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In this article, a simplifed sine cosine algorithm (SSCA) is applied to solve the optimal reactive power dispatch (ORPD) issues by
estimating the control variables. Tis algorithm uses sine cosine functions and generates number of random solutions to obtain
the best solution by fuctuating inwards or outwards. Te SSCA is implemented in the ORPD problem to fnd the best control
variables to achieve minimum power loss and maximum net savings. Furthermore, the efcacy of SSCA is validated with other
recently used algorithms considering three case studies, i.e., IEEE-30, -57, and -118 bus test system.Te results show that the SSCA
approach fnds more precise and superior ORPD solutions. A comparison among SSCA and other methods proves the robustness
of SSCA to attain the solution with faster convergence. Te statistical analysis is performed to justify the efectiveness of SSCA by
yielding minimum operating cost and maximum net savings as compared to other techniques considered in this study.

1. Introduction

With the increased growth of industrial and residential load
demand, the transmission network has become stressed. Te
construction of new generating stations is not reccom-
mended because of environmental and economic factors.
Hence, the power transfer ability of the transmission lines
has to be enhanced by the efective use of the existing
networks. Since the last few decades, FACTS devices
emerged to improve the performance of the power system by
changing the AC transmission parameters [1].

Te steady state network condition is determined by
using power fow analysis [2]. Te loading condition can be
easily predicted from the power fow in the lines [3].
Nonlinear algebraic equations are used to express the steady
state and reactive power supplied by a bus in a power
network. As a result, iterative approaches are utilized to solve
these equations [4]. FACTS devices, on the other hand, are
used in the power system to improve and maintain many
characteristics such as generation cost, transmission losses,
system load ability, and voltage stability in both the power

and distribution systems. Te location, type, and rating of
the devices all have an impact on how the system operates
and responds. Te metaheuristic algorithms draw the at-
tention of researchers because of their efcient computa-
tional capabilities. Te purpose of this article is to optimize
the device’s position or placement, as well as its type and size
using efcient optimization algorithms.

Te importance of optimal reactive power dispatch
(ORPD) in modern energy management systems has piqued
the interest of the research community in the power sector,
with the goal of reducing real power losses and improving
bus voltage while preserving load demand and operating
constraints [5]. Te ORPD is a nonlinear optimization
problem that involves continuous and discrete control
variables satisfying both equality and inequality constraints.
ORPD plays a major role in economic and reliable power
supply. FACTS devices mitigate the network overloading
and ORPD problems when it is optimally placed [6]. Te
ORPD problem was solved by using PSO [7], DE [8], BBO
[9], and MFO [10,11]. Some researchers used distributed
generation for minimizing loss [12,13]. Te solution of
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optimal power fow (OPF) problem and voltage profle
enhancement has been achieved incorporating some re-
newable sources [14–16]. However, the renewable genera-
tions are not predictable. Hence, the use of existing system to
fulfll the load demand becomes the main challenge for power
engineers. To examine the impact of static VAR compensator
(SVC) and thyristor-controlled series capacitor (TCSC), the
ORPD issue with a UPFC model was addressed utilizing
lightning attachment procedure optimization [17,18]. Te
optimal solution was obtained in [19] with less computation
time using the sine cosine algorithm. Te OPF problem has
been solved using an improved MFO algorithm in [20]. Tis
algorithm was applied to diferent standard test bus systems
with various single andmultiobjective functions considered as
case studies. In [21], the efcacy of MFO algorithm is justifed
considering various active and reactive load conditions for an
IEEE-30 bus system. A fuzzy-based PSO is applied to solve the
OPF problem considering diferent practical constraints [22].
Te voltage profle was found to be enhanced by applying
GSA in [23], considering nominal and contingency condi-
tions. Te maximum load ability was achieved by incorpo-
rating FACTS controllers with an objective to minimize cost
in [24]. To achieve the same, the authors used a hybrid AL-
MF-SS method and tested on the standard IEEE-6 and IEEE-
30 bus system. Te self-adaptive DE approach is utilized to
provide high-quality solutions to single-objective and mul-
tiobjective optimal power fow problems [25]. To handle the
current stochastic OPF problems with renewable generators, a
new form of the DE method is suggested in [26]. A PSO-TS
hybrid technique [27] and diversity-enhanced PSO [28] is
utilized to fnd the control variable settings that minimize
transmission active power losses and load bus voltage vari-
ations. However, no literature discussed the ORPD problems
considering both active and reactive loading. A modifed DE
method is utilized to fnd the solutions to ORPD problem
considering three standard test systems [29].

