. In many medical
domains, prognostic multivariable prediction models have
been developed with the aim to help healthcare professionals
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in their decision making [3]. To date, more than 100
COVID-19 prognostic models have been reported [4].
However, the vast majority of them have been developed in
overwhelmed hospital settings from developed countries
where the mortality and the proportion of patients with
severe disease were high, and they might not be applicable to
COVID-19 cases in the general population.

)e objective of this study was to develop and validate a
pragmatic prognostic score to predict the risk of mortality or
hypoxaemia in patients with COVID-19 who were admitted
to a hospital regardless of the severity of their symptoms.We
hypothesized that the population of the study is similar to
the general population of COVID-19 cases, and that the
prognostic score could be applied in nonhospital settings,
where the majority of cases are mild and the proportion of
severe cases is relatively small.

2. Methods

2.1. Source ofData andParticipants. )e Rural Development
Trust (RDT) COVID-19 observational study (RCOS) is a
retrospective observational study of patients diagnosed with
COVID-19 and admitted from April 17, 2020, to November
19, 2020, to the RDT General Hospital in Bathalapalli,
Anantapur District, Andhra Pradesh, India. During this
time, the hospital was designated as a COVID-19 centre and
was utilized exclusively to treat patients who had a positive
SARS-CoV-2 reverse transcriptase polymerase chain reac-
tion (RT-PCR) or antigen test. During this time, to reduce
the risk of transmission in the community, patients with
mild symptoms were also admitted for isolation. As per
Government rules, even patients with mild symptoms could
not be discharged at least until 10 days passed from the
symptom onset or the first positive SARS-CoV-2 test.

For the study, we used routinely collected data (de-
mographics, laboratory investigations, and vitals) entered
into the hospital information system (HIS). Comorbidities
of patients were not entered into the HIS and, therefore,
could not be used in the prognostic models. )e study was
performed according to the principles of the Declaration of
Helsinki. )e associated Ethics Committee of RDT Bath-
alapalli Hospital approved the study and waived the need for
informed consent. )e methodology of the study followed
the guidelines for transparent reporting of a multivariable
prediction model for individual prediction or diagnosis
(TRIPOD) [5]. For the sample size, we took a practical
approach by using all available data to maximize the power
of the statistical analysis [6].

2.2. Outcome and Independent Predictors. We aimed to
develop a prognostic model with variables collected at the
time of hospital admission that could be utilized to identify
COVID-19 patients who were at higher risk of complica-
tions. We decided to use a composite endpoint including in-
hospital mortality or hypoxaemia as the primary outcome of
the study. Hypoxaemia was defined as having oxygen sat-
uration below 93% or the need for oxygen support to
maintain saturation above 93% [2, 7].We selected a priori set

of potential predictors according to the availability of data in
the HIS and whether the variables had shown to influence
the outcome of COVID-19 in previous studies [8–13].

2.3. Model Development and Validation. )e dataset was
split in two. Development of the model was performed with
data from patients admitted from April 17 to August 31,
2020 (development cohort), while model validation was
performed with patients admitted from September 1 to
November 19, 2020 (validation cohort).

Assuming missing at random, missing values were
imputed using chained equations in 10 datasets, each with 10
iterations [14, 15]. )e outcome was included as a predictor
in the imputation of the development cohort but not in the
validation cohort.

Because our primary objective was to develop a prag-
matic bedside risk score that did not demand complex
calculations, we decided to categorize continuous variables
[12]. Model development was performed in four stages. In
the first stage, we made an initial selection of predictors
based on the goodness of fit between the outcome and
predictors using generalized additive models (GAMs).
Categorical predictors were entered as linear components in
the models, and continuous predictors were smoothed using
penalized thin-plate splines [16]. In the second stage, we
selected optimal cutoff values to categorize continuous
variables based on visual inspection of the GAM models
[17]. In the third stage, to reduce the risk of model over-
fitting, we used least absolute shrinkage and selection op-
erator (LASSO) regression with theory-driven penalization
to select predictors and their cutoff values to be included in
the final model [18]. In the fourth stage, we used the co-
efficients from the logistic regressionmodels to construct the
prognostic index.

