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Distribution network expansion planning (DNEP) is one of the important matters in the field of planning and operation of
electrical power systems. Since many costs and losses have occurred in the distribution networks, it has increased attention
towards this network.'e electrical energy distribution network is divided into two parts: the medium voltage (MV) network and
the low voltage (LV) network.'emain problem in this field is that planning is done either only on theMVnetwork or only on the
LV network. While planning in each of these networks has a significant effect on the other networks, this important case has not
been considered in most research studies. 'erefore, this study has tried to do integrated planning in the form of a bi-level model
in the presence of different types of distributed generations (DGs) and consider the uncertainties of renewable sources and load
demand in bothMV and LV networks so that the planning and operation costs are minimized. In the proposed bi-level model, the
upper-level section aims to minimize the investment and the operation cost of the MV network, and the lower-level problem
minimizes the investment and the operation cost of the LV network considering the DGs and pollution emission. 'e obtained
results show the effectiveness of the proposed model.

1. Introduction

1.1. Motivation and Aim. 'e distribution network ex-
pansion planning (DNEP) problem is one of the most
important issues in the power system planning with the
aim of supplying the distribution network’s demand
through specifying the location and capacity of distri-
bution substations, distribution transformers, and
feeders. 'is problem can be expressed in two ways: ex-
pansion planning and reinforcement planning. In the
expansion planning problem, the planner selects new
rights of ways (feeders) or locations and the capacity for
new distribution substations and distributed generations
(DGs). In the reinforcement problem, the network is
reinforced in some feeders. 'e DNEP problem can be
considered in both medium-voltage (MV) and low-volt-
age (LV) distribution networks.

In this study, the applied model uses the contradictions
that exist in the planning of both MV and LV networks in
such a way that each of the MV and LV network, from their
point of view, may suggest a specific location and capacity
for distribution transformers, and therefore, this view may
not be appropriate for another network perspective.
'erefore, by using a bi-level model, an attempt has been
made to propose a location and capacity for distribution
transformers that are acceptable from the point of view of
each network. 'e applied model considers the MV network
at the upper level (UL) and LV network planning at the low-
level (LL) of the bi-level model. 'e applied problem is
described in Figure 1. 'e objective of the UL problem is to
determine the best decisions about the distribution sub-
stations and MV feeders to meet the demand of the system
with the minimum investment and operation cost. 'e LL
problem aims to minimize the total cost of the LV system
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considering the cost of the pollution emissions and the
power loss of the network. 'e general basis of the work is
based on the fact that first a location and capacity for the
distribution transformers are proposed (Smax

c ) by the UL
problem, and then, in the LL model, the power injected into
the distribution transformers (Ss,t,i,c) is determined by the
demand and the specifications of the DGs. 'is variable is
sent to the UL problem to update the optimal decisions at
this level if needed. If the constraints of the problem are not
met at any level, then the capacity of the distribution
transformers must be changed within the allowed range and
the problem will be re-examined. 'is process continues
until an optimal point is reached.

1.2. Literature Review and Contributions. Most previous
DNEP studies have been done at the MV level. In [1], an
optimal power flow approach is developed to model the DGs
in the optimal planning problem of the MV distribution
networks. In [2], the reliability of the MV networks increases
in the planning problem in the presence of the DGs and
storage units. 'e DNEP problem of the MV networks is
mathematically formulated as a multiobjective planning