1.1. Research Contributions. Te contribution of the pro-
posed work is summarized as follows:

(1) A simplifed SCA (SSCA) algorithm is proposed that
combines the exploration capability of SCA/rand-
target updating schemes with the exploitation ca-
pability of SCA/best-target updating schemes
through the parallel use of sine cosine operators

(2) Te efectiveness of the proposed SSCA approach is
assessed using 13 benchmark unimodal and multi-
modal functions

(3) As comparison techniques, SCA, BBO, MFO, and
PSO, the four promising metaheuristic algorithms,
are used

(4) Minimizing the active power loss and operating cost
(5) Te IEEE-30, -57, and -118 test bus systems are used

to assess the performance of the proposed SSCA
under various active and reactive loading scenarios

Te outlines of this paper are as follows: problem for-
mulation is given in Section 2, the description of proposed

SSCA is described in Section 3, the discussion of simulation
results is explained in Section 4, and the research fndings of
this work is concluded in Section 5.

2. Problem Formulation

Te prime objective of ORPD is to reduce both the active
power loss (APL) and the operational cost by maintaining
the operational limits. ORPD is mathematically modeled as a
mixed integer nonlinear and nonconvex optimization
program.Te solution of ORPD has to be optimized because
of the nonlinearity behavior of both the objective function
and constraints.

Te APL of the transmission line which has to be
minimized can be expressed mathematically as

Minimize
pLoss

� 
i,j∈N

Gij V
2
i + V

2
j − 2ViVj cos δi − δj  , (1)

where Gij represents the line conductance between the ith

and jthbus, N is the number of buses, Vi and Vj represents
the sending and receiving end voltages, respectively, and δi

and δj represents the sending and receiving end voltages
angle, respectively.

Te cost minimization function can be written as

Costtotal � Costenergy + Costfacts, (2)

where Costenergy � pLoss × Energy rate and Energy rate �

0.06 × 100000 × 365 × 24.
Cost due to energy loss is 0.06$/kWh, the capital cost of

shunt capacitor is 1000$, the number of hours per day is 24,
and the number of days in a year is 365. Equation (2)
signifes the operating cost.

Costfacts � CostSVC + CostTCSC,

CostSVC � 0.0003 SVCvalue( 
2

− 0.3051 SVCvalue( 

+ 127.38US

(3)

Te following equality and inequality constraints must
be satisfed in order to minimize the above objective
function.

2.1. Equality Constraints. In most cases, the load fow bal-
ancing equations are expressed by equality constraints. (4)
and (5) signifes the power balance equations satisfying the
equality constraints as shown below:

Pgi − Pdi − Vi 

N

j�1
Vj Gij cos δi − δj  + Bij sin δi − δj   � 0, (4)

Qgi − Qdi − Vi 

N

j�1
Vj Gij sin δi − δj  − Bij cos δi − δj   � 0, (5)

where Pgi and Pdi are the active power with respect to
generation and load demand of ith bus, respectively; Qgi and
Qdi are the reactive power with respect to Generation and
demand of ith bus, respectively; and Gij and Bij are the
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conductance and susceptance of the lines connected to ith

and jth bus, respectively.

2.2. Inequality Constraints. Te following are the power
system inequality constraints that correspond to the oper-
ational control variables.