One common problem when comparing laboratory data
is that laboratory values are highly dependent on the
methodology used, and data normalization is needed.
Usually, clinical laboratories have normal ranges that en-
close 95% of values in a healthy population. In settings where
the laboratory normal range differs substantially from our
values, we recommend using the lower or upper normal
limits of their laboratory as the reference to calculate the
prognostic scores, although other forms of normalization are
also possible [19].

Predicted probabilities of the outcome in the develop-
ment and validation cohorts were calculated by fitting lo-
gistic regressionmodels with the prognostic score as the only
independent variable in each imputed dataset and using
Rubin’s rules to combine the results [15]. Discrimination of
the prognostic index was assessed using the area under the
receiver operating characteristic curve (AUROCC) with
confidence intervals (CIs) obtained through 2000 bootstrap
samples [5]. Calibration was assessed with the Brier score
and graphically by inspecting the smoothed relationship
between the predicted and observed risk [5]. Clinical utility
was assessed using decision curve analysis [20]. As the
concept of net benefit can be difficult to grasp [21], we
described a hypothetical scenario where the prognostic
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index was used to decide whether patients needed admission
to the hospital.

Risk groups were formed based on the predicted
probability of the outcome: low risk (<5%), intermediate-
low risk (5–10%), intermediate-high risk (10–20%), high risk
(20–40%), and very high risk (>40%). We performed several
sensitivity analyses. We checked the performance of the
model using complete case data, segregated by gender, and
using mortality as the outcome.

)is was an urgent public health research study in re-
sponse to a Public Health Emergency of International
Concern. Patients or the public were not involved in the
design, conduct, interpretation, or presentation of the results
of this research.

3. Results

3.1. Model Development. During the study period, 6123
patients with COVID-19 were admitted to the hospital
(Figure 1). Forty-two patients were excluded because they
were self-discharged against medical advice (27), were re-
ferred to another hospital (9), or had >95% missing values
(6). 4035 patients were included in the development cohort
and 2046 in the validation cohort. )e overall average
hospital length of stay was 6.92 days (median 6, interquartile
range (IQR) 4 to 8). )e median age was 48 years (IQR 34 to
59) and 2348 (38.6%) were female. Differences between the
development and the validation cohort are described in
Table 1. )e primary outcome occurred in 961 (23.8%)
patients in the development cohort and in 548 (26.8%) in the
validation cohort.

)e model development is described in detail in the
Supplementary Materials section. From the initial 20
predictor candidates, seven were excluded at the initial
stage because of low predictive power or collinearity
(Table S1). All remaining predictors were continuous
variables and were categorized using GAM to select the
optimal cutoff values (Figures S1–S3 and Table S2). )e
final selection of cutoff values and variables was per-
formed using LASSO logistic regression (Table S3), and
coefficients were used to produce the prognostic scores
(Table S4). )e prognostic index ranged from 0 to 32 and
included 12 variables: age, systolic blood pressure, heart
rate, respiratory rate, aspartate transaminase, lactate de-
hydrogenase, urea, C-reactive protein, sodium,
absolute lymphocyte count, absolute neutrophil count,
and neutrophil/lymphocyte ratio (Table 2). Table 2 also
includes the reference range in our laboratory and sug-
gested normalization values based on the upper and lower
normal limits.

In the development cohort, the AUROCC was 0.907
(95% CI, 0.896–0.918) (Figure S4), and the Brier score was
0.0935. )e calibration-in-the-large was 0.01, and the slope
was 1.007 (Figure S5). Based on the predicted probability of
the outcome, we created the following risk groups: low risk
(index 0, 1, or 2), intermediate-low risk (index 3 or 4),
intermediate-high risk (index 5 or 6), high risk (index 7 or
8), and very high risk (index 9 or above) (Table 3).

