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Due to the unpredictable and stochastic nature of renewables, current power networks confront operational issues as renewable
energy sources are more widely used. Frequency stability of modern power systems has been considerably harmed by fast and
unpredictable power variations generated by intermittent power generation sources and fexible loads. Te main objective of the
power system frequency control is to ensure the generation demand balance at all times. In reality, obtaining precise estimates of
the imbalance of power in both transmission and distribution systems is challenging, especially when renewable energy pen-
etration is high. Electric vehicles have become a viable tool to reduce the occasional impact of renewable energy sources engaged in
frequency regulationmainly because of vehicle-to-grid technologies and the quick output power management of EV batteries.Te
rapid response of EVs enhances the efectiveness of the LFC system signifcantly. Tis research work investigates a deep learning
strategy based on a long short-term memory recurrent neural network to identify active power fuctuations in real-time. Te new
approach assesses power fuctuations from a real-time observed frequency signal precisely and quickly. Te observed power
fuctuations can be used as a control reference, allowing automatic generation control to maintain better system frequency and
ensure optimum generation cost with the use of demand management techniques. To validate the suggested method and compare
it with several classical methods, a realistic model of the Indian power system integrated with distributed generation technology is
used. Te simulation results clearly indicate the importance of power fuctuation identifcation as well as the benefts of the
proposed strategy. Te results clearly show a considerable improvement in response performance indices, as the maximum peak
overshoot was decreased by 21.25% to 51.2%, and settling time was lowered by about 23.34% to 65.40% for the suggested control
technique compared to other controllers.

1. Introduction

For many decades, load frequency control (LFC) in electrical
power systems was extensively used to ensure a balance
between load consumption and power production in each
control area, thereby eliminating system frequency varia-
tions. Due to increased renewable energy penetration, de-
ployment of innovative solutions such as smart grid, and
modernization of the electric power system with insecure
communication technologies, electric power systems in-
creased their complexity which in turn directly afected the

electric power system’s operation, stability, and safety [1, 2].
Te inclusion of electric vehicles (EVs) into LFC systems
through an aggregator has received a lot of interest in recent
years [3–8]. EVs have become a viable tool to reduce the
occasional impact of renewable energy sources engaged in
frequency regulation because of vehicle-to-grid technologies
and the quick output power management of EV batteries.
Te rapid response of EVs enhances the efectiveness of the
LFC system signifcantly. Although EVs can be used as
generators or loads, unwanted frequency changes can be
reduced and thus the frequency response can be improved.
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To practically manage the involvement of EVs in the fre-
quency control market, an aggregator is used. Te aggre-
gator’s role is to gather and manage a group of EVs to meet
frequency regulation criteria [9, 10].

Hundreds of thousands of EVs can also be connected
to the grid as a massive battery energy storage system
(BESS). Tis is possible as EVs plug into the grid when
parked at a station or at home. Due to the short response
time of EV batteries, a feet of EVs working as a massive
BESS is specifcally successful in regulating load demand
and wind power oscillations [11]. EVs aggregation into the
interconnected power system can engage in both primary
and secondary frequency control to help conventional
power plants promptly decrease system frequency fuc-
tuations caused by load disruptions and unpredictable
renewable energy sources. In terms of primary frequency
control (PFC), EVs’ PFC can emulate the behavior of a
turbine governor by adopting a droop control [12–19].
Te author [12] presented a basic control strategy for EVs
with a load estimator, in which all EVs are abruptly
unplugged from the grids due to increased demand in the
system. When the power of the disconnected EVs is
greater than the system’s power imbalance, this control
strategy, however, can have negative efects on system
frequency.

In secondary frequency control (SFC), an aggregation
of EVs serves as a generating power source to assist an
existing power generation system meet the LFC need
quickly [20, 21]. EVs use bidirectional power electronic
devices to communicate with the power grid, allowing
them to respond to new load set-points faster than tra-
ditional generators [22]. For LFC analysis, EV-based
battery storage was proposed in [20].Te usefulness of SFC
with EVs in lowering the area control errors (ACEs) in a
Western Danish power system is demonstrated in this
simulation. Furthermore, the authors studied LFC power
system topologies with EV integration in [23, 24]. LFC
methods efectively control frequency fuctuation by using
the SFC signal to manage EV power output.

Moreover, EV aggregators send information to the
controller about EVs energy capabilities, electrical power
availability, and charging status. As a result, the aggregators
restructure control instructions regarding the engagement of
EVs for automatic generation control to control their output
power [22, 25–28].

Under unexpected and worsening changes in load
conditions, it is not possible to keep the system frequency
within a prescribed limit. Ten, the demand management
technique can be implemented using a nature-inspired al-
gorithm to optimise system operation cost to fnd the fexible
demand of EVs engaged by the system to maintain the
supply-demand balance, which in turn is refected in the
frequency control.