model in which the first and second objectives aim to im-
prove the costs and reliability, respectively [3]. In [4], a
mixed-integer linear programming (MILP) model is pro-
posed to minimize the annualized investment and operation
costs by installing new circuits, upgrading existing circuits,
and installing capacitor banks in the MV network. 'e
DNEP problem in the MV networks in the presence of DGs
is investigated considering the uncertainties of the demand
and energy price in [5]. In [6], a new approach is presented
for the loss allocation in an MV distribution system in the
presence of different models of DGs. A hybrid evolutionary
algorithm is proposed to optimize the planning of the DGs
inMV networks in [7] to improve the power loss and voltage
stability index. In [8], a metaheuristic approach is proposed
based on grey wolf optimizer (GWO) and particle swarm
optimization (PSO) for the optimal DNP in the MV side,
considering DGs and a battery storage system (BSS). In [9], a
new approach to the DNEP problem in the MV network
under uncertainty in the presence of wind energy is pro-
posed to improve the reliability index. In [10], an MILP
model is proposed for the DNEP problem, which chooses a
set of candidate feeders with a minimum cost with specified
reliability. 'e DNP problem is formulated in [11] as a
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Figure 1: 'e structure of the proposed bi-level optimization framework.
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multistage stochastic programming (MSP) approach con-
sidering the uncertainty of DGs. 'e objective function of
this model is to minimize the planning costs subject to the
operation and the investment constraints. A stochastic risk-
based method is developed in [12] for the resilient DNP
problem to model the uncertainties of wind energy, demand,
storm duration, and fragility of the system components. In
[13], the DENP problem is considered at the MV level in the
presence of BSSs and photovoltaic (PV) arrays and uncer-
tainty of the demand. In [14], a mixed-integer second-order
con programming is proposed for the DNEP problem at the
MV level that tries to search for the optimal decisions for
transformer and feeder upgrades and also for PV and BSS. In
[15], a flexible multistage planning approach for the DNEP is
proposed, and the planning problem is formulated based on
the Markov decision process for the MV network. In [16], a
multiobjective model for DNEP is proposed in the MV
network. Two conflicting objective functions are considered:
costs vs. CO2 emissions, and then, scenario reduction is
applied within a two-stage stochastic formulation. In [17], a

new approach for the DNEP problem based on geographic
information systems (GIS) is proposed for MV and LV
networks, independently. 'e proposed approach combines
Delaunay Triangulation with a MILP model. In [18], a new
approach based on spanning tree to solve the expansion of
lines and allocation of DGs considering the uncertainty of
load demand and RESs is proposed for the MV distribution
network. In [19], an improved particle swarm optimization
algorithm based on particle swarm optimization for adaptive
improvement is proposed for the DNEP problem in the MV
part, in which the feasibility and superiority of the algorithm
are illustrated.

A few DNEP studies have been done at the LV level. 'e
power loss and reliability of the LV networks improved in
the DNP problem considering the DGs in [20]. In [21], new
planning principles are described for rural LV networks
considering DGs to minimize total costs. In [22], optimal
sizing, sitting, and scheduling of BSSs are calculated in an LV
distribution system. Some studies investigated the DNEP
problem for both the MV and LV (integrated) networks. In

Table 1: Relevant features of studies reported in the literature and the model of this paper.

Ref. Year Model Uncertainty Type of DGs Losses Pollution Network Power
purchased Structure Objective

[1] 2012 Dynamic × × ✓ × MV × SO ∗ Cost
[2] 2013 Static × In general ✓ × MV × SO Cost

[3] 2014 Static × × ✓ × MV × MO† Cost
reliability

[4] 2015 Static × × ✓ × MV × SO Cost
[5] 2015 Dynamic Demand In general ✓ × MV × SO Cost
[6] 2016 Static × In general ✓ × MV × SO Loss

[7] 2017 Static × × ✓ × MV × MO Loss-voltage
index

[8] 2017 Static × × × × MV × MO Cost
reliability

[9] 2020 Static Demand Wind ✓ × MV × SO Reliability

[10] 2020 Static × × ✓ × MV × SO Cost
reliability

[11] 2020 Dynamic DGs × ✓ × MV × MSP# Cost
[12] 2020 Dynamic Wind speed Wind ✓ × MV × SO Min risk
[13] 2020 Dynamic Demand RESs PV ✓ × MV × Bi-level Cost
[14] 2021 Dynamic Photovoltaic PV ✓ × MV × SO Cost
[15] 2021 Dynamic Demand PV/wind × × MV × SO Cost

[16] 2021 Dynamic Demand RESs PV/wind × ✓ MV × MO Cost
pollution

[17] 2021 Static × × × × MV-LV × SO Reliability
[18] 2022 Dynamic Demand RESs PV/wind × ✓ MV ✓ SO Cost
[19] 2022 Static RESs PV/wind × × MV × SO Capacity
[20] 2013 Dynamic × In general ✓ × LV × SO Cost
[21] 2016 Static × In general × × LV × SO Cost
[22] 2018 Dynamic × PV ✓ ✓ LV × SO Cost

