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In the recent decade, renewable energy sources (RES) such as wind and photovoltaic (PV) power generations gained more
attention. However, despite their proven role in the reduction of operating costs of the network, their integration has some serious
challenges such as the inherent uncertainties and the energy balance at the power grid. Some options to face these challenges, as
well as to enhance the network’s flexibility, are demand response (DR), distributed FACTS (D-FACTS) devices, and energy
storage systems (ESS). &is paper focuses on the solution of the unit commitment (UC) problem in such a way that in addition to
increasing the transmission network’s flexibility, the operation cost of the network decreases. To do this, distributed series reactors
(DSRs) are employed as promising D-FACTS devices to enhance the transmission network’s flexibility. &e uncertainty of RES is
handled by the scenario-based stochastic programming technique. A mixed-integer linear programming (MILP) approach is
developed, with a guaranteed global optimal solution, by developing a convex model for power flow in the presence of DSRs. &e
proposed UCmodel is implemented on the IEEE RTS 24-bus system, and the obtained results in different cases show the ability of
the abovementioned flexibilities to reduce the operation cost of the network.

1. Introduction

1.1. Background and Motivation. &e environmental con-
cerns about conventional fossil fuel-based generation units
in power systems have been rising in recent years. Hence,
many electricity networks have begun to increase the share
of renewable energy sources (RES) in line with the national
and international sustainability goals. Uncertainty in the
generation of power by RES may upset the balance between
power generation and demand and endanger system security
and increase the network operation costs [1]. In addition,
there is a need to more ramping capability by thermal units
in the presence of high levels of RES, which ultimately re-
duces the proper utilization of the existing network. Ac-
cordingly, the major challenge for power system operators is
how to operate the network to gain the benefits of RES, as
well as to better utilize the existing transmission network.
According to the existing studies, there is a need for a flexible

power transmission grid to handle this challenge and de-
termine the optimal hourly scheduling of both generation
and transmission networks. Proposed solutions include the
use of energy storage systems (ESS) [2], the use of demand-
side programs such as demand response programs (DRPs)
[3], and the use of flexible AC transmission system (FACTS)
devices to add more flexibility to the transmission grid [4].
By proper coordination between these flexibilities via a unit
commitment (UC) framework, transmission system con-
gestion can be mitigated. Consequently, more RES can be
injected to the network as well as the operational cost the
entire system will be reduced.

1.2. Literature Review. Numerous studies have been con-
ducted around the world, each addressing one aspect of this
challenge facing the electricity industry. For instance, in [5],
a stochastic computational model for D-FACTS devices and
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their study on power flow in power systems was presented.
In [6], the application of distributed series reactors (DSRs) in
reducing line congestion and consequently congestion costs
in the electricity market has been introduced. In [7], by
increasing the load on the lines in normal conditions and
contingency of units, the effect of adding distributed FACTS
(D-FACTS) devices on a specific part of the transmission
network was discussed. Reference [8] deals with the optimal
energy storage capacity in smart grid performance. In this
paper, the capacity of energy storage utilization has been
reduced via demand response (DR). In [9], the aim is to add
wind farm generation that has the nature of uncertainty as
one of the sources of the reservation to the problem. To
match the nature of the uncertainty of wind products with
the network, the DRP has been used. Reference [10] deals
with how to combine demand dispatch with forecasting
wind power generation, which helps to coordinate wind
farm production with the power system in the operation of
power systems. Reference [11] has performed the DRPwith a
direct load control method to reduce operating costs via
mixed-integer programming. In [12], DRPs with plugged-in
electric vehicles are considered as security constraint UC by
a two-stage stochastic mixed-integer programming problem.
&e uncertain demand in the presence of modular FACTS
devices was investigated in [13].

1.3. Contributions. In this paper, the DR, ESS, and DSR as
D-FACTS are coordinated to improve the power system
flexibility in the presence of uncertain RES. To handle the
uncertainty of RES, scenario generation and reduction are
used, and a scenario-based stochastic model is developed
considering the impact of the flexibilities via a compre-
hensive network-constrained UC model, which aims at
decreasing the operation cost and improving the network’s
power transfer capability.

&e aim is to develop a novel and computationally ef-
ficient model for UC by considering the flexible transmission
network via DSR incorporation. By considering the DSR,
power flow in transmission lines can be controlled in both
directions, and consequently more flexibility will be avail-
able to obtain lower operational costs. However, handling
power flow constraints in the UC model in the presence of
DSR could be challenging, as these constraints will no longer
be linear. With respect to the existing literature, this work
proposes a novel linear and computationally efficient model
for the network-constrained UC problem in the presence of
D-FACTS (such as DSR). By using the developed model, it is
possible to determine the optimal scheduling of D-FACTS in
coordination with other flexibilities such as DR and ESS
through a standard network-constrained UC mode. As the
developed model is a mixed-integer linear programming
(MILP) optimization model, the global optimal solution can
be attained.