Over the last few decades, algorithms inspired by the
natural behavior of species that rely on benefcial prop-
erties of biological systems have evolved rapidly. Swarm
intelligence systems imitate the social behavior of birds,
bees, and ants. Teir prominence stems from their capacity
to successfully tackle real-world global optimization

problems [29]. Diferent swarm intelligence algorithms
such as Ant Colony Optimization (ACO) [30], Ant Lion
Optimizer (ALO) [31], Particle Swarm Optimization
(PSO) [32], Firefy Algorithm (FA) [33], and Chimp
Optimization (CO) [34] are based on simple notions re-
lated to physical phenomena and evolutionary psychology.
Tese algorithms have drawn a lot of interest since they are
derivative-free, robust, and can be used to solve a variety of
optimization problems. Tese algorithms employ the
randomization idea, which shifts the efciency of local
search to global search.

However, due to their sluggish convergence speed,
such single approaches are inefective in solving opti-
mization problems as these approaches take a long time to
compute and are usually confned to the local search
space. As a result, numerous optimization techniques
have been merged to calculate better outputs to improve
the benefts of such optimization algorithms. Te ef-
ciency of these optimization techniques, which combine
the best aspects of two or three methods, has been
demonstrated in terms of computing time and conver-
gence rate. Tese algorithms are capable of fnding op-
timal results more quickly than traditional algorithms.
Te suggested Firefy Algorithm hybridized with Flower
Pollination Algorithm (FA/FPA) efectively utilizes two
specifc terms from the Firefy Algorithm (FA) and Flower
Pollination Algorithm (FPA): exploration and exploita-
tion. Te proposed hybrid will be compared with the
Firefy Algorithm (FA) and Flower Pollination Algorithm
(FPA) based on their performance.

To enhance the performance of the controller, the author
[35] suggested a novel resilient LFC design for multiarea
power systems based on the second-order sliding mode
control and an extended disturbance observer. For a hybrid
isolated microgrid, the author [36] devised a new frequency
control mechanism based on a disturbance observer and
double sliding mode controllers. Numerous methods such as
distributed control, robust control, and model predictive
control were proposed to enhance the LFC’s performance,
though their efciency and response time were largely de-
pendent on the estimated imbalance of power [37–39].

Deep learning has shown promise in solving complicated
nonlinear engineering issues in current history. To handle
short-term load forecasting problems in individual resi-
dential families, Kong [40] suggested a prediction frame-
work based on the long short-term memory (LSTM)
recurrent neural network (RNN). Te short-term load de-
mand prediction was performed using a radial basis function
neural network (RBFNN) [41]. Most existing research on
power fuctuations estimate of LFC relies on disturbance
observers [35, 36, 42, 43].

(i) To the best of the authors’ knowledge, online power
fuctuation detection using a data-driven strategy has
not been resorted to in solving frequency deviation
problems accompanying the application of demand
management techniques.

Because of the greater penetration of renewable power
generation and controllable demands in power system, rapid
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and unpredictable power surges can dramatically degrade
the power system’s frequency performance. Te goal of this
research is to apply a recurrent neural network to accurately
assess real-time power fuctuations from frequency mea-
surements along with the application of demand manage-
ment techniques. Tis paper’s key contribution and novelty
can be summarised as follows:

(i) An LSTM RNN is intended to provide an accurate
control signal to the LFC to control the frequency of
the power system.

(ii) Te online application of the well-trained LSTM is
used to recognize real-time power fuctuations from
the recorded frequency. Control devices, such as
synchronous generators and energy storage inte-
grated EV systems, can keep the frequency in a
steady condition by using identifed power
fuctuations.

(iii) Under unexpected and worsening changes in load
conditions, it is not possible to keep system fre-
quency within a prescribed limit. Tus, the de-
mand management technique can be implemented
using FA/FPA algorithm to optimise system op-
eration cost to fnd the fexible demand of EVs
engaged in the system to maintain the supply-
demand balance, which is refected in the fre-
quency control.

(iv) With actual data on power and frequency
changes, a model of the Indian power system that
includes combined heat and power generation,
solar photovoltaic generation, wind energy gen-
eration, and loads (including electric vehicles) is
developed. Te proposed algorithm is tested on
this platform and compared to several conven-
tional algorithms.

Te remainder of this work is structured as follows:
Section 2 describes the transfer function model of the
multiarea system. Section 3 proposes the LSTM RNN
method that is applied to optimise the ftness function.
Section 4 narrates the FA/FPA algorithm and its application
to fnd the optimal fexible load demand. Section 5 verifes
the proposed logic using simulation results. Finally, Section
6 concludes the considered work.

2. System Model

Building an appropriate hybrid power system model for the
LFC analysis is quite important. In the proposed approach,

the four-area model included a renewable energy source
such as a wind turbine and a photovoltaic module in ad-
dition to an electric vehicle. Controlling output power from
intermittent power generation systems is difcult due to
uneven variations. It is also completely diferent compared
to nonintermittent power generation systems. Tere have
always been difculties with stability when power demand
was greater than power generation.