[23] 2015 Dynamic Demand-RESs
energy price Wind ✓ × MV × SO Cost

reliability
[24] 2016 Static × In general ✓ × Integrated × SO Cost
[25] 2020 Static Demand RESs Wind ✓ ✓ Integrated × MO Cost
[26] 2019 Static × In general ✓ × Integrated × Bi-level Cost
'is
paper Dynamic Demand RESs Wind/PV/GT/

MT/FC/DE ✓ ✓ Integrated ✓ Bi-level Cost
pollution

∗, single objective; †, multiobjective; #, multistage stochastic programming.
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[23], by determining the reinforcement of existing lines and
substations, an integrated methodology is proposed for the
DNEP problem, in which the objective function is to
maximize the reliability of the network. In [24], a single
objective function is presented which minimizes the cost of
LV circuits, MV substations, MV DGs, MV circuits, and
high voltage substations where the problem is solved by the
imperialist competitive algorithm (ICA). In [25], a multi-
objective mixed-integer nonlinear programming (MINLP) is
proposed for the integrated DNEP problem, which tries to
minimize the investment cost of feeder routing and sub-
station alternations while maximizing the utilization of the
proposed charging stations. 'e reviewed studies until now
are compared with each other in Table 1.

Due to the nonlinear nature of the DNEP problem, many
heuristic and metaheuristic methods have been used to
investigate this problem, for example, genetic algorithm
(GA) [23], particle swarm optimization (PSO) [5, 27, 28],
tabu search (TS) [26], harmony search algorithm (HSA)
[29–31], imperialist competitive algorithm (ICA) [24, 32],
grey wolf optimizer (GWO) [8], firefly algorithm (FA) [33],
strength Pareto evolutionary algorithm (SPEA) [34], sim-
ulated annealing (SA) [35], perturbation mechanism [36],
pseudodynamic programming technique [37], artificial
immune systems (AIS) [38], clonal selection algorithm [39],
shuffled frog leaping (SFL) [40], and artificial bee colony
(ABC) [41]. It should be noted that this problem can be
solved using the solution methods available in [42, 43]. 'e
noteworthy point in the mentioned approaches is that
planning has been done only at one level of the distribution
network, while in the model presented in this study, plan-
ning is done simultaneously at both levels of the MV and LV
distribution networks.

'e main gaps concluded from the previous studies are
as follows:

(i) Although the DNEP problem of the MV and the LV
networks should be modeled simultaneously, this
issue is only addressed in a few studies [24–26].

(ii) Determining the location and the size of the dis-
tribution transformers is the common decision
between the DNEP problems of the MV and LV
networks. 'erefore, when the DNEP problem is
modeled for both the MV and LV networks (in-
tegrated), the effect of the decisions in both net-
works on the location and the size of distribution
transformers should be considered. 'is is con-
sidered only in [26].

(iii) Although modeling the pollution emissions of the
nonrenewable DGs and the main grid can change
the output decisions of the DNEP problem in the
presence of renewable-based DGs, this issue is not
considered in [26]. Also, modeling the uncertainties
of the demand and the output power of RESs is not
investigated in [26].

It needs to be said that power system planning studies are
always done in two phases or two steps. In the first phase,
with the help of simplified mathematical equations, a general
model for network modeling is expressed, in which the
program execution time does not matter. In the first phase,
the obtained answers are saved. In the second step, the
obtained answers in the first step are analyzed in more detail,
including reliability and short-circuit studies. What is done
in this study and in most studies in this field is in the first
phase of planning.

'e DNEP problem of the MV network is modeled as
an upper-level (UL) problem in which the obtained size
and location of the distribution transformers are sent to
the lower-level (LL) problem. 'en, the DNEP problem of
the LV network considering the different DGs, the pol-
lution emissions and the uncertainties are formulated in
the LL problem. 'is problem is optimized by considering
the size and location of the distribution transformers
obtained in the UL problem. 'e optimum power injected
into the distribution transformers obtained in this stage is
sent to the UL problem. In the following, the main problem
will be solved using the genetic algorithm (GA) with
special coding and division of the model into several
subproblems.

For this study, the main contributions are as follows:

(1) Modeling the DNEP problem of both MV and LV
networks, simultaneously considering the uncer-
tainties of the demand and RESs using a bi-level
model

(2) Considering the amount of energy purchased from
each upstream grid

(3) Modeling the pollution emission in the objective
function of the LV model

(4) Applying the GA to solve the proposed bi-level
model

1.3. Paper Organization. 'e mathematical model is pre-
sented in Section 2. Modeling and handling the uncer-
tainties are presented in Section 3. A solution approach is
presented in Section 4. A numerical study is reported and
discussed in Section 5, and finally, the conclusions are given
in Section 6.