1.4. Paper Organizations. &is paper is organized in five
sections. In Section 2, the UC problem formulation is given
by considering RES and ESS constraints. In Section 3, a
convex model is developed for UC by including the DSRs in

transmission network. Numerical results are investigated
and analyzed in Section 4. Finally, Section 5 concludes the
paper.

2. UCProblemFormulation by considering RES
and ESS

In this section, a scenario-based stochastic model for the
network-constrained UC problem is formulated, by con-
sidering the impact of RES, DR, and ESS.

2.1. Objective Functions. &e objective function of the
problem includes the total operation costs of thermal units,
DRP incentive costs, and curtailment cost of renewables (i.e.,
wind and solar), which is expressed in (1)

minOF�w1×􏽘
i.t

FCi.t +STCi.t +SDCi.t( 􏼁+w2
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where w1, w2, and w3 are simply weighting factors to include
the impact of each cost term in the overall objective function,
OF. In (1), the first term consists of the fuel cost of thermal
generation units that is described in a piecewise linear form
in (2)–(10) [14] and also the shut down and startup costs of
units, which are calculated from (11) to (12)
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STCi,t � Csi × yi,t, (11)

SDCi,t � Sdi × zi,t. (12)
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&e second line in (1) is the overall incentive paid to the
loads, which are participating in the DR program. &is
incentive function is expressed as follows [11]:

ρ ΔDb
(t)􏼐 􏼑 � h(t) × incmin

b,t􏼐 􏼑
2
φb,t + 􏽘

k

Slopek
b,t × inck

b,t.

(13)

&e economic model of DR is defined in (13).&is model
is used to evaluate the impact of consumer participation in
DR on the load profile. It should be noted that the proposed
model is based on an incentive DRP, which includes an
emergency DRP, which has been more attended in recent
years [11].

&e third line in (1) is related to the curtailment of wind
and solar power, where πs indicates the probability value of
each scenario.

It is worth noting that as all terms in (1) are cost
components, their simple summation makes the sense of
overall operation cost of the network in the UC model.
Considering different weights for different terms of cost in
(1) means that only the cost coefficient (e.g., manipulating
the cost coefficients for thermal power generation) changes.
As the aim is not to solve a multi-objective optimization
problem (in where there are some conflicting objective
functions), considering different weightings for the cost
components in Equation (1) does not give any further
meaning, and it only means the cost coefficients of different
components change by simply increasing or decreasing the
energy cost or DRP service or RES curtailment cost. &ese
weighting factors simply show the relative importance of
each cost component for the system operator.

2.2. Problem Constraints. Ramp rate limits are given in
equations (14)–(18)

PG i,t ≤PGi,t ≤PGi,t, (14)

PGi,t ≤PG
max
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Constraints (14) and (17) indicate the range of changes in
power generation of each unit, and constraints (15), (16), and
(10) indicate the limit on the amount of power change when
the units are ON and OFF. &e relationship is related to the
ON/OFF status of the units, and the logical constraints
related to it are expressed in (19)–(21)

yi,t − zi,t � ui,t − ui,t− 1, (19)

yi,t + zi,t ≤ 1, (20)

yi·t, zi·t, ui·t ∈ 0, 1{ }. (21)

If a thermal unit generates power (ON status), it must
remain committed according to (22)–(25) to a specified time
period
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Also, if a unit is OFF, it must remain OFF according to
(26)–(29) to a certain time horizon

􏽘

Fj

k�1
ui,t􏽨 􏽩 � 0, (26)

Fj � Min T · DTi − S
0
i􏼐 􏼑 · 1 − ui,0􏽨 􏽩􏽨 􏽩, (27)

􏽘

t+UTi− 1

h�t

1 − ui,t􏽨 􏽩≥DTizi,t ∀h � Fj + 1, . . . , T − DTi + 1,

(28)

􏽘

T

h�t

1 − ui,t − zi,t􏽨 􏽩≥ 0∀h � T − DTi + 2, . . . , T. (29)

DR constraints are given in equations (30)–(32)
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where:
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φb,t ≤ NDRP(t)∀t ∈ T. (32)

Equations (30) and (31) show the limits on the amount of
incentive paid to customers participating in the DRP, and
(32) indicates the limit on the number of DR resources.