Te major goal of this study is to build an improved
LFC for a four-area power system network using a superior
controller. To achieve excellent performance in dynamic
stability, various types of controllers, as reported earlier,
were used. Te conventional controller was created to
tackle these challenges due to the nonlinearity of the power
system component utilized in modeling the power system
network. Te controller in four-area modeling was mostly
based on a proportional-integral controller, as the integral
gain has the characteristics of both fast-transient recovery
and minimal overshoot. Te detailed transfer function
modeling of intermittent and nonintermittent energy
sources of the interconnected hybrid power system is
presented in [16, 35].

EVs’ demand management technique (DMT) gained
popularity in recent years. Te development and extensive
use of electric vehicles could have a substantial infuence on
power grids. In this work, a system to model an electric
vehicle feet was devised, and the impact on the load demand
of a power system network was investigated. However, it was
considered that distinct EV classes’ features were not con-
sidered. An aggregate model of EV feets is shown in Fig-
ure 1. A deadband function with droop features was
included in this model to prevent undesirable frequency
fuctuation. ΔFUL and ΔFLL describe the dead band upper
and lower limit values, respectively; ΔPmax

AG and ΔPmin
AG in-

dicate the maximum andminimum power outputs of the EV
feet, respectively; RAG represents the model droop coef-
cient (same as conventional units), KEV represents the EV
gain, NEV represents the number of connected EVs, TEV
represents the battery time constant, and ΔPEV represents
the incremental generation change of EV feet. Te transfer
function model that describes the efect of the EV feet is
given as follows:

GEV �
KEV

1 + STEV

. (1)

Te state equations for all areas for the above inter-
connected hybrid power system as seen in Figure 2 can be
stated as follows:
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Te state-space equation for the considered system can
be expressed as follows:

_X � AX + BU + EW,

Y � CX + DU,
(3)

where U is the input variable vector, Y is the output variable
vector,X is the state variable vector, andW is the disturbance
vector. Tey are expressed as follows:
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, (8)
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W � ΔPD1 ΔPW1 ΔPS1 ΔPEV1 ΔPD2 ΔPW2 ΔPS2 ΔPEV2 ΔPD3 ΔPW3 ΔPS3 ΔPEV3 ΔPD4 ΔPW4 ΔPEV4 
T
, (9)

C �

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

D � 0. (11)

3. Proposed Methodology

3.1. LSTM Network. An RNN is a type of artifcial neural
network that takes advantage of time information in input
data, as opposed to a regular neural network that merely has
interactions between layers. As a result, RNN performs
better when dealing with time-series learning problems. Te
structure of the LSTM cell includes the input gate, forget
gate, and output gate.

Te LSTM defnes and maintains the cell state to manage
information fow, which is an essential factor in the LSTM
architecture, to acquire long-term temporal functional re-
lationships [44]. Relying on the results of prior stages and
inputs of the current time step, the memory cell state Ct−1
interacts with the intermediate output ht−1 and the suc-
ceeding input xt to determine which parts of the internal

state vector should be modifed, retained, or discarded. Te
following are the compact expression of an LSTM network
with a forget gate:

it � σ xtU
i
+ ht−1W

i
 ,

ft � σ xtU
f

+ ht−1W
f

 ,

ot � σ xtU
o

+ ht−1W
o

( ,

Ct � σ xtU
g

+ ht−1W
g

( ,

Ct � ft ∗Ct−1 + it ∗ Ct,

ht � tan h Ct( ∗ ot,

(12)

where i denotes the input gate; f denotes the forget gate; o

denotes the output gate; σ denotes the sigmoid activation
function; the operator ∗ denotes element-wise

Δ

ΔPmax

ΔPEVS
Δf 1

AG

ΔPmin
AG

1+STEV

1ΔFUL

ΔFLL
-
+RAG

KEV
NEV

PC

Figure 1: Aggregate model of EV feets.

Figure 2: System model of interconnected hybrid power system.
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multiplication; Wi, Wf, Wo, andWg denote the weight
matrices that need to be learned during training; Ui, Uf,
Uo, and Ug are coefcient matrixes; Ct is a “candidate”
hidden state, which is calculated based on the current input
and the previous hidden state; Ct is the internal memory of
the unit, and ht represents the fnal output of the memory
unit.

LSTM memory units can record sophisticated correla-
tion patterns inside time-series data in both short and long
term through the function of diferent gates, which is a
signifcant advance over other RNNs.

3.2. LSTMNetwork forPower Identifcation. Te LSTMRNN
is used in this work to present an active identifcation ap-
proach for real power perturbations. Tis provides a new
realistic reference for automatic generation control (AGC)

to preserve system frequency. Te proposed technique is
divided into two parts: ofine training and online applica-
tion of the LSTM, with the entire procedure being depicted
in Figure 3.

3.2.1. Ofine Training Progress. Te statistical data of fre-
quency variations, which provides the input for the LSTM
training, can be considered the preceding information. Te
target (i.e., the output) is the real power fuctuation. Te
training processes are as follows:

(i) Step 1: data on the frequency and active power
fuctuations should be collected.

(ii) Step 2: initialize weight matrices and bias vectors,
including Wi, Wf, Wo, Wg, Ui, Uf, Uo, and Ug

after normalizing data.