2. Mathematical Model

2.1. UL Model. 'e objective function of the UL problem is
composed of five terms as follows:

MVCs � 􏽘
s∈Λs

δs 􏽘

5

f�1
Ff, (1)

where
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F1 � 􏽘
t∈T

􏽘
i,j∈ΛB

i≠ j

1
1 + d

􏼒 􏼓
t

× Cij × σs,t,ij􏼠 􏼡,

F2 � 􏽘
t∈T

􏽘
i∈ΛB

􏽘
λ∈Λλ

1
1 + d

􏼒 􏼓
t

× Cλ × σs,t,i,λ􏼠 􏼡,

F3 � 􏽘
t∈T

􏽘
i∈ΛB

􏽘
λ∈Λc

1
1 + d

􏼒 􏼓
t

× Cc × σs,t,i,c􏼠 􏼡,

F4 � 365 × 24 × 􏽘
t∈T

1
1 + d

􏼒 􏼓
t

× 􏽘
i∈ΛB

i≠ j

􏽘
j∈ΛLB

i≠ j

Us,t,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Us,t,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

Zij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × SBase × πs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

F5 � 365 × 24 × 􏽘
t∈T

1
1 + d

􏼒 􏼓
t

× 􏽘
i∈ΛB

􏽘
z∈Λz

λ∈Λλ

Ss,t,i,z + Ss,t,i,λ􏼐 􏼑 × SBase × πs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(2)

In this objective function, F1 is the investment cost of
installing a new line or feeder between nodes i and j in the
MV network, F2 is the investment cost of installing a new
substation, F3 is the investment cost of installing a new
distribution substation, F4 is the cost of losses, and F5 is the
cost of purchase power from the transmission network. 'e
constraints of the UL problem are described in (3)–(8):

􏽘
λ∈Λλ

Ss,t,i,λ + Ss,t−1,i,λ􏼐 􏼑 + 􏽘
z∈Z

Ss,t,i,z � 􏽘
c∈Λc

Ss,t,i,c + Ss,t−1,i,c􏼐 􏼑

+ 􏽘
i∈ΛB

i≠ j

􏽘
j∈ΛLB

i≠ j

Us,t,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Us,t,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Zij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

∀s ∈ Λs, ∀t ∈ T, ∀i ∈ ΛB,

(3)

Ss,tij × σs,t,ij + σs,t−1,ij􏼐 􏼑 × SBase ≤ S
max
ij ,

∀s ∈ Λs, ∀t ∈ T, ∀i≠ji, j ∈ ΛB,
(4)

Ss,t,i,z, Ss,t,i,λ, Ss,t−1,i,λ􏽮 􏽯≤ S
PS−max

,

∀s ∈ Λs, ∀t ∈ T, ∀i ∈ ΛB, ∀λ ∈ Λλ,
(5)

Ss,t,i,c, Ss,t−1,i,c􏽮 􏽯≤ S
max
c ,

∀s ∈ Λs, ∀t ∈ T, ∀i ∈ ΛB,∀c ∈ Λc,
(6)

U
min
i ≤Us,t,i ≤U

max
i ,

∀s ∈ Λs, ∀t ∈ T, ∀i ∈ ΛB.
(7)

Radial Structure of medium − voltage part � 1,

∀s ∈ Λs, ∀t ∈ T.
(8)

Equation (3) shows the nodal balance in the MV net-
work. 'e operation limitations of the MV feeders, sub-
stations, and distribution transformers are modeled in
(4)–(6), respectively. 'e voltage limitations in all nodes of
the MV network are modeled in (7), and equation (8) is used
to ensure that the radial structure of the MV network is
maintained.