3.2. Model Validation. In the validation cohort, the
AUROCC was 0.907 (95% CI, 0.892–0.922) and the Brier
score was 0.098 (Figure 2(a)). )e calibration-in-the-large
was 0 (95% CI, −0.14 to 0.14) and the slope was 1 (95% CI,
0.91–1.09) (Figure 2(b)). Nearly 50% of cases had a prog-
nostic index of 3 or less (Figure 2(c) and Table S5). )e
predicted risk for the primary outcome increased rapidly for
prognostic scores between 5 and 10 and then had a pro-
gressive reduction (Figure 2(c), Figure S6, and Table S5).
Sensitivity, specificity, negative predictive value, and positive
predictive value of the prognostic model in the validation
cohort are presented in Figure 3. In general, the proportion
of patients with outcome by risk group was slightly larger
than in the development cohort (Table 3).

Decision curve analysis is reported in Figure 4. )e net
benefit describes the performance of the model to identify
true positives over true negatives [21]. Decisions curve
analysis can be used to decide whether to initiate an in-
tervention (e.g., to start a particular medication or to request
a diagnostic test). However, to better understand the clinical
use of the predictive model, we created a hypothetical
scenario where patients were admitted (the “intervention”)
according to the predicted probability of the outcome given
by the prognostic index. We compared the performance of
the model with two other possible scenarios: admit all pa-
tients (unlimited resources) or admit none (there are no free
beds in the hospital). )ese two scenarios represent extreme
situations that can occur in the real world. If the bed oc-
cupancy is high because of a sudden spike in the number of
COVID-19 cases, we could select a higher prognostic index
threshold for admission to optimize resources. If the inci-
dence of COVID-19 cases comes down and the bed occu-
pancy is low, we could be more permissible and reduce the
prognostic score cutoff for admission. )e selection of the
threshold probability represents the trade-off between the
benefit and the cost of the intervention.)e net benefit of the
predictive model was positive and above the net benefit of

6,123 patients 
diagnosed 

with Covid 19

6,081 patients
included in the study

27 discharged 
against medical 

advice
9 referred to other 

hospitals
6 had >95% missing 

values

2,046 in the 
validation cohort

4,035 in the 
derivation cohort

Figure 1: Flowchart of patients.
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other alternatives (admit all or admit none) up to threshold
probabilities above 90%, which are hardly justifiable in real
life (Figure 4(a)). If we consider patients who did not de-
velop the outcome and did not need admission, the number
of unnecessary admissions avoided is presented in
Figure 4(b). For example, by using a prognostic index of 7 or
more as the threshold for admission, we could have reduced
nearly 50% of the number of admissions.

In a sensitivity analysis using only complete cases, the
results were almost identical (AUROCC was 0.907, 95% CI,
0.893–0.922; Brier score 0.0977). )e model performed
slightly better in female cases (AUROCC 0.921, 95% CI,
0.896–0.945; Brier score 0.078) than in male cases
(AUROCC 0.899, 95% CI, 0.88–0.918; Brier score 0.109).)e
prognostic index showed excellent accuracy (AUROCC
0.947; 95% CI, 0.925–0.97) and calibration (Brier score
0.0188; calibration-in-the-large 0.0006, 95% CI, −0.315 to
0.316; slope 1.001, 95% CI, 0.816–1.188) to predict mortality.
)e performance of the model to predict mortality is de-
scribed graphically in Figure 5 and Figures S7-S8.

4. Discussion

In this study, we present a pragmatic multivariable prog-
nostic index that showed good discrimination calibration
and clinical utility in a cohort that could be considered
representative of COVID-19 cases diagnosed in the com-
munity. )e variables included in the RCOS prognostic
index are readily available in most healthcare settings with
basic laboratory infrastructure, and the index does not re-
quire complex calculations. It could be used to optimize

resources in overwhelmed health systems, identifying pa-
tients who are more likely to develop complications and
need hospital admission or closer ambulatory monitoring.
Optimal utilization of resources is especially important in
low- and middle-income countries, where public health
facilities are overburdened and unable to accommodate the
high number of cases who need hospitalization in the
current COVID-19 pandemic.