Frequency 
Fluctuations

Historical Power 
Fluctuations

Historical Frequency
Fluctuations

Ofine Training Power 
Fluctuations

Input Training 
LSTM Output

Power System
Model

ΔP ΔF

LFC Measure 
Frequency

Online
 Application

New Identifed
 Power 

Fluctuation

Fine-tuned
 LSTM

Figure 3: Ofine training and online application of the LSTM.

Get the non-intermittent & intermittent generation data and also the non-fexible & fexible 
(such as EV) load data

Perform the load fow for each time interval
Check the frequency deviation. 

If Δ>f 0.5 (because of some unexpected drop in load) then
Check the inequality constraints
If it violates the inequality constraints (Pi < Pmin,i)

Run the FA/FPA algorithm to fnd the optimal fexible 
demand with a time limit

End if
End If.

End For
Calculate the system optimal cost function.

Figure 4: Implementation logic of the DMT-coordinated LFC.
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Yes

Start

Defne an objective function f (x)

Initiate by creating a new population of particles

Evaluate light intensity at xi using objective function f (xi)

Calculate the light absorption coefcient γ

Find the current best solution

If (rand < p)

Evaluate and update new solution

Global Pollination Local Pollination

Outputthe optimal solution

Condition satisfed ?

Stop

Yes No

No

Figure 5: Flowchart that describes the work using FA/FPA algorithm.

Figure 6: Implementation logic of the FA/FPA algorithm.
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(iii) Step 3: by updating the weight coefcients and bias
vectors, the neural network is trained using the
backward propagation approach with the gradient-
based optimizer to minimize the cost function.

(iv) Step 4: invert the recognized power fuctuations
from the normalized to real values, then output the
results of the identifcation.

3.2.2. Online Application. Te proposed LSTM network is
trained using previous data in the ofine environment and
created using power and frequency changes. Once the LSTM
network is properly trained, it may be used online to cal-
culate power fuctuations based on the frequency observed
online. It is worth noting that varied system running con-
ditions can be considered for training database development

when in the ofine trainingmode. In addition, themodel can
be updated on a regular basis if fresh online measurement
and generated data becomes available, or if the system’s
conditions change unexpectedly. Frequency control re-
sources, such as synchronous generators and ESSs, clear out
all the recognized real-time power perturbations and form a
control signal for AGC.

3.2.3. Performance Evaluation. To assess the identifcation
accuracy of the proposed LSTM RNN methodology, the
Integral Time Absolute Error (ITAE) is considered as the
performance index. Compared to other performance indices
such as Integral Squared Error (ISE), Integral Absolute Error
(IAE), and Integral Time-Weighted-Squared Error (ITSE),
ITAE performs well in the fne-tuning of PID controller

Figure 7: 62 bus Indian utility system.
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gains due to lesser overshoots/undershoots and fuctuations
[10]. Equations (14)–(17) describe the ftness function of
ITAE and the PID controller gain limits, respectively. By

optimizing the ftness function of ITAE, the PID controller
gains are well-tuned.

For area-n,

un � KpnACEn + Kin 
t

0
ACEndt + Kdn

dACEn

dt
, (13)

Fitness Function � Minimize ITAE{ } � 
t

0
ACEn


 dt � 

t

0
ΔFn


 + ΔPtie,n−j



  dt. (14)

Subjected to PID gain limits,

K
min
pj ≤Kpj ≤K

max
pj , (15)

K
min
ij ≤Kij ≤K

max
ij , (16)

K
min
dj ≤Kdj ≤K

max
dj , (17)

where n denotes the number of areas; j � 1, 2, . . . n(j≠ n);
ΔFn denotes the frequency deviations in the nth area;
ΔPtie,n−j denotes the tie line power fuctuation.
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Figure 9: Case 01—Frequency Deviation for area 2.
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Figure 8: Case 01—Frequency Deviation for area 1.
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Figure 10: Case 01—Frequency Deviation for area 3.
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Figure 11: Case 01—Frequency Deviation for area 4.
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Figure 12: Case 02—Frequency Deviation for area 1.
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3.2.4. Demand Management Technique. Te primary goal of
the DMT is to reduce system peak demand and its opera-
tional cost. In this considered work, the clipping of system
peak demand can be achieved with the help of the working
behavior of EVs while the system operational cost can be
managed with the help of nonintermittent power generation
units such as thermal units and combined heat and power
generation units. Te formulation of the objective function
with their constraints is listed as follows:

Minimize
ΔVmin ,i

ΔPd

+ 

NP

i�1
Ci P

p
i  + 

Nc

j�1
Cj Pj

c
, Hj

c
 ⎡⎢⎢⎣ ⎤⎥⎥⎦, (18)

where ΔVmin ,i is the variation in minimum voltage, Pd is the
variation in electrical power demand, Np and Nc represent
the number of conventional thermal and cogeneration units,
respectively, Ci(P

p
i ) represents the fuel cost of the con-

ventional thermal units, and Cj(Pj
c, Hj

c) represents the fuel
cost of the cogeneration units and they are expressed as
follows:

Ci P
p
i  � αi Pi

p
( 

2
+ βi Pi

p
(  + ci,

Cj Pj
c
, Hj

c
  � aj Pj

c
 

2
+ bj Pj

c
  + cj.