2.2. LL Model. 'e objective function of the LL problem is
composed of six terms as follows:

LVCs � 􏽘
s∈Λs

δs 􏽘

6

f�1
Ff
′, (9)

where

International Transactions on Electrical Energy Systems 5



F1′ � 􏽘
t∈T

􏽘
i,j∈ΛB

i≠ j

1
1 + d

􏼒 􏼓
t

× Cij × σs,t,ij􏼠 􏼡,
(10)

F2′ � 􏽘
t∈T

􏽘
i∈ΛB

􏽘
g∈ΛDG

1
1 + d

􏼒 􏼓
t

× C
INV
i,g × σDGs,t,i,g × SBase × S

DG
s,t,i,g􏼠 􏼡, (11)

F3′ � 365 × 24 × 􏽘
t∈T

􏽘
i∈ΛB

􏽘
g∈ΛDG

1
1 + d

􏼒 􏼓
t

× C
OP
i,g × σDGs,t,i,g × SBase × S

DG
s,t,i,g􏼠 􏼡, (12)

F4′ � 365 × 24 × 􏽘
t∈T

1
1 + d

􏼒 􏼓
t

􏽘

i∈ΛB

i≠ j

􏽘

i∈ΛLB

i≠ j

Us,t,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Us,t,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

Zij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × SBase × πs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

F5′ �
1

1 + d
􏼒 􏼓

t

× 􏽘
t∈T

􏽘
c∈Λc

Ss,t,i,c + S
Fe
c + S

Cu
c

Ss,t,i,c

Smax
c

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ × πs

′⎛⎝ ⎞⎠, (14)

F6′ �
1

1 + d
􏼒 􏼓

t

× pf × SBase × 􏽘
t∈T

􏽘
i∈ΛB

􏽘
g∈ΛDG

S
DG
s,t,i,g × 􏽘

e∈ΛDG

E
DG
g,e

⎛⎝ ⎞⎠ + 􏽘
t∈T

􏽘
c∈Λc

St,i,c􏼐 􏼑 × 􏽘
e∈ΛDG

E
G
e

⎛⎜⎝ ⎞⎟⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠. (15)

In this objective function, F1′ is the investment cost of
installing new LV circuits between nodes i′ and j′ in the
LV network. F2′ and F3′ are the investment and operation
costs of installing DGs, respectively. F4′ is the cost of line
and F5′ is the cost of purchasing power from the UL
network, and finally, F6′ is the cost of pollution emission. It

is Northway that the term in the bracket in equation (14)
denotes the distribution transformer’s losses, and the first
and second terms in equation (15) denote the cost of
pollution associated with nonrenewable DGs and the cost
of pollution associated with the main grid, respectively.
'e constraints of the UL problem are described in
(16)–(20):

Figure 2: Pseudocode for handling the uncertainties based on the Monte Carlo method.
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􏽘
c∈Λc

Ss,t,i,c + Ss,t−1,i,c􏼐 􏼑 � D − 􏽘

i′∈ΛB
′

g∈ΛDG

S
DG
i′,g􏼐 􏼑 + 􏽘

t∈T
􏽘

i′∈ΛB
′

i′ ≠ j′

􏽘
j′∈ΛLB

i′ ≠ j′

Us,t,i′′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − Us,t,j′′
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Zi′j′′
⎛⎝ ⎞⎠

2

× SBase + 􏽘
c∈Λc

S
Fe
c + S

Cu
c

Ss,t,i,c + Ss,t− 1,i,c

Smax
c

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ × πs

′
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

∀s ∈ Λs, ∀t ∈ T, ∀i ∈ ΛB,

(16)

Ss,t,i′j′
× σs,t,i′j′′ + σs,t−1,i′j′′􏼐 􏼑 × SBase ≤ S

max
i′j′ ,

∀s ∈ Λs, ∀t ∈ T, ∀i′≠j′
i, j ∈ ΛB,

(17)

U
′min
i ≤Us,t,i′′ ≤U

′max
i′ ,

∀s ∈ Λs, ∀t ∈ T, ∀i ∈ ΛB,
(18)

S
DG
s,t,i′,g, S

DG
s,t−1,i′,g􏽮 􏽯≤ S

max
g ,

∀s ∈ Λs, ∀t ∈ T, ∀i′∈ ΛB
′, ∀g ∈ ΛDG,

(19)

Radial Structure of low − voltage part � 1,

∀s ∈ Λs, ∀t ∈ T.
(20)

Constraint equation (16) shows the nodal balance of
the LV network. 'e operation limitations of LV circuits,
node voltage, and DGs are modeled in equations
(17)–(19), respectively. Finally, equation (20) is used to
ensure that the radial structure of the LV network is
maintained.