To model the uncertainty of wind and solar radiation, it
is assumed that the behavior of these two models is based on
the possible distribution functions of Kayal and Chanda [15].
&e scenario is generated for each of the possible distri-
butions using the Monte Carlo simulations, based on the
standard deviation and the average of their predicted hourly
values. Random wind and solar production quantities are
generated using the Monte Carlo method, but due to the
high number of scenarios and computational burden of the
problem, by using scenario reduction methods, the large set
of generated scenarios is reduced to a much smaller set and
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the problem will be solved faster. Here, the k-means data
clustering method is used to reduce the number of scenarios
[16]. For the wind farm or solar farm connected to bus b at
time t and scenario s, the following constraints are
considered:

P
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Equations (33) and (34) are wind power curtailment and
wind farm power generation capacity range in which P

w

b,t,s

indicates the available power of the wind farm connected to
bus b at time interval t and scenario s. Equations (35) and
(36) are also related to the solar power curtailment and the
power output range of the PV system, where P

p

b,t,s indicates
the available solar power generation in the solar farm
connected to bus b at time interval t and scenario s.

Also, the ESS charging and capacity constraints are given
by (37)–(40) [17]

SOCb,t,s � SOCb,t− 1,s + P
c
b,t,sηc −

P
d
b,t,s

ηd

⎛⎝ ⎞⎠,(37)

0≤P
c
b,t,s ≤P

c

b, (38)

0≤P
d
b,t,s ≤P

d

b , (39)
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Equation (41) gives the nodal active power balance of the
network, where the power flowing through the transmission
lines is expressed in (42) as a linear function of nodal angles
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(42)

In (41), the first line deals with the generating capacity of
thermal units, wind and solar farms, and the power charge/
discharge of ESS. &e second line consists of two parts; the
first part (i.e., (1 − ξ)PDb,t) is the loads that do not par-
ticipate in the DRP and the remaining part is related to the
loads participating in the DRP.

3. Network-Constrained UC Model in the
Presence of DSR

&e transmission system congestion increases the operating
costs of the network. &is led the system users to make
decisions to prevent congestions in transmission lines or
even in some cases from overload in system. D-FACTS
devices are cheaper, smaller, and sampler than conventional
FACTS devices and can typically be quickly installed on
transmission lines. D-FACTS devices are basically divided
into three types: distributed static series compensation
(DSSC), DSR, and distributed series impedance (DSI) [18].
DSRs are capable of enhancing the available capacity of a
transmission system by moving the flow from heavily loaded
lines to the lines that have unused capacity. Hence, DSRs can
add flexibility to the transmission network if their on/off
operational status is determined via a coordinated manner.

In this paper, due to the presence of DSR on the lines, the
line susceptance (i.e., Bb,n,t) changes according to the value
of the DSR device installed in the line. &is flexibility of the
DSR can change both the magnitude and the sign of power
flowing through the line. &erefore, (42) will be a non-linear
equation, as the term Bb,n,t(θb,t,s − θn,t,s) is appeared. In the
following, a novel formulation is proposed to linearize (42)
and hence to keep the convexity of the overall model. First,
by defining θb,n,t,s � θb,t,s − θn,t,s , the direction of power
flowing through the line connecting buses b and n is written
in a general form as follows:

Pb,n,t,s � P
+
b,n,t,s − P

−
b,n,t,s, (43)

0≤P
+/−
b,n,t,s ≤Pb,n,t,s × I
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−
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I
+
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−
b,n,t,s ∈ 0, 1{ }. (46)

&e above equations imply that for a given scenario s and
time interval t, if the direction of power is from bus b to bus
n, then I+

b,n,t,s � 1; otherwise, I−
b,n,t,s � 1, whichmeans that the

power is flowing in the opposite direction, i.e., from bus n to
bus b.

Due to the presence of DSRs on the lines, the line
susceptance changes with DSR operation as follows:

B
0
b·n − Δmin

b,n × db,n,t ≤Bb,n,t ≤B
0
b,n. (47)

In (47), the binary variable db,n,t is related to the DSRs
ON/OFF status on the line connecting buses b and n. Similar
to (43) and (44), as θb,n,t,s can be both positive (i.e., when the
power flow direction is from bus b to bus n) or negative (i.e.,
when the power flow direction is from bus n to bus b), the
following equations can describe the sign of θb,n,t,s:

θb,n,t,s � θ+
b,n,t,s − θ−

b,n,t,s, (48)

0≤ θ+/−
b,n,t,s ≤ θ

−
b,n,t,s × I

+/−
b,n,t,s. (49)

&us, from (42) and (48), the power flowing between
buses b and n can be written as follows:
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Pb,n,t,s � Bb,n,t θ+b,n,t,s − θ−b,n,t,s( ) � Bb,n,tθ
+
b,n,t,s − Bb,n,tθ

−
b,n,t,s.