(19)

Subject to the following constraints,



Np

i�1
Pi

p
+ 

Nc

j�1
Pj

c
� Pd,

Pi
pmin ≤Pi

p ≤Pi
pmax where i � 1, 2 . . . Np,

Pj
cmin Hj

c
 ≤Pj

c ≤Pj
cmax Hj

c
 where j � 1, 2 . . . Nc.

(20)

Te operation of the suggested DMT is to determine the
best timings for charging electric vehicles and turning on
various heating loads while adhering to the aforementioned
restrictions [45, 46]. To keep frequency oscillation to the
minimum, the considered system fully relies on the non-
intermittent power generation units. However, it is also
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Figure 13: Case 02—Frequency Deviation for area 2.
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Figure 14: Case 02—Frequency Deviation for area 3.
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Figure 15: Case 02—Frequency Deviation for area 4.
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Figure 16: Case 03—Frequency Deviation for area 1.
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Figure 17: Case 03—Frequency Deviation for area 2.
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Figure 18: Case 03—Frequency Deviation for area 3.
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Figure 19: Case 03—Frequency Deviation for area 4.
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Figure 20: Case 04—Frequency Deviation for area 1.
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Figure 21: Case 04—Frequency Deviation for area 2.
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Figure 22: Case 04—Frequency Deviation for area 3.
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Figure 23: Case 04—Frequency Deviation for area 4.
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limited by their upper and lower bounds. Terefore, in such
a scenario, the FA/FPA algorithm can be used to fnd the
optimal fexible demand, which will reduce the system
operation cost and ensure standard system frequency. Te
implementation logic of the DMT coordinated LFC is de-
scribed in Figure 4.

Te system frequency rises due to an unexpected drop in
load. Nonintermittent power generation must be altered to
achieve zero frequency variation. In some unconditional
situations, this cannot be performed beyond a certain limit
as it will further increase the system’s operational cost due to
the temporary shutdown and startup. Ten, given a time
constraint, the FA/FPA algorithm is run to determine op-
timum fexible demand, which can then be introduced to the
system to satisfy zero frequency deviation and to calculate
the optimal cost function.

4. FA/FPA Algorithm

Te proposed technique is based on two metaheuristic al-
gorithms, Firefy Algorithm and Flower Pollination Algo-
rithm, which were thoroughly examined in this research
work. Tese proposed algorithms combine the concepts of
exploration (diversifcation) and exploitation (intensifca-
tion) to create a hybrid algorithm. Exploration is a global
search term, while exploitation is a local search term. Te
Firefy Algorithm (FA) is based on the blinking character-
istic of frefies, which are infuenced by their natural be-
havior and bioluminescence phenomena. Tese frefies
move toward an attractive frefy that serves as the present
global best. Optimization is used to determine the fashing
brightness of frefies.

Te Flower Pollination Algorithm (FPA) is based on the
properties of the fowers of various plants. Te main goal is
to reproduce by transferring pollen and pollinators such as
insects, birds, bees, and fies assist in this process. Abiotic
(self-pollination) and biotic (cross-pollination) pollination
are the diferent sorts of pollination. As pollinators travel a
great distance, global pollination (biotic) happens over vast
distances. Cross-pollination occurs within fowers of the
same plant. To reach speedier optimums, both processes are
regulated by a switch probability p.

Both FA and FPA algorithms employ biological notions.
Te fundamental goal of hybridization is to solve the
drawbacks of existing separate optimization algorithm
components and generate a better form. Second, to establish
the robustness of this suggested algorithm in terms of
achieving global optima in very little time while maximizing
the utilization of the exploration and exploitation concepts.
Both these concepts are used to investigate new potential
outcomes as well as improve the current solution. Te
fowchart that describes the considered work using FA/FPA
is shown in Figure 5.

Te suggested algorithm introduces both concepts. Te
movement of particles in this method is based on moving
less brighter particles toward brighter ones by completing
local and global walks in two phases, identical to the Firefy
Algorithm and Flower Pollination Algorithm. Te FA/FPA
algorithm incorporates the Firefy Algorithm concept by frst

opting for a local search as all particles are divided into
numerous subgroups and then selecting the best value from
each group. By preventing from being trapped within local
optima and reducing the randomness efect, they were able
to fnd a global best one value from all these values, allowing
particles to explore a better optima solution. As a result, the
entire process includes the global step, which is efciently
completed by the particles. Te suggested algorithm (FA/
FPA) then uses the Flower Pollination Algorithm paradigm
to create an interaction between local and global search.Tis
results in a switch probability having a magnitude bigger
than the random number generation of particles, as the
particles can move in any direction in a local walk and hence
the efect of randomization is greater.