Te real power generation, reactive power generation,
and voltage limit for the generator at ith bus is represented by
equation (5), (6), and (7), respectively, as

P
min
gi ≤Pgi ≤P

max
gi , (6)

where i�1,2,. . .,nPV, and

Q
min
gi ≤Qgi ≤Q

max
gi , (7)

where i�1,2,. . .,nPV, and

V
min
gi ≤Vgi ≤V

max
gi , (8)

where i�1,2,. . .,nPV.
Equation (9) signifes the the tap setting of ith trans-

formers; Tmin
i and Tmax

i are the minimum and maximum tap
settings of the transformer; and nT is the number of
transformers, which is given as

T
min
i ≤Ti ≤T

max
i , (9)

where i�1,2,. . .,nPV.
Equations (10) and (11) signify the limits of SVC and

TCSC. SVCmin
i and SVCmax

i are the minimum and maximum
limits of SVC, whereas TCSCmin

i andTCSCmax
i are the

minimum and maximum limits of TCSC, which are given as

SVCmin
i ≤ SVCi ≤ SVC

max
i , (10)

where i�1,2,. . .,nS, and

TCSCmin
i ≤TCSCi ≤TCSC

max
i , (11)

where i�1,2,. . .,nTC.
Ti denotes the ith transformer’s tap setting. nPVnT, nS,

and nTC represents the number of generator buses, number
of transformers, number of SVC, and number of TCSC,
respectively. Te mathematical model of FACTS devices
such as SVC and TCSC is considered same as [21].

Te reactive power generations of generator (QG), tap
positions of transformer (Tap), susceptance value of SVC
(0.05pu≤Bsvc≤ 0.15pu), and reactance value of TCSC
(0.01pu≤ xtcsc≤ 0.06pu) are considered as control
variables.

 . Methodology

Mirjalili [20] proposed a population-based algorithm uti-
lizing sine and cosine function and named it as the sine
cosine algorithm.Te simplicity and ease of implementation
makes this algorithm popular. However, it sufers from slow
convergence rate and fails to maintain balance between
exploitation and exploration resulting in premature con-
vergence. Hence, to overcome the demerits of SCA, we have

proposed a simplifed version of SCA (SSCA) using fewer
parameters. Two search agent updating schemes, namely
SCA/best-target and SCA/rand-target, are proposed. Te
SCA/best-target assists in the exploitation of search space,
whereas SCA/rand-target assists in the exploration of search
space. Finally, the exploitation and exploration property are
combined by taking their mean and thus generating a new
search agent.

In original SCA, each search agent represents a candidate
solution to the problem. Te solutions vary far or near the
best solution. Te best solution after the completion of fnal
iteration is utilized as the solution to the problem as

X
t+1
i �

X
t
i + r1 × sin r2(  × r3 × P

t
i − X

t
i


, if r4 < 0.5,

X
t
i + r1 × cos r2(  × r3 × P

t
i − X

t
i


, if r4 ≥ 0.5,

⎧⎨

⎩

(12)

where Xt
i , and Pt

i represents the ith position of the current
solution and destination point in tth iteration, respectively,
Xt+1

i is the ith position of the solution in t+1 iteration, and
r1, r2, r3 and r4 are the parameters of the algorithm.

Figure 1 shows the fowchart of the proposed SSCA
method. Te operation includes three steps: initialization of
parameters, iteration step, and selection of best solution.Te
best search agent of the fnal iteration is selected as the
candidate solution to the problem.