(50)

By de�ning P+/−b,n,t,s � Bb,n,tθ
+/−
b,n,t,s, (47) can be rewritten as

follows, by considering (50):
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By considering (50), this means:
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0
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+/−
b,n,t,s. (52)

In the above inequality, the product of a binary variable
(i.e., db,n,t) and a positive real variable (i.e., θ+/−b,n,t,s) is
appeared. Now, by de�ning Z+/−b,n,t,s � db,n,tθ

+/−
b,n,t,s, the above

inequality can be linearized as follows:

B0b,nθ
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0
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Z+/−b,n,t,s ≤ db,n,tθb,n, (54)
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+/−
b,n,t,s, (55)

Z+/−b,n,t,s ≥ θ
+/−
b,n,t,s − 1 − db,n,t( )θb,n, (56)

Z+/−b,n,t,s ≥ 0. (57)

In summary, the non-linear equation (42) is linearized
by considering (43)–(46), (48), (49), and (53)–(57). It is
worth noting that the proposed reformulation allows the
optimization model to determine the optimal direction of
power �owing through the branches, be optimal switching of
DSRs.

Finally, the line power limit and the maximum number
of DSRs that can be operated in the ON state are limited by
the following constraint:

Pb,n ≤Pb,n,t,s ≤Pb,n, (58)

∑
b,n

db,n,t ≤ 2 ×N
max
DSR. (59)

4. Simulation Results

4.1. Data. �e studied network is the IEEE-RTS 24-bus
network. According to Figure 1, this transmission system
includes 12 power plants, 2 wind farms in buses 8 and 18,
and 2 solar farms in buses 3 and 22, as well as 2 ESS in buses
15 and 19, 34 transmission lines, and 17 load buses [17]. �e
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Figure 1: IEEE-RTS 24-bus network with some modi�cations.
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total network load in the peak hour is 2992.5MW. A uni-
form hourly demand profile is considered for all load buses,
and their hourly demand factor (as a percentage of the peak
demand) is also given in Table 1. Moreover, the hourly price
of electricity consumption is also given in this table.

&e percentage of the nodal load participation in the
DRP (i.e., ζ) is assumed to be 40%. It is also assumed that
DSR is installed on all lines. &e proposed UC model is
implemented in the General Algebraic Modeling System
(GAMS) software environment and solved by Gurobi solver
[19], which is a high-quality solver to deal with MILP op-
timization models. DSR flexibility is assumed to be equal to
Δmin

b,n � 0.20 × B0
b,n [17].

4.2. Case Studies. In this paper, the aim is to reduce the
operating costs defined in (1), so simulations are done in
four cases as follows:

(i) Case study 1 (UC): In the first case study, the
conventional network-constrained UC problem is
solved without considering RES, DR, and DSR. &is
case is the base case for impact evaluation of the
aforementioned flexibilities.

(ii) Case study 2 (UC-DR): In the second case, the DRP
is added to the UC model and its effect on reducing
operating costs and the amount of incentives for the
reduction of nodal demand, as well as the peak
loads, will be investigated.

(iii) Case study 3 (UC-DR-DER): In the third study, the
presence of distributed energy resources (DERs)
including RES and ESS, is studied by considering
the inherent uncertainty of RES via the above
scenario-based stochastic programming model.

(iv) Case study 4 (UC-DR-DER-DSR): In the last study,
the proposed MILP model for the inclusion of DSRs
in the network-constrained UC model is studied. In
this study, all flexibilities such as DRP, RES, ESS,
and DSR are considered.

It is noteworthy that in all cases the weighting factors in
(1) are assumed to be unit (i.e., w1 � w2 � w3 �1), which
means the same importance of all cost components for the
system operator.

4.2.1. Case Study 1(UC). &e total operating cost in this case
is $ 507,859.42, which merely is the cost of power generation
by the thermal units, as in this case there are no RES and
DRP. Table 2 shows the on/off status of the units in different
case studies. Units G1-G4, G6-G8, and G12 are committed
in the entire operation horizon in all case studies, and there
is no change in their commitment. &erefore, in Table 2,
only the units that their on/off status has changed in different
cases are given.

4.2.2. Case Study 2 (UC-DR). In this case, the network-
constrained UC model is solved by considering the DRP.
Table 3 shows the hourly price sensitivity coefficients of the
loads participating in DRP. &ese price elasticity coefficients
are adopted from [11].

&e optimal value of the total cost in this case is $
487,808.90, which is 3.95% lower than the cost obtained in
Case study 1, as a result of DRP utilization. &e on/off status
of thermal generation units in this case is given in Table 2.
&e entities shown in gray are the commitment states in this
case, which are different from the base case (i.e., Case study
1). In this case, some units switched off compared to the base
case; for example, unit G11 has been completely shut down,
and the unit G9 switched off in the interval t16–t22. In this
case, the binary variable φb,t is introduced in equations
(30)–(32) to determine the buses participating in the DRP.
In this case, all 17 load buses are participating in DRP in the
entire horizon, whichmeans φb,t � 1 for all 17 load buses.&e
incentive of customers who participated in the DRP in this
case is $ 9991.96.