Te exploitation impact is included in the local search of
the Flower Pollination Algorithm because fowers of the
same species are selected using the fower consistency
process, and pollen transfer occurs in the same plant.
Similarly, the proposed algorithm’s local search exploits
particles belonging to the same species. As a result, the
convergence rate is quicker as particles will do a more ef-
fcient local search. In the considered work, the minimum
system operational cost can be taken as the objective
function, which can be achieved with the application of FA/
FPA. Te implementation logic of the FA/FPA can be de-
scribed as a pseudocode in Figure 6.

5. Simulation Results and Discussion

Due to the signifcant penetration of intermittent power
generation and variable fexible loads, the frequency stability
of an Indian power system is challenged. Te one-line di-
agram of the typical 62-bus Indian utility system is shown in
Figure 7 and their corresponding generator data is shown in
Table 1. Te area-wise number of both intermittent and
nonintermittent power generation units is provided in [47].
Te four-area power system is modeled using MATLAB/
Simulink tools, which includes the efects of renewable
energy sources and electric vehicles. Tis four-area power
system is linked to the proposed controller, which has been
put through its paces under various operating situations to
test the efciency of the controller’s response. Te test
system is simulated in four diferent scenarios, and the

8200 8400 8600 8800 9000 9200 9400 9600 9800 10000

Case 01

Case 02

Case 03

Case 04

Power Generation Cost in $ (h)
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Figure 24: Power generation cost comparison for all cases.
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suggested controller response is compared to that of a
standard PID controller and a fuzzy controller.

5.1. Case 01 (System Response with All Energy Resources).
Case 01 deals with intermittent and nonintermittent power
generation in all four areas. Figures 8–11 show the simu-
lation of the system’s reaction with a load variation of 0.01
p.u and the accompanying responses associated with the
suggested controller, which delivers a superior and faster
response when compared to traditional PID and fuzzy
controllers. Moreover, better frequency response is required
to reduce associated power generation cost. Nonintermittent
power generation units in each of the four zones are re-
sponsible for this.

5.2. Case 02 (System Response with Change of ∆Pw). For
frequency regulation with the efects of wind power, Case 02
considers both intermittent and nonintermittent power
generation in the four areas under study. Variations in solar
power and load are retained as constant, whereas only
variations in wind power are implemented with rising and
falling ∆Pw values. As wind power is an intermittent power
source, it is frequently encountered in the power system.
Figures 12–15 present the fndings of the system response
using the proposed controller to handle these variations in
∆Pw values. Compared to PID and fuzzy controllers, fre-
quency deviation provides a better and faster reaction while
minimizing power generation costs with good frequency
response, meeting the frequency deviation within ±0.5 when
using the FA/FPA algorithm.

5.3. Case 03 (System Response with Change of ∆PS). For
frequency regulation with the efects of solar power, Case 03
considers both intermittent and nonintermittent power
generation in the four areas under study. Only variations in

solar power are implemented with a rise in the value of ∆PS,
while variations in wind power and load remain constant. As
solar power is an intermittent power source, it is frequently
encountered in the power system. Figures 16–19 present the
fndings of the system response using the proposed con-
troller to handle variations in ∆PS values. To maintain better
frequency response, control inputs to nonintermittent
power generation units such as thermal, and CHP are
modifed in a decreasing manner when solar power in-
creases. Simultaneously, the suggested FA/FPA algorithm
reduces power-generating costs by improving frequency
response and achieving a frequency deviation of less than
±0.5.

5.4. Case 04 (System Response with Change of ∆PL, ∆PW, and
∆PS). Case 04 considers both intermittent and non-
intermittent power generation in all four areas for load
frequency regulation with all conceivable system distur-
bances. Tis case connects the problems discussed in the
three earlier cases at the same time. If changes in solar and
wind power are accompanied by increases in the values of
∆PS and ∆PW, and changes in load value are accompanied by
decreases in the value of ∆PL, then the nonintermittent
power generation units must be modifed to suit the power
demand while still being within their constraints to keep the
frequency deviation (+0.5) within a limit. If the non-
intermittent power generation units fail to match the above
criteria, the FA/FPA algorithm-based DMT can be used to
determine the best fexible demand (such as electric vehicle
charging) with a time constraint, which can then be in-
corporated to achieve zero frequency deviation.
Figures 20–23 present the fndings of the system response
using the suggested controller to handle these changes in
∆PL, ∆PW, and ∆PS. Te frequency deviation of the system
for the proposed controller is superior inmaintaining almost

Table 1: Generator data of 62 bus Indian utility system.

Gen.
No.

P i,

min(MW)
P i, max
MW

ai (CU/
(MWhr)2)

bi (CU/
MWhr)

ci (CU/
hr)

Bus
no

Voltage
mag.