In SSCA, two proposed search agent schemes are
ensembled to generate a new search agent with the parallel use
of sine and cosine functions. SCA/best-target moves the
search agent toward the best search agent which is shown in
(13) and (14) Again, SCA/rand-target moves the search agent
towards a random search agent as shown in (15) and (16)Te
balance between exploitation and exploration is maintained
by taking the mean of these four search agents and given by
equation. (16).Te original SCA has four parameters, whereas
the SSCA has three parameters, which helps in improving the
robustness of SSCA method. Te three parameters r1, r2, and
r3 used in SSCA are determined using equations (17), (18),
and (19), respectively. Te equations are shown as follows:

Y1 � X
t
best + r1 × sin r2(  × r3 × X

t
rand − X

t
i


, (13)

Y2 � X
t
best + r1 × cos r2(  × r3 × X

t
rand − X

t
i


, (14)

Y3 � X
t
rand + r1 × sin r2(  × r3 × X

t
best − X

t
i


, (15)

Y4 � X
t
rand + r1 × cos r2(  × r3 × X

t
best − X

t
i


, (16)

X
t+1
i � Mean Y1, Y2, Y3, Y4( , (17)

r1 � 2 × 1 −
t

Tmax
 , (18)

r2 � 2 × pi × rand(0, 1), (19)

r3 � 2 × rand(0, 1), (20)
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where t and Tmax denote current iteration and maximum
iteration respectively, and rand(0, 1) represents the gener-
ation of a random number between 0 and 1.

Te mean and standard deviation of the ftness value for
diferent methods considering 500 iterations is evaluated

and shown in Table 1. Te bold face represents the best
ftness value among all the methods. Te proposed SSCA
method is tested on various unimodal (F1–F7) and multi-
modal (F8–F13) functions as shown in Table 2 to justify its
robustness.Te proposedmethod gives better result in terms

Start

Initialize the maximum iteration (Tmax), number of search agents (n). number of variables to
be optimized (d) along with their upper (u) and lower (l) bound. Initialize n random

solutions (X) with dimension d from a uniform distribution within the range l and u. Set the
iteration counter t=1 and a=2.

Calculate the fitness of all solutions of the first set and determine the best solution Xt
best.

Not < Tmax

Yes

r1 = a × 1 –
t

T max

Set i = 1

i < n
No

Yes

Select the best solution Xt
best and a random

solution Xt
rand such thatXt

best ≠ Xt
rand ≠ Xt

i

Set r2 = 2 × pi × rand (0,1) and r3 = 2× rand (0,1)

Y1 = Xt
best + r1 × sin (r2) × |r3 × Xt

rand – Xt
i|

Y2 = Xt
best + r1 × cos (r2) × |r3 × Xt

rand – Xt
i|

Y3 = Xr
and + r1 × sin (r2) × |r3 × Xt

best – Xt
i|

Y3 = Xr
and + r1 × cos (r2) × |r3 × Xt

best – Xt
i|

Xt
i = Mean (Y1, Y2, Y3, Y4)

i=i+1

For each solution Xt
i. set Xtbest = Xt

i if the fitness of Xt
i

is better than Xt
best. Set Xt+1 = Xt.

t=t+1

Use Xt
best as the solution to the problem

Stop

Figure 1: Flowchart for the SSCA method.
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Table 1: Statistical analysis of diferent methods (best values are presented in bold).