4.2.3. Case Study 3 (UC-DR-DER). &is study includes the
presence of RES such as wind energy and solar energy, as
well as ESS. &e ESS and DRPs are used to handle the in-
herent uncertainty RES and their better integration. Two
wind farms are connected to buses 8 and 18, each with a
capacity of 200MWm and two solar parks are connected to
buses 3 and 22, each with the capacity of 50MW. To reduce
the RES power curtailment, two ESSs, each with a capacity of
200MWh, are connected to buses 15 and 19. Both the wind
curtailment cost (λW

C ) and photovoltaic curtailment cost

Table 1: Initial load and hourly load demand of each hour.

Time (h) Load price ($/MWh) Hourly load factor Time (h) Load price ($/MWh) Hourly load factor
t1 17.6 0.467 t13 22.75 0.933
t2 17.62 0.495 t14 20.36 0.867
t3 17.64 0.567 t15 20 0.800
t4 20 0.635 t16 17.65 0.703
t5 20.3 0.667 t17 17.66 0.667
t6 20 0.733 t18 17.68 0.733
t7 17.63 0.765 t19 20 0.800
t8 17.63 0.800 t20 22.53 0.933
t9 20.5 0.867 t21 20.4 0.867
t10 22.8 0.933 t22 17.65 0.733
t11 23.4 0.967 t23 17.64 0.600
t12 26 1.000 t24 17.62 0.533
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(λPV
C ) are assumed to be 50 $/MWh. ESS data are given in

Table 4.
Probabilities related to solar radiation and wind blowing

were selected based on the standard deviation and the av-
erage of their predicted hourly values in the summer season
from Ref [15]. Randomwind and solar production quantities
are generated using the Monte Carlo method by generating
the number of 1000 scenarios; by using scenario reduction
methods, the large set of generated scenarios is reduced to 10

scenarios. Here, the k-means data clustering method is used
to reduce the number of scenarios [16]. Besides, the prob-
abilities of reduced scenarios are given in Table 5.

A similar wind profile is assumed for both WFs, and the
same solar irradiance is considered for both PV farms. &e
available wind and PV power generations in different re-
duced scenarios are given in Figures 2 and 3, respectively.

&e on/off status of thermal units in this case study is
shown in Table 2. It can be seen that the units G10 and G11

Table 2: &ermal units’ on/off status in different case studies.

Time (h)

Case study #

1 2 3 4
&ermal unit number

G5 G9 G10 G11 G5 G9 G10 G11 G5 G9 G10 G11 G5 G9 G10 G11
t1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t6 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
t7 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0
t8 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0
t9 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0
t10 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0
t11 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0
t12 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0
t13 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0
t14 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0
t15 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0
t16 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0
t17 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0
t18 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0
t19 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0
t20 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0
t21 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0
t22 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0
t23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Price elasticity of load.

Time (h) t1–t5 t6–t9 t10–t14 t15–t19 t20–t24
t1–t5 − 0.08 0.03 0.034 0.03 0.034
t6–t9 0.03 − 0.11 0.04 0.03 0.04
t10–t14 0.034 0.04 − 0.19 0.04 0.01
t15–t19 0.03 0.03 0.04 − 0.11 0.04
t20–t24 0.034 0.04 0.01 0.03 − 0.19

Table 4: ESS data.

Parameter SOC0 SOC SOC Pd Pd Pc Pc ηc � ηd

Value 100MWh 200MWh 40MWh 40MW 0 40MW 0 95%

Table 5: Probability of each scenario.

Scenarios s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
Probability 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023
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have been completely switched o� in this case, and the
operating cost is $ 43,120.15, which shows a 15.09% decrease
with respect to the base case (i.e., Case study 1). �e use of
DERs has a great impact on reducing the costs. Figure 4
shows the performance of the ESSs in di�erent scenarios at
buses 15 and 19. �e total amount of the DRP incentive in
the third case study is $ 10,167.91.

4.2.4. Case Study 4 (UC-DR-DER-DSR). In this case, the
network-constrained UC problem is solved by considering
all �exibilities, including DRP, DERs, and DSRs. As afore-
mentioned in Section 3, the scheduling binary variable of
DSRs on the transmission lines is modeled by db,n,t. �e
maximum number of lines where the DSRs can be ON at any
speci�c interval, i.e., Nmax

DSR in (59), is assumed to be 29. �e
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obtained optimal cost in this case is $ 427877.17, which
shows a 15.74% reduction compared to Case study 1. �e
commitment status of the units in this case is also given in
Table 2.

Table 6 shows the obtained on/o� schedule of DSRs in
the entire operation horizon. It can be seen that only the 12
lines’ DSRs are switched on/o� in the entire horizon, and the
remaining 17 lines’ DSRs are switched o� entirely. Besides,
Table 7 gives the optimal hourly dispatch of thermal units in
this case, where the changes in optimal hourly schedules
with respect to Case study 1 are highlighted.