3. Modeling of Uncertainties

In this section, the uncertainties of the demand and the
output power of renewable energy sources are modeled.

According to [44], three qualitatively different types
of uncertainty ethical, option, and state space uncertainty
are distinct from state uncertainty, the empirical un-
certainty that is typically measured by a probability
function on states of the world. Ethical uncertainty arises
if the agent cannot assign precise utilities to conse-
quences. Option uncertainty arises when the agent does
not know what precise consequence an act has in every
state. Finally, state space uncertainty exists when the
agent is unsure of how to construct an exhaustive state
space. 'ese three types of uncertainty are characterized

Figure 3: Pseudocode of the applied GA.
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along three dimensions, natures, object, and severity, and
the relationship between them is examined.

In this study, the uncertainties include the uncertainty
related to load demand and renewable energy resources that
have specific probability density functions (PDF). 'e
Monte Carlo simulation method is a simulation approach
based on probability and statistics theory and methodology.
At present, the Monte Carlo simulation method has been
applied to many fields of engineering and scientific theory,
with the advantages of simple principles and realization,
insensitivity to the dimension of problems, avoidance of any
constraining assumptions, and strong adaptability. In the
Monte Carlo simulation method, the state of each com-
ponent in the system is obtained by sampling. 'e com-
ponents include various system equipment, such as
generators, transmission lines, transformers, and different
load levels. 'erefore, the MCS is applied to handle the
uncertainties.

3.1. Modeling the Uncertainty of Demand. In general, the
electric charge and energy price are estimated by the normal
probability distribution function (PDF). Since this ordinary
PDF is a continuous function, therefore, the probability of
each point is not shown. To overcome this problem, the
continuous function must be estimated with a normal
discontinuous function. In this approximation, if the
intended steps are smaller, the approximation error will be
smaller.

'e next step is to generate PDF-based loading scenarios.
For this purpose, the roulette wheel mechanism (RWM) is
applied. 'us, the load surfaces are normalized to the range
and then a random number is generated. If, among the load
levels, a random number, generated in the normalized
probability region of a load prediction level, is placed on the
roulette wheel, the load prediction level is selected by RWM

as the scenario.'is process is repeated until scenarios called
RW/MCS are generated [45].

3.2. Modeling the Uncertainties of WT and PV. One of the
functions used to model wind speed is to use the Weibull
PDF. 'e output power of a WT is shown as follows [45]:

P
WT

�
0, ∀Vw ≤V

w
cutin, V

w ≥V
w
cutout,

0.5 × ρw × Aw × ηw × min V
w

, V
w
R( 􏼁, ∀Vw

cutin ≤V
w ≤V

w
cutout.

⎧⎨

⎩

(21)

'e output power of a photovoltaic array is shown as
follows [45]:

P
pv

� Ppv,STC ×
GT

GT,STC
× 1 − c × Tj − Tj,STC􏼐 􏼑􏼐 􏼑􏼢 􏼣, (22)

where

Tj � TAmp +
GT

GT,STC
×(NOCT − 20). (23)

In this formulation, the parameter GT is an uncertain
parameter that is based on the Beta PDF.

3.3. Handling the Uncertainties by Monte Carlo Simulation.
Monte Carlo methods are a set of computational algo-
rithms based on random sampling iterations to calculate
results. Monte Carlo methods are generally used when it is
impossible to calculate the exact result with a definite
algorithm.'erefore, due to the reliance of this method on
the repetition of calculations and random numbers, it is
suitable for calculation by a computer. Monte Carlo
methods are, in fact, one of the most comprehensive tools
for evaluating uncertain studies [46]. 'e general pseu-
docode for handling the uncertainties-based Monte Carlo
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Figure 4: Structure of the proposed chromosome.
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Figure 5: Flowchart of the proposed methodology.
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methods is shown in Figure 2, where F (Xi), β,􏽢E(F), and V
represent experiment function, variance coefficient, es-
timated value, and variance index, respectively.

4. Solution Approach

To solve the proposedMINLPmodel, the GA is employed.'is
algorithm is inspired by the process of natural selection that
belongs to the larger class of evolutionary algorithms.'eGA is
commonly applied to produce high-quality solutions to opti-
mize and search problems by relying on biologically inspired
operators such as mutation, crossover, and selection.