SSCA Mean± SD SCA Mean± SD BBO Mean± SD MFO Mean± SD PSO Mean± SD
F1 9.77E-29± 1.64E-28 1.058E-10± 2.048E-10 9.318E-20± 2.266E-19 6.217E-12± 1.058E-11 1.063E-18± 2.243E-18
F2 1.65E-17± 1.73E-17 3.93E-09± 6.24E-09 5.6E-12± 8.95E-12 1.78E-08± 2.59E-08 9.1E-13± 1.84E-12
F3 9.87E-17± 2.02E-16 0.02295± 0.041731 0.04077± 0.04197 0.657616± 0.441665 0.001023± 0.001323
F4 5.56E-10± 9.22E-10 0.007677± 0.019162 0.961993± 2.017756 5.546965± 5.085424 0.002221± 0.001851
F5 4.809174± 0.637807 7.542727± 0.442341 6.309724± 1.613368 119.3389± 231.1894 6.072164± 2.416001
F6 0.184376± 0.160825 0.516629± 0.202489 3.884666± 2.861071 3.89E-11± 1.1E-10 1.92E-20± 3.32E-20
F7 0.00149± 0.000851 0.005295± 0.006349 0.005182± 0.001862 0.019673± 0.014721 0.002788± 0.001546
F8 -2798.49± 172.9513 -2104.07± 155.2715 -3915.95± 189.4259 -3238.98± 310.8421 -2298.53± 346.1811
F9 0.519919± 1.644128 0.554686± 1.748545 7.987651± 3.170098 22.884± 10.14656 13.43193± 5.185881
F10 3E-14 ± 8E-15 0.000324± 0.000583 7.04E-11± 4.4E-11 3.51E-07± 1.99E-07 7.48E-11± 1.89E-10
F11 0.042491± 0.043416 0.218004± 0.272418 0.054998± 0.047894 0.139545± 0.087655 0.083155± 0.072638
F12 0.031975± 0.026942 0.133127± 0.091179 1.68E-13± 5.33E-13 0.311232± 0.587118 2.14E-20± 6.59E-20
F13 0.131962± 0.08203 0.373384± 0.094815 1.097407± 0.314339 3.731186± 4.656249 5.692137± 4.747002

Table 2: Statistical analysis of APL for IEEE 30 bus system.

Loading (Pd, Qd)in %
Methods

SSCA Mean± SD SCA Mean± SD BBO Mean± SD MFO Mean± SD PSO Mean± SD
100 0.0687± 0.00014 0.0697± 0.00037 0.0694± 0.00046 0.0689± 0.00021 0.0696± 0.00031
115 0.1049± 0.00828 0.1090± 0.00033 0.1086± 0.00034 0.1084± 0.0007 0.1094± 0.00041
125 0.1059± 0.01657 0.1285± 0.02196 0.1409± 0.00032 0.1407± 0.00002 0.1420± 0.00055

Table 3: WSRT results on IEEE 30 bus system.

Loading\Method SCA BBO MFO PSO
100 − − − −

115 ≈ ≈ ≈ ≈
125 − − − −

Table 4: Cost analysis without and with FACTS controllers for IEEE 30 bus system (best values are presented in bold).

Loading (Pd, Qd) in %
Without FACTS controllers With FACTS controllers

Net savings in $ (X–Y)
APL (p. u.) Operating cost in $ (X) Techniques Operating cost in $ (Y)

100 0.0719 3779064

SSCA 3610872 168192
SCA 3665534 113530
BBO 3647664 131400
MFO 3620858 158206
PSO 3663432 115632

115 0.1120 5886720

SSCA 5513018 373702
SCA 5729565 157155
BBO 5708542 178178
MFO 5698030 188690
PSO 5749013 137707

125 0.1476 7757856

SSCA 5564527 2193329
SCA 6751858 1005998
BBO 7405178 352678
MFO 7396769 361087
PSO 7461418 296438

Table 5: Statistical analysis of APL for IEEE 57 bus system.

Loading (Pd, Qd) in %
Methods

SSCA Mean± SD SCA Mean± SD BBO Mean± SD MFO Mean± SD PSO Mean± SD
100 0.1764± 0.04997 0.1848± 0.04998 0.2503± 0.00316 0.2500± 0.00392 0.2560± 0.02012
115 0.3684± 0.10513 0.3802± 0.08759 0.4596± 0.04277 0.4256± 0.07231 0.4741± 0.05716
125 0.5241± 0.12698 0.6422± 0.09791 0.5823± 0.11985 0.6667± 0.02502 0.6013± 0.14315
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Figure 2: Loss variation in the IEEE-30 bus system at 100% loading.
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Figure 3: Loss variation in the IEEE-30 bus system at 115% loading.
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Figure 4: Loss variation in the IEEE 30 bus system at 125% loading.
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of ftness value for 10 functions (F1, F2, F3, F4, F5, F7, F9,
F10, F11, and F13), whereas PSO performs better for F6 and
F12 and BBO performs better for F8.