Also, the modi�ed hourly demand pro�le of the network
for all cases is shown in Figure 5. According to this �gure, it
can be seen that the peak demand has been reduced by
applying the various �exibilities and the role of DRP in the
demand pro�le modi�cation is considerable, as there are no

signi�cant changes in this pro�le in cases 3 and 4 with
respect to Case study 2 (i.e., UC-DR).

Table 8 summarizes the total cost and incentives of DRP
in di�erent cases. According to this table, it can be observed
that the operating costs of thermal units in the second, third,
and fourth cases have decreased compared to the base case.
In the third case, by utilization of DERs (i.e., RES and ESS),
the operation cost of the network reduces signi�cantly. It is
also observed that the cost of encouraging the customers to
participate in DRP in the third and fourth case studies has
been decreased compared to that of the second case, which
shows the impact of DERs and DSRs on the grid’s need to
demand modi�cation. �is coordinated scheduling of
thermal generation units and available �exibilities in the
transmission network will result in the lowest cost solutions
to the network operators.
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4.3. Sensitivity Analysis. In this section, the impact of dif-
ferent weighting coefficients in Equation (1) is studied.
Besides, the proposed UC model is solved for different
number of reduced scenarios. All analyses are done for the
model studied in Case study 4.

4.3.1. Impact of Different Weighting Factors. To check and
analyze the results, different simulations are done considering
different weight coefficients on the final model. In each sim-
ulation, the effect of each part of the OF on the final result can
be seen and checked, and the results are given in the following.

Table 6: DSRs on/off status in Case study 4.

Time (h)
Line #

L1 L2 L3 L5 L6 L9 L10 L11 L18 L19 L20 L21
t1 0 0 0 0 0 0 0 0 0 0 0 0
t2 0 0 0 0 0 0 0 0 0 1 0 0
t3 0 0 0 0 0 0 0 0 1 0 0 0
t4 0 0 0 0 0 1 0 0 0 0 0 0
t5 0 0 0 0 0 0 0 0 1 0 1 0
t6 0 0 0 0 0 0 0 0 0 0 0 0
t7 1 0 0 0 0 0 0 0 0 1 1 1
t8 0 0 0 0 0 0 0 0 0 0 0 0
t9 0 0 0 0 0 0 0 0 1 1 0 1
t10 0 1 1 1 1 0 0 0 0 1 0 1
t11 0 1 0 0 1 0 0 1 0 1 1 0
t12 0 0 0 0 1 0 1 0 1 1 0 0
t13 0 0 0 0 0 0 0 0 0 1 0 0
t14 0 0 0 0 0 0 0 0 1 0 1 0
t15 0 0 0 0 0 0 0 0 0 1 0 0
t16 0 0 0 0 0 0 0 0 0 0 0 0
t17 0 0 0 0 0 0 0 0 0 0 0 0
t18 0 0 0 0 0 0 0 0 0 0 1 0
t19 1 0 0 0 0 0 0 0 0 0 0 0
t20 0 0 0 0 0 0 0 0 0 1 0 0
t21 0 0 0 0 0 0 0 0 0 0 0 0
t22 0 0 0 0 0 0 0 0 0 0 1 1
t23 0 0 0 0 0 0 0 0 0 0 0 0
t24 0 0 0 0 0 0 0 0 0 1 1 0

Table 7: Optimal hourly generation schedules (in MW) in Case study 4 (compared with Case study 1).

Time (h)
Unit #

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
t1 253 313 40 41.6 0 54.3 205 184 0 0 0 300
t2 264 266 54 55.6 0 71 226 212 0 0 0 271
t3 311 313 68 69.6 0 92 247 240 0 0 0 300
t4 358 360 82 83.6 0 113 268 268 0 0 0 300
t5 400 388 96 97.6 0 134 289 296 0 0 0 300
t6 400 400 110 112 0 155 310 324 0 0 0 300
t7 400 400 124 126 65 155 310 350 0 0 0 300
t8 400 400 138 138 65.1 155 310 350 75 0 0 300
t9 400 400 152 152 86.1 155 310 350 123 0 0 300
t10 400 400 138 138 96.3 155 310 350 75 0 0 300
t11 400 400 138 138 117 155 310 345 83.2 0 0 300
t12 400 400 152 152 138 155 310 350 132 0 0 300
t13 400 400 138 138 117 155 310 322 83.2 0 0 300
t14 362 400 124 124 96.3 134 289 294 75 0 0 300
t15 400 400 110 110 75.3 155 310 288 75 0 0 300
t16 353 353 96 96 54.3 134 289 260 75 0 0 300
t17 353 353 110 110 54.3 113 268 278 75 0 0 264
t18 400 400 124 124 0 134 289 306 80 0 0 300
t19 400 400 138 138 65 155 310 334 129 0 0 300
t20 400 400 152 152 119 155 310 350 178 0 0 300
t21 400 383 138 138 98 134 289 322 129 0 0 300
t22 353 336 124 124 77 113 268 294 80 0 0 262
t23 306 289 110 110 0 92 247 266 0 0 0 248
t24 259 242 96 96 0 71 226 238 0 0 0 256
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�e OF, which is the minimization of operating costs,
consists of three main parts. �e �rst part is related to the
cost of switching on and o� and the cost of operating the
thermal units, the second part is related to the incentive cost
that is given to the consumers who have participated in the
DRP, and the third and last part is related to the operating
costs and energy interruption of the solar and wind park.