Angle
deg. MW Mvar Q min

Q
max

Area

G1 50 300 0.0070 6.80 95 1 1.05 0 192.64 23.55 0 450 2
G2 50 450 0.0055 4.00 30 2 1.05 0 190.58 0.00 0 130 2
G3 50 450 0.0055 4.00 45 5 1.05 0 255.68 0.00 0 255 2
G4 0 150 0.0025 0.85 10 9 1.05 0 78.202 1.218 0 100 2
G5 50 300 0.0060 4.60 20 14 1.05 0 171.08 233.9 0 500 2
G6 50 450 0.0055 4.00 90 17 1.05 0 190.61 0.00 0 0 4
G7 50 200 0.0065 4.70 42 23 1.05 0 151.84 147.9 0 340 4
G8 50 500 0.0075 5.00 46 25 1.05 0 250.24 86.52 0 395 4
G9 0 600 0.0085 6.00 55 32 1.05 0 106.62 0.00 −100 400 3
G10 0 100 0.0020 0.50 58 33 1.05 0 62.380 0.00 0 30 3
G11 50 150 0.0045 1.60 65 34 1.05 0 134.50 41 0 41 3
G12 0 100 0.0025 0.85 78 37 1.05 0 78.533 0.00 0 87 3
G13 50 300 0.0050 1.80 75 49 1.05 0 213.95 0.00 0 80 1
G14 0 150 0.0045 1.60 85 50 1.05 0 92.784 0.00 0 200 1
G15 0 500 0.0065 4.70 80 51 1.05 0 82.957 41.54 0 245 1
G16 50 150 0.0045 1.40 90 52 1.05 0 24.608 35 0 35 1
G17 0 100 0.0025 0.85 10 54 1.05 0 72.633 0.00 0 100 1
G18 50 300 0.0045 1.60 25 57 1.05 0 219.44 0.00 0 20 1
G19 100 600 0.0080 5.50 90 58 1.05 0 339.70 100 100 420 1
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zero frequency deviation compared to other controllers, as
shown in Figures 20–23.

Table 2 shows the MATLAB/Simulink’s numerical re-
sults for the prescribed four-area power system network for
frequency deviation using diferent types of controllers and

power generation cost using diferent optimization tech-
niques. In addition to this, the ANFIS controller [48] was
also tested for the considered network to mitigate frequency
deviation problems. However, the performance was almost
the same as that of the fuzzy controller. It was found that the

Table 2: Performance measures of Proposed Controller.

S. No Case Area Parameter PID controller Fuzzy controller Proposed controller

1. Case 01

Area 01 |Peak Mag| (Hz) 0.0117 0.0112 0.0080
Settling time (sec) 18.44 8.08 6.38

Area 02 |Peak Mag| (Hz) 0.0133 0.0127 0.0091
Settling time (sec) 17.84 8.31 6.65

Area 03 |Peak Mag| (Hz) 0.0131 0.0126 0.0089
Settling time (sec) 17.98 8.38 6.72

Area 04 |Peak Mag| (Hz) 0.0147 0.0140 0.0100
Settling time (sec) 13.44 8.52 6.80

2. Case 02

Area 01 |Peak Mag| (Hz) 0.0222 0.0219 0.0109
Settling time (sec) 67.88 59.37 48.36

Area 02 |Peak Mag| (Hz) 0.0251 0.0248 0.0124
Settling time (sec) 70.34 60.86 49.28

Area 03 |Peak Mag| (Hz) 0.0250 0.0246 0.0122
Settling time (sec) 70.82 60.50 48.88

Area 04 |Peak Mag| (Hz) 0.0279 0.0274 0.0137
Settling time (sec) 69.46 61.45 48.14

3. Case 03

Area 01 |Peak Mag| (Hz) 0.0143 0.0141 0.0112
Settling time (sec) 57.88 49.37 38.36

Area 02 |Peak Mag| (Hz) 0.0162 0.0159 0.0127
Settling time (sec) 60.34 50.86 39.28

Area 03 |Peak Mag| (Hz) 0.0160 0.0157 0.0126
Settling time (sec) 60.82 50.50 38.88

Area 04 |Peak Mag| (Hz) 0.0179 0.0176 0.0140
Settling time (sec) 59.46 51.45 38.14

4. Case 04

Area 01 |Peak Mag| (Hz) 0.0159 0.0154 0.0099
Settling time (sec) 47.12 43.87 36.12

Area 02 |Peak Mag| (Hz) 0.0180 0.0174 0.0110
Settling time (sec) 49.77 45.10 36.84

Area 03 |Peak Mag| (Hz) 0.0177 0.0172 0.0112
Settling time (sec) 48.48 44.78 36.52

Area 04 |Peak Mag| (Hz) 0.0199 0.0192 0.0124
Settling time (sec) 48.06 43.58 35.98

Table 3: ITAE of the proposed controller.