4. Results and Discussions

Te performance of proposed SSCA method is demon-
strated and validated considering standard IEEE-30, -57, and
-118 bus test systems with diferent (i.e.,100%, 115%, and
125%) active and reactive loading conditions. Te study is
performed by using MATLAB 2019a software environment.

4.1. IEEE-30 Bus System. Tis system has six generators,
forty-one numbers of transmission lines, four numbers of
tap changing transformers, four numbers of SVC, and four
numbers of TCSC [30].Te total demand of real and reactive
powers is 283.4MW and 126.2 MVAR, respectively, at 100
MVA. At frst, three diferent active and reactive loadings
(i.e., 100%, 115%, and 125%) are considered, and APL and
the corresponding operating cost are calculated. Next, the
weak buses and weak branches are detected by using power
fow analysis. Te weak buses are chosen for the placement
of SVC and the weak branches are chosen for the placement

Table 6: WSRT results on IEEE 57 bus system.

Loading\Method SCA BBO MFO PSO
100 ≈ − − −

115 ≈ − ≈ −

125 − ≈ − ≈
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Figure 5: Bus voltage variation at diferent loadings in the IEEE-30 bus system.

Table 7: Cost analysis without and with FACTS controllers for IEEE 57 bus system (best values are presented in bold).

Loading (Pd, Qd) in %
Without FACTS controllers With FACTS controllers

Net savings in $ (X–Y)
APL (p. u.) Operating cost in $ (X) Techniques Operating cost in $ (Y)

100 0.2955 15531480

SSCA 9271584 6259896
SCA 9712037 5819443
BBO 13155768 2375712
MFO 13141051 2390429
PSO 13453258 2078222

115 0.6876 36140256

SSCA 1 365206 16775050
SCA 19982260 16157996
BBO 24158153 11982103
MFO 22371113 13769143
PSO 24916594 11223662

125 1.0879 57180024

SSCA 27545119 29634905
SCA 33754032 23425992
BBO 30606213 26573811
MFO 35043328 22136696
PSO 31602751 25577273

International Transactions on Electrical Energy Systems 7



Table 8: Statistical analysis of APL for IEEE 118 bus system.

Loading (Pd, Qd) in %
Methods

SSCA Mean± SD SCA Mean± SD BBO Mean± SD MFO Mean± SD PSO Mean± SD
100 1.2525± 0.06204 1.3328± 0.20809 1.2982± 0.00113 1.2955± 0.00080 1.3098± 0.03542
115 1.7058± 0.16473 1.9660± 0.10591 1.8123± 0.19234 1.7810± 0.16484 1.8531± 0.16612
125 2.2427± 0.24184 2.6438± 0.17775 2.4435± 0.18864 2.3232± 0.27546 2.4518± 0.31980

Table 9: WSRT results on IEEE 118 bus system.

Loading\Method SCA BBO MFO PSO
100 − − − −

115 − ≈ ≈ −

125 − − ≈ ≈
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Figure 6: Loss variation in the IEEE-57 bus system at 100% loading.

0 100 200 300 400 500
iteration

SSCA
SCA
BBO

MFO
PSO

0.3

0.5

0.7

0.9

Lo
ss

 (i
n 

p.
u)

Figure 7: Loss variation in the IEEE-57 bus system at 115% loading.
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Figure 8: Loss variation in the IEEE-57 bus system at 125% loading.
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Figure 9: Bus voltage variation at diferent loadings in the IEEE-57 bus system.

Table 10: Cost analysis without and with FACTS controllers for IEEE 118 bus system (best values are presented in bold).