According to Table 9, it can be seen that by considering
di�erent sets of the weighting coe¢cients for the OF in (1),
signi�cant changes can be observed in the costs. As the �rst
term of OF, i.e., the cost of thermal generation units has the
highest impact on the overall value ofOF, it can be seen from
Table 9 that in cases where w1 is higher than w2 and w3, the

proposed UC problem aims to reduce the thermal genera-
tion cost, such that its minimum level is $393520.38 for
w1� 1, w2�w3� 0. For the other components of cost, i.e.,
DRP incentive and RES curtailment cost, the same behavior
could be observed. For example, the minimum level of RES
curtailment cost is $ 9236.04, which is obtained for w3�1,
w1�w2� 0.

4.3.2. Impact of Di�erent Sets of Reduced Scenarios. In
general, the model is based on scenarios generated from
solar radiation and wind, which are included in the simu-
lation process using the scenario-based model and k-means
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Figure 5: Load curves in all case studies.

Table 8: Comparison costs in di�erent case studies.

Case study # Model Total cost ($) Total incentive for DRP ($) Reduced costs compared to UC (%)
1 UC 507859.42 — —
2 UC-DR 487808.90 11275.33 3.94
3 UC-DR-DER 431201.51 10167.91 15.09
4 UC-DR-DER-DSR 427877.17 9991.96 15.74

Table 9: �e OF values for di�erent weighting coe¢cients.

(w1, w2, w3) �ermal generation cost ($) DRP incentive ($) RES curtailment cost ($) OF ($)
(1.0, 1.0, 1.0) 406852.05 9991.96 11033.16 427877.17
(1.0, 0.5, 0.5) 401151.23 16511.56 11861.68 415337.85
(0.5, 1.0, 0.5) 420258.72 4885.72 11527.42 218335.93
(0.5, 0.5, 0.1) 407921.28 9899.68 10630.96 219541.44
(1.0, 0.0, 0.0) 393520.38 213170.00 63775.84 393520.38
(0.0, 1.0, 0.0) 1180600.00 0 225330.00 0
(0.0, 0.0, 1.0) 1130100.00 232780.00 9236.04 9236.04
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scenario-reduction technique. Running the model without
scenario reduction is not computationally feasible, despite
the convexity of the proposed optimizationmodel. Hence, as
aforementioned, k-means clustering method is employed in
this paper for scenario reduction.&e simulations were done
for various numbers of reduced scenarios (5, 10, 15, 20, and
25) for Case study 4 (which is the most comprehensive case
by considering all DR, DER, and DSR). &e overall cost (i.e.,
OF in (1)) obtained for different sets of scenarios is com-
pared in Table 10. It is observed from this table that con-
sidering different sets of reduced scenarios will result in
different values for OF, such that generally by increasing the
number of scenarios, the obtained OF increases slightly.

5. Conclusions

In this paper, an MILP model is proposed for the network-
constrained UC problem, by considering the impact of DSRs
on adding more flexibility to the transmission grid. In ad-
dition to DSR, other flexibilities such as DRP, RES, and ESS
are also considered to supply the demand, as well as to
increase the system ability in congestion relief of trans-
mission network.&e conclusions can be outlined as follows:

(i) According to the results, it was observed that DR is
effective at the peak demand interval and reduced
the peak load. Hence, the operational costs reduced
by implementation of the incentive-based DR
program.

(ii) &e presence of RES in the grid, which included PV
and wind farms with ESS, resulted in a significant
reduction in operating costs.

(iii) Enhanced transmission network flexibility by DSRs
through the proposed convex UC model can result
in further cost reduction by the optimal scheduling
of DSRs.

(iv) By considering different weight coefficients, it is
possible to achieve global optimal solutions differ-
ent from the original solution, but the weight co-
efficients can be changed according to the opinion
of the system operator.