Current therapy of COVID-19 focuses on patients who
have already developed complications [22]. Previous studies
have shown that the highest level of viral replication occurs
around the first day of symptoms, and 95% of hospitalized
patients have negative viral cultures after 15 days of
symptoms [23]. Current evidence suggests that antiviral and
antibody therapy are more effective if started early, during
the first days of symptoms [24, 25]. )e RCOS prognostic
index could be used to escalate therapy in patients with a
higher risk of complications. )e index could also help
identify high-risk groups in targeted randomized clinical
trials investigating early interventions aimed to reduce
morbidity or mortality of COVID-19.

4.1. Strengths and Limitations. In COVID-19 cases, hypo-
xaemia usually appears within five to ten days of symptoms
[26–28]. In our study, patients were admitted regardless of
the severity of symptoms and were not discharged before ten
days passed from symptom onset. In the development co-
hort, 23.8% of the patients developed hypoxaemia or died,
which is similar to the proportion of severe cases found in a
large cohort from China [2]. )is suggests that the model

Table 1: Characteristics of patients in the development and the validation cohorts.

Development cohort Validation cohort
Median (IQR) or no (%) Missing Median (IQR) or no (%) Missing

Age (years) 48 (34–60) 9 47 (33–58) 0
Systolic BP (mm Hg) 120 (110–120) 1111 120 (110–120) 4
Diastolic BP (mm Hg) 80 (70–80) 1111 80 (70–80) 4
Heart rate (min) 88 (82–92) 1112 86 (80–90) 5
Respiratory rate (min) 20 (20–22) 1117 20 (20–22) 5
Temperature (°F) 99 (99–99) 1110 99 (98–99) 5
AST (IU/L) 25 (18–36) 16 22 (17–31) 3
ALT (IU/L) 27 (18–42) 18 26 (18–40) 3
Albumin (g/dL) 4.5 (4.2–4.8) 18 4.6 (4.3–4.9) 3
LDH (IU/L) 385 (269–495) 7 375 (284–467) 1
Creatinine (mg/dL) 0.8 (0.7–1) 6 0.7 (0.6–0.8) 3
Urea (mg/dL) 22 (17–29) 7 22 (18–29) 3
C-reactive protein (mg/dL) 0.5 (0.2–3) 5 0.5 (0.3–2.8) 1
Sodium (mmol/L) 141 (139–143) 5 141 (139–143) 3
Haemoglobin (g/dL) 13 (12–14) 82 13 (12–14) 0
Platelet count (×10̂9/L) 265 (207–333) 82 304 (243–364) 0
White cell count (×10̂9/L) 7 (5.5–9.1) 82 6.9 (5.4–9) 0
Neutrophil count (×10̂9/L) 4.5 (3.3–6.2) 82 4.4 (3.3–6.2) 0
Lymphocyte count (×10̂9/L) 1.9 (1.4–2.6) 82 1.9 (1.4–2.4) 0
Neutrophil/Lymphocyte ratio 2.3 (1.6–3.7) 82 2.3 (1.6–3.8) 0
Female gender 1593 (39.5) 0 752 (36.8) 0
Deaths 172 (4.3) 0 53 (2.6) 0
Hypoxaemia 959 (23.8) 0 545 (26.6) 0
IQR, interquartile range; BP, blood pressure; ALT, alanine transaminase; AST, aspartate transaminase; LDH, lactate dehydrogenase.
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was developed in a population representative of COVID-19
in the community. However, the validation cohort had a
larger proportion of patients with hypoxaemia than the
development cohort, and both predicted and observed risks
were higher than expected. )is can be explained by the fact
that the COVID-19 incidence increased during the study
period, leading to increased hospital pressure from more
severe cases. When implementing the prognostic index in
populations with lower (e.g., primary health center) or

higher (e.g., emergency department) expected risk, the use of
risk groups may overestimate (primary health center) or
underestimate (emergency department) the real risk of
complications. Although classifying patients in risk groups
can still be useful as an initial reference, our results suggest
that users of the prognostic index should try to estimate the
predicted probability of the outcome in their settings, es-
pecially in populations with high rates of SARS-CoV-2
vaccination.

Table 2: )e RCOS prognostic index.