Loading (Pd, Qd) in %)<
Without FACTS controllers With FACTS controllers

Net savings in $ (X–Y)
APL (p. u.) Operating cost in $ (X) Techniques Operating cost in $ (Y)

100 1.4050 73846800

SSCA 65829298 8017502
SCA 70055121 3791679
BBO 68234443 5612357
MFO 68094108 5752692
PSO 68845716 5001084

115 2.1605 113555880

SSCA 89654746 23901134
SCA 103330332 10225548
BBO 95253962 18301918
MFO 93607258 19948622
PSO 97399462 16156418

125 3.0488 160244928

SSCA 122106866 38138062
SCA 138959179 21285749
BBO 128428258 31816670
MFO 131255985 28988943
PSO 128863980 31380948
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of TCSC. Te optimization methods are used to set the
control variables. Te control variables are optimized using
the proposed SSCA, SCA, BBO, MFO, and PSO. Each of the
aforementionedmetaheuristic method is simulated 20 times,
and the statistical analysis consisting mean and standard
deviation values are represented in Table 3. It is noticed from
Table 2 that the proposed SSCA method achieves lower loss
as compared to other methods for diferent loading con-
ditions.Te statistical verifcation is justifed by usingWSRT
analysis, as shown in Table 4. Tis test shows whether the
proposed method is statistically inferior (−), superior (+), or
equivalent (≈) when compared to other methods. A com-
parative analysis of APL, operating cost, and net savings
without and with FACTS controllers is given in Table 5. Te

variations of APL at 100%, 115%, and 125% active and
reactive loading cases using diferent metaheuristic methods
are shown in Figure 2, Figures 3 and 4, respectively. Te
optimal control variables obtained for IEEE-30 bus system is
given in Table 6. Te variation of bus voltage at diferent
loadings is shown in Figure 5. Figure 5 shows that the bus
voltages are within the specifed limits when FACTS devices
are incorporated, thus satisfying the equality constraints.

Tis system has seven generators, eighty numbers of
transmission lines, ffteen numbers of tap changing
transformers, four numbers of SVC, and four numbers of
TCSC [30]. Te total demand of real and reactive powers is
1250.8MW and 336.4 MVAR, respectively, at 100 MVA. At
frst, three diferent active and reactive loadings (i.e., 100%,

Table 12: Optimal Control Variable at various loading of IEEE 30 bus system.

Control variable\ loading 100% (Pd, Qd) 115% (Pd, Qd) 125% (Pd, Qd)
QG (2) 0.21013 0.023858 0.45941
QG (5) 0.002555 0.02193 0.35855
QG (8) 0.30187 0.45227 0.33745
QG (11) 0.094829 0 0.26904
QG (13) 0.18351 0.40049 0.033199
Tap (11) 0.98744 0.95192 0.10439
Tap (12) 1.003 0.95308 0.99152
Tap (15) 1.013 1.0268 1.0491
Tap (36) 0.96319 0.96822 1.05
SVC (7) 0.055515 0.13158 0.1117
SVC (15) 0.084251 0.034997 0.14645
SVC (17) 0.11467 0.024353 0.14021
SVC (21) 0.10143 0.11903 0
TCSC (5) 0.06 0.052227 0.000107
TCSC (25) 0.041478 0.01413 0.011153
TCSC (28) 0.018545 0.007369 0.06
TCSC (41) 0.002778 0.017183 0.005297
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Figure 10: Loss variation in the IEEE-118 bus system at 100%
loading.
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Figure 11: Loss variation in the IEEE-118 bus system at 115%
loading.

International Transactions on Electrical Energy Systems 11



115%, and 125%) are considered to calculate the APL and
the corresponding operating cost. Next, the weak buses and
weak branches are detected by using power fow analysis.
Te weak buses are chosen for the placement of SVC and
the weak branches are chosen for the placement of TCSC.
Te optimization methods are used to set the control
variables. Te control variables are optimized using the
proposed SSCA, SCA, BBO, MFO, and PSO. Each of the
aforementioned metaheuristic method is simulated 20
times and the statistical analysis consisting mean and
standard deviation values are represented in Table 7. It is
noticed from Table 7 that the proposed SSCA method
achieves lower loss as compared to other methods for
diferent loading conditions.