Nomenclature

Set and indices
T: Set of the time period
NG: Set of all generation units
NGb: Set of generation units connected to bus b
Ωb: Set of all buses

NS: Number of segments in linearizing
t, h: Hour index
b, n: Index of bus and node
s: Index of scenario
k: Index of block k in linearizing
i: Index for thermal generating units
Parameters
Sdi · CSi: On/off cost for thermal unit i ($/h)
SUi · SDi: Startup and shutdown limits for thermal

unit i
RDi · RUi: Ramp-up and ramp-down limits in thermal

unit i
DTi · UTi: Downtime and uptime limits in thermal

unit i
U0

i /S
0
i : Time periods that unit i has been on/off at

the beginning of the scheduling horizon
ui·0: Initial status of unit i
NG: Number of thermal generating units
Nmax

DSR: Maximum number of DSRs
λW

C , λPV
C : Wind/PV curtailment cost ($/MWh)

Δmin
b,n : Minimum possible variation from the initial

suspension of the transmission line l
PGmin

i , PGmax
i : Minimum/maximum generation limit of

unit i
ΔPk

i : Interval length k at the linear cost of unit i
PGi,t, PG i,t: Maximum/minimum generation limit of

unit i at time t
Pk

ini, Pk
fin: &e initial and final power values of section

k in the linear cost of heating unit i
Ck

ini, Ck
fin: Initial and final cost values of section k,

linear cost of unit i ($)
Sk

i : Cost slope in section k, related to the linear
cost of unit i (MW/h)

ai, bi, ci: i-th thermal unit’s fuel cost coefficients
πs: Probability of scenario s
P

c/d
b : Maximum charging/discharging power of

the ESS connected to bus b
P

w/p
b,t,s: Maximum power generation capacity of

WTs/ PVs at bus b, time t, and scenario s
P

wc/pc

b,t,s : Wind/PV power curtailment at bus b, time
t, and scenario s

Slopek
b,t: &e slope of the k segment for bus b at time t

in the linearization of the DRP
Bb,n,t: &e effective susceptance of the line

connecting buses b and n at time t
PGi,t: Active power generated by the i-th thermal

unit at time t
P

w/p
b,t,s: Power generated in the wind/solar farm, at

bus b, time t, and scenario s
Z+/−

b,n,t,s: Auxiliary variables for modeling the DSR’s
impact on power flowing through lines

τa(t): A variable to categorize the penalty level
PDb,t: &e demand of bus at time t
incmin/max

b,t : Minimum/maximum incentive to bus at
time t ($/ MWh)

inc k
b,t, inc

k

b,t: Incentive at the beginning/end of section k
Pb,n/Pb,n:

Table 10: &e value of TC for different number of scenarios.

Number of scenarios OF ($)
5 428154.57
10 427877.17
15 436725.63
20 438372.99
25 446201.08
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Maximum/minimum power limit across
the line connected to buses b and n

PRb(t): Price of electricity in bus b at time t ($/
MWh)

ξ: Percentage of load that participates in DRPs
PRb

0(t): Initial cost of electricity at bus b at time t ($/
MWh)

θb,n: Maximum limit voltage angle across the line
connecting buses b and n

NDRP(t): Maximum number of demand response
sources at time t

B0
b,n: Initial susceptance of the lines connecting

buses b and n
SOCb, SOC b: Maximum/minimum energy stored in the

ESS connected to bus b
P

c/d
b : Maximum charge and discharge power of

ESS in bus b
ηc,d: ESS charge and discharge efficiency (%)
PG i,t, PGi,t: Minimum/maximum generation limit of

unit i at time t
w1,2,3: Weighting factor for each cost term of the

objective function
E(t, t), E(t, j): Self/cross-load elasticity factors

Variables
STCi, SDCi: Start p and shutdown costs of the i-th thermal

unit
SOCb,t,s: State of charge for the ESS connected to bus b

at time t and scenario s
Pc/d

b,t,s: &e charging/discharging power of the ESS
connected to bus b at time t and scenario s

ui,t: Binary variable that shows the on/off status of
unit i at time t

yi,t: Binary variable that indicates the i-th unit’s
startup status

zi,t: Binary variable that indicates the i-th unit’s
stop status

θb,n,t,s: Voltage angle difference between buses b and n
at time t at scenario s

θ+/−
b,n,t,s: Auxiliary variable defined for the voltage angle

difference between buses b and n at time t at
scenario s

Pb,n,t,s: Active power flowing the line that connects
buses b and n at time t at scenario s

Pk
i,t: Operation planning of unit i in section k at

time t
Db

DR(t): &e demand of bus b at time t after the DR
application

incb
opt: Optimal incentive to the buses ($/ MWh)

inck
b,t: Optimal incentive to bus in section k ($/

MWh)
ρ(ΔDb(t)): Total incentive for DRP
φb,t: Binary variable shows the participation of bus

b at time t in the DRP
ΔDb(t): &e difference between consumer demand and

demand participation in the DR program
h(t): Demand response time (h)
P+/−

b,n,t,s:

Auxiliary variable defined for the active power
flow of the line connecting buses b and n at
time t and scenario s

I+/−
b,n,t,s: Auxiliary binary variable defined for modeling

the active power in the line connecting buses b
and n at time t and scenario s

db,n,t: Binary variable related to the DSRs on/off
status on the line connecting buses b and n at
time t

FCi,t: Fuel cost of thermal unit i at time t.
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