Reference range Prognostic score
Age (years)
40–49 1
50–59 2
60–69 3
≥70 4

Systolic BP (mm Hg)≥ 140 1
Heart rate (pm)≥ 100 1
Respiratory rate (pm)≥ 22 2
AST (IU/L) 0 to 40
40–79 1 to 2x UNL 1
≥80 >2x UNL 2

LDH (IU/L) 207 to 414
700–899 1.69 to 2.17x UNL 1
≥900 >2.17x UNL 2

Urea (mg/dL) 15 to 39
40–49.9 1 to 1.25x UNL 2
≥50 >1.25x UNL 3

C-reactive protein (mg/dL) 0 to 0.5
0.5–0.9 1 to 1.99x UNL 1
1–1.9 2 to 3.99x UNL 2
2–3.9 4 to 7.99x UNL 3
4–5.9 8 to 11.99x UNL 4
6–8.9 12 to 17.99x UNL 5
9–11.9 18 to 23.99x UNL 6
≥12 ≥24x UNL 7

Sodium-mmol/L< 135 135 to 148 1
Lymphocyte count (×10̂9/L) 1 to 5
<0.8 3
0.8–0.999 1

Neutrophil count (×10̂9/L) 1.2 to 8
8–9.9 1
≥10 2

Neutrophil/lymphocyte ratio
3–3.9 1
4–5.9 2
6–7.9 3
≥8 4

BP, blood pressure; pm, per minute; AST, aspartate transaminase; LDH, lactate dehydrogenase; UNL, upper normal limit; LNL lower normal limit.

Table 3: Proportion of patients who experienced the study outcome (death or hypoxaemia) segregated by risk group.

Risk group
Development Validation

No. of patients (%) Outcome (%) No of. patients (%) Outcome (%)
Low (0–2) 1314 (32.57) 37 (2.82) 755 (36.9) 21 (2.78)
Intermediate-low (3–4) 832 (20.62) 36 (4.33) 392 (19.16) 43 (10.97)
Intermediate-high (5–6) 533 (13.21) 70 (13.13) 253 (12.37) 42 (16.6)
High (7–8) 340 (8.43) 95 (27.94) 157 (7.67) 58 (36.94)
Very high (>8) 1016 (25.18) 723 (71.16) 489 (23.9) 384 (78.53)
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Figure 3: Sensitivity and specificity (a) and negative and positive predictive value (b) in the validation cohort. Y-axis represents proportions;
X-axis represents the prognostic index.
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Figure 2: Discrimination (a), calibration (b), distribution of cases (c), and predicted probability of death or hypoxaemia (lower panel line) of
the predictive model in the validation cohort.
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Figure 5: Discrimination (a), calibration (b), distribution of cases (c), and predicted probability (lower panel line) of the model to predict
mortality in the validation cohort.
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)e prognostic model was not developed to predict
complications in hospital settings with high mortality. Still,
the excellent performance of the prognostic index to predict
mortality suggests that it could be a helpful companion to
other severity predictors such as oxygen saturation or PaO2/
FiO2 ratio to identify patients who are more likely to require
a ventilator or critical care support [29], but new studies are
needed to confirm this hypothesis.

)e study has several limitations. Unlike other COVID-
19 prognostic models, the RCOS prognostic index does not
include comorbid conditions of the patients [4]. It is possible
that including comorbidity predictors could improve the
performance of the model. )is is a single-centre study, and
validation was performed in the same setting as the de-
velopment. However, we used data from different periods of
time to validate our model, which is a stronger approach
compared to other forms of internal validation, and can be
considered intermediate between internal and external
validation [5]. In addition, the score relies on laboratory data
that might be difficult to perform in primary health centres.

5. Conclusion

Prognostic models are able to transform complex clinical
situations into a single dimension numerical value. In this
study, we present a prognostic score that demonstrated
excellent discrimination and calibration to predict com-
plications and mortality in a population of COVID-19 cases
that included a large proportion of mild cases. If our results
are validated in other settings, the RCOS prognostic index
could help optimize resources in overstretched healthcare
systems and improve clinical decisions in COVID-19 pa-
tients diagnosed in the community who are at higher risk of
developing complications. A preprint has previously been
published [30]

Data Availability
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