Te statistical verifcation is justifed by using WSRT
analysis, as shown in Table 8. Tis test shows whether the
proposed method is statistically inferior (−), superior (+), or
equivalent (≈) when compared to other methods.

A comparative analysis of APL, operating cost, and net
savings without and with FACTS controllers is given in
Table 9. Te variations of APL at 100%, 115%, and 125%
active and reactive loading cases using diferent meta-
heuristic methods are shown in Figure 6, Figures 7 and 8,
respectively. Te variation of bus voltage at diferent load-
ings is shown in Figure 9. Figure 9 shows that the bus
voltages are within the specifed limits when FACTS devices
are incorporated, thus satisfying the equality constraints.

Tis system has ffty-three generators, one hundred
eighty-six numbers of transmission lines, nine numbers of
tap changing transformers, fve numbers of SVC, and fve
numbers of TCSC [30].Te total demand of real and reactive
powers is 4242MW and 1438 MVAR, respectively, at 100
MVA. At frst, three diferent active and reactive loadings
(i.e., 100%, 115%, and 125%) are considered, and the APL
and the corresponding operating cost are calculated. Next,
the weak buses and weak branches are detected by using
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Figure 12: Loss variation in the IEEE-118 bus system at 125% loading.

10 20 40 50 60 70 80 90 100 11030

100% (Pd, Qd)
110% (Pd, Qd)
120% (Pd, Qd)

Bus No.

0.9

0.95

1

1.05

1.1

Bu
s V

ol
ta

ge
s (

in
 p

. u
.)

Figure 13: Bus voltage variation at diferent loadings in the IEEE-118 bus system.
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power fow analysis. Te weak buses are chosen for the
placement of SVC and the weak branches are chosen for the
placement of TCSC. Te optimization methods are used to
set the control variables. Te control variables are optimized
using the proposed SSCA, SCA, BBO, MFO, and PSO. Each
of the aforementioned metaheuristic method is simulated 20
times, and the statistical analysis consisting mean, standard
deviation, values are represented in Table 10. It is noticed
from Table 10 that the proposed SSCA method achieves
lower loss as compared to other methods for diferent
loading conditions.

Te statistical verifcation is justifed by using WSRT
analysis, as shown in Table 11. Tis test shows whether the
proposed method is statistically inferior (−), superior (+), or
equivalent (≈) when compared to other methods.

A comparative analysis of APL, operating cost, and net
savings without and with FACTS controllers is given in
Table 12. Te variations of APL at 100%, 115%, and 125%
active and reactive loading cases using diferent meta-
heuristic methods are shown in Figure 10, Figures 11 and 12,
respectively. Te variation of bus voltage at diferent load-
ings is shown in Figure 13. Figure 13 shows that the bus
voltages are within the specifed limits when FACTS devices
are incorporated, thus satisfying the equality constraints.

5. Conclusion

In this paper, the ORPD problems are solved by using a
novel SSCAmethod.Tree test bus systems such as IEEE-30,
-57, and -118 bus system is considered as case studies with
100%, 115%, and 125% active and reactive loadings. Te
SSCA method is used to provide the optimal setting of
control variable parameters. Te optimal positioning of
FACTS controllers signifcantly reduces the net savings. Te
efcacy of the proposed SSCA method is validated in
achieving lower real power loss and hence operating cost.
From the simulation results, it is clear that the SSCAmethod
is capable to reduce losses as compared to the other methods.
Te WSRT result shows the statistical supremacy of pro-
posed SSCA over other methods. Terefore, the SSCA
method may be used for solving the real-world problems.
[31–33]
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