S. No Case Area PID controller Fuzzy controller Proposed controller

1. Case 01

Area 01 0.5023 0.2917 0.2740
Area 02 0.2318 0.2101 0.1681
Area 03 2.6951 1.0208 0.8179
Area 04 0.8214 0.8110 0.7676

2. Case 02

Area 01 0.4797 0.2778 0.2770
Area 02 0.1803 0.1595 0.1592
Area 03 2.1758 0.9932 0.7964
Area 04 0.8200 0.8051 0.7526

3. Case 03

Area 01 0.4952 0.2868 0.2859
Area 02 0.1861 0.1646 0.1644
Area 03 2.2460 1.0253 0.8220
Area 04 0.8388 0.8225 0.7729

4. Case 04

Area 01 0.4970 0.2886 0.2711
Area 02 0.2294 0.2079 0.1663
Area 03 2.6667 1.0100 0.8092
Area 04 0.8127 0.8025 0.7595
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LFC with LSTM provided the best performance with
minimum overshoot and settling time compared to the other
two considered controllers in all four areas. As discussed in
Section 3, the accuracy of the proposed LSTM RNN
methodology can be assessed with the help of ITAE and the
corresponding numerical fgures for all the 4 considered
scenarios that are given in Table 3. It is clear from the results
that the ITAE of the proposed methodology was well
minimized by about 6.54% to 69.65% compared to other
controllers. Power generation cost was also calculated for all
the four distinct situations and depicted in Figure 24. It is
clear that the application of the hybrid algorithm performs
well in optimizing the fexible load demand so that the
optimum generation cost can be obtained with the con-
sideration of bounds in system frequency.

6. Conclusion

Tis work discussed the efect of fast and unpredictable
power variations generated by intermittent power genera-
tion sources and electric vehicles on the frequency stability
of modern power systems. Active power fuctuations in real-
time were investigated using a deep learning strategy based
on a long short-termmemory recurrent neural network.Te
observed power fuctuations could be used as a control
reference for automatic generation control to maintain
better system frequency and obtain optimum generation
cost with the use of FA/FPA based demand management
techniques. Te suggested method was applied to the re-
alistic model of an Indian power system integrated with
distributed generation technology and validated and com-
pared to the classical methods. Simulation results revealed
decent improvements in frequency response performance
indices, as the maximum peak overshoot was decreased by
21.25% to 51.2%, settling time was lowered by about 23.34%
to 65.40% and ITAE was minimized about 6.54% to 69.65%
for the suggested control technique compared to other
controllers. Te simulation results clearly indicate the im-
portance of power fuctuation identifcation as well as the
benefts of the proposed strategy. Te fndings show that the
proposed technique was successful in improving controller
performance by minimizing performance characteristics
such as peak overshoot, settling time, and ITAE.

Nomenclature

Abbreviations
ACO: Ant colony optimization
ALO: Ant lion optimizer
ACE: Area control error
AGC: Automatic generation control
BESS: Battery energy storage system
CO: Chimp optimization
DMT: Demand management technique
EV: Electric vehicle
FA: Firefy algorithm
FA/
FPA:

Firefy algorithm hybridized with fower
pollination algorithm

FPA: Flower pollination algorithm

IAE: Integral absolute error
ISE: Integral squared error
ITAE: Integral time absolute error
ITSE: Integral time-weighted-squared error
LFC: Load frequency control
LSTM: Long short-term memory
PSO: Particle swarm optimization
PFC: Primary frequency control
RBFNN: Radial basis function neural network
RNN: Recurrent neural network
SFC: Secondary frequency control

Parameters
ΔFUL: Dead band upper limit
ΔFLL: Dead band lower limit
ΔPmax

AG : Maximum power output of the EV feet
ΔPmin

AG : Minimum power output of the EV feet
RAG: Model droop coefcient
KEV: EV gain
NEV: Number of connected EVs
TEV: Battery time constant
ΔPEV: Incremental generation change of EV feet
H: Inertia of the synchronous machine
ΔPD: Variation in electrical power demand
ΔPtie,ij: Variation in tie line power between the ithand

jtharea
ΔPm d: Variation in the turbine output power
ΔPw: Variation in wind generator output power
ΔPsin v: Variation in solar inverter output power
D: Machine damping coefcient
Δfi: Frequency deviation of the ith area
TT: Turbine time constant
ΔPg d: Variation in the governor output
ΔPs: Variation in solar power
Tg: Governor time constant
B: Frequency bias constant
R: Governor droop constant
Tinv: Inverter time constant
U: Input variable vector
Y: Output variable vector
X: State variable vector
W: Disturbance vector
i: Input gate
f: Forget gate
o: Output gate
σ: Sigmoid activation function
W: Weight matrices
C: Candidate hidden state
Ct: Internal memory of the unit
ht: Final output of the memory unit
n: Number of areas
Kp: Proportional controller gain
Ki: Integral controller gain
Kd: Derivative controller gain
ΔVmin ,i: Variation in minimum voltage
ΔPd: Variation in electrical power demand
Np: Number of conventional thermal units
Nc: Number of cogeneration units
Ci(P

p
i ): Fuel cost of the conventional thermal units
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Cj(Pj
c, Hj

c)

:
Fuel cost of the cogeneration units

Pi
p: Power generation of the ith conventional

thermal unit
Pj

c: Power generation of the jth cogeneration
thermal unit

αi , βi, ci: Cost coefcients of the conventional thermal
units

aj, bj, cj: Cost coefcients of the cogeneration units.
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