'e GA makes it possible to look for optimal solutions
in a nonconvex space, which can be achieved with an
initial configuration. 'is configuration is also achievable
in a heuristic way. After evaluating the configuration,
specific topologies are suggested. 'ese topologies are
called neighbors, and due to the high number of topol-
ogies, a specific number of them are selected according to
the conditions of the problem. 'e best configuration is
selected from the topologies. 'is strategy continues until
the end condition is reached to obtain a global optimal
point, which is the best answer in terms of minimum cost.
'e pseudocode of the GA is shown in Figure 3. Subse-
quently, other parameters of the algorithm are explained.

'e coding system can be in the form of a string, array,
list, or tree. 'e choice of each of these methods is made
according to the type of problem and the search required to

solve and optimize it. Meanwhile, string coding is more
useful than other methods due to its ability to create a more
chromosome diversity in less space. 'e encoding of the UL
chromosome and LL is shown in Figure 4. In this study, to
handle the constraints, Deb’s method [47] is employed.
Deb’s method is actually a parameterless penalty strategy
based on the following three rules:

(i) Any feasible solution is preferred to any infeasible
solution

(ii) Between two feasible solutions, the one having the
better objective value is preferred

(iii) Between two infeasible solutions, one having the
smaller constraint violation is preferred

After applying genetic actuators (crossover and muta-
tion) to chromosomes, new answers are obtained that may
not be true in the problem’s constraints. 'is happens in
many cases with constraints. 'e simplest solution is to use
the penalty function for the objective function. As a result,
the selection process tends to the true chromosomes. After
deciding how to encode chromosomes, the initial population
must be created. 'is step is usually done by randomly
selecting values within the allowable range.

First, it is required to determine the location, capacity,
and amount of power injected into the transformers, which
is suggested by the UL problem. However, load distribution
equations in theMV network cannot be calculated due to the
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uncertainty in the amount of power injected into the
transformers. In other words, the UL objective function,
equation (1), is specified with the UL constraints when the
amount of power injected into each transformer is deter-
mined. When the location and capacity of the transformers
are determined in the UL problem, the LL problem is solved
to determine the amount of power injected into the
transformers. After determining the amount of power in-
jected into the transformers, the amount of the UL objective

function can also be calculated. 'e flowchart of the pro-
posed algorithm is shown in Figure 5.

5. Numerical Study

To demonstrate the effectiveness of the proposed model and
validate the solving approach, it is applied to a sample
distribution network shown in Figure 6. 'e proposed
planning has been executed in a MATLAB programming
environment (R2016a) on a laptop with an Intel Core i7-

Table 2: Specification of load nodes in MV part.

No. Load (kW)
1 700
2 600
3 500
4 500
5 600
6 700
7 500
8 900
9 500
10 900
11 300
12 400
13 400
14 700
15 800
16 900
17 700
18 500
19 600
20 800
21 800
22 600
23 400
24 500
25 900
26 500
27 500
28 700
29 800
30 900
31 700
32 600
33 500
34 400
35 900
36 300
37 800
38 700
39 700
40 400
41 500
42 400
43 500
44 600
45 800
46 800
47 400
48 800
49 500
50 800

Table 3: Specification of load nodes in LV part.

No. Load (kW)
1 620
2 640
3 770
4 520
5 620
6 400
7 600
8 600
9 640
10 400
11 530
12 700
13 700
14 600
15 450
16 770
17 750
18 750
19 600
20 600
21 720
22 700
23 700
24 680
25 600
26 400
27 740
28 400
29 400
30 400
31 700
32 750
33 720
34 740
35 750
36 600
37 600
38 250
39 400
40 350
41 580
42 790
43 700
44 680
45 600
46 680
47 620
48 620
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6500 and 8GB RAM. After running the program (GA)
several times, it was found that the best values for the
number of chromosomes, crossover, andmutation were 100,
0.72, and 0.06, respectively. To maintain the most suitable
chromosomes during the optimization approach and to
improve GA efficiency, the elite selection approach is ap-
plied. 'us, the current 10% of the worst population is
replaced by the previous 10% of the previous generation. Of
course, this replacement is done if 10% of the previous
generation is more qualified in terms of objective function
than the current generation.

'eMV part is a 54-node 33 kV network consisting of 50
load points, which are shown by solid circles with the
specifications of Table 2. 'e LV part is a 48-node 11 kV
network consisting of 48 load points, which are shown by
white circles with the specifications of Table 3. It is

noteworthy that the power factor (cosφ) of loads is con-
sidered 0.8.

In this study, proposed (S3 and S4) and existing (S1 and
S2) distribution substations are shown as solid triangles and
solid squares, respectively. 'e MV system has 17 existing
feeders (type 1) and 56 new lines as candidates for instal-
lation. 'e LV system has 44 existing lines (type 1) and 22
new lines as candidates for installation. Proposed and exiting

Table 5: Specification of substations.

Substation Existing capacity
(MVA)

Expandable capacity
(MVA)

S 1 3×15 5×15
S 2 2×15 5×15
S 3 0 4×15
S 4 0 4×15

Table 6: Specification of the distribution transformers.

Transformer Maximum capacity (MVA) Cost (k$)
1 4 500
2 6 800
3 8 1000
4 10 1100

Table 7: Data of six DG technologies.

DG
technology

Unit size
(MVA)

Investment cost
(k$/MVA)

Operation cost
($/MVA-h)

DE 1 500 42
FC 1.5 450 47
GT 1 400 46
MT 0.8 470 52
PV 1 800 10
WT 1 800 10

Table 8: Pollution emission rates of the DG technologies.

Type NOX SO2 CO2 CO PM10

DE 0.00213 0.00125 0.625 0.0028 0.00036
FC 0.000015 0.000024 0.447 0 0
GT 0.00029 0.000032 0.625 0.0004 0.00004
MT 0.0002 0.000037 0.725 0.0005 0.00004
PV 0 0 0 0 0
WT 0 0 0 0 0
Grid 0.0022952 0.0035834 0.92125 — —

Table 4: Specification of wires.

Type Resistance (Ω) Reactance (Ω) Maximum capacity (MVA) Cost ($)
1 7.500 17.46 1.16 17000
2 4.794 16.73 1.6 22000
3 3.038 15.96 2.17 30000
4 3.972 14.96 2.97 42000
5 4.208 14.42 3.96 54000
6 5.723 12.62 5.77 85000
7 5.487 12.17 7.62 125000
8 6.405 11.96 8.63 140000
9 4.350 11.80 9.53 165000
10 4.247 11.40 12.29 220000
11 5.19 11 13.34 270000
12 5.17 9 16.19 310000

Table 9: Some other parameters of the studied network.

Number of MCS iteration 200
T 5
d 3%
U min 0.95 p.u
U max 1.05 p.u
π 70 $/MVA-h
π′ 72 $/MVA-h
Base MVA 100
pf 10000
NOCT 45.5°C
T amp 20°C
Vw

cutin 4 (m/s)
Vw

cutout 25 (m/s)
Vw

R 14 (m/s)
ρw 0.8 kg/m3

AωZ 10m2

ηw 0.45
GT,STC 1 kW/m3

Tj,STC 25°C
PPV,STC 0.165 kW
Stop criterion for GA 100
Annual load increase rate 0.1%
Cost of installing one 15MVA substation 2 M$
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Figure 7: Configuration of the network in case#1.
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Figure 8: Configuration of the network in case#2.
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lines are illustrated by dotted and solid lines, respectively, in
Figure 6. 'e candidate nodes for installing distribution
transformers are shown by the letter “T” beside them. All the
low-voltage nodes are candidates for installing DGs. Twelve
different types of conductors (Table 4), three types of sub-
stations (Table 5), five types of distribution transformers
(Table 6), and six types of DGs, including WT, PV, GT, MT,
FC, and DE, are considered (Table 7). 'e pollution emis-
sions of the DGs and the grid are shown in Table 8.

Uncertainty in electrical loads is calculated by a normal
probability function with the mean values listed in Tables 2

and 3 and a standard deviation value of 3%. Other required
specifications and information about the studied network
are given in Table 9.

To validate the proposed methodology, three different
cases are considered as follows:

(i) Planning of the MV and LV networks indepen-
dently considering uncertainty in demand and
energy price (case #1)

(ii) Integrated planning considering uncertainty in
demand (case #2)
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Figure 9: Configuration of the network in case #3.

Table 10: 'e obtained results for the case studies.

Item
MV part

Case #1 Case #2 Case #3
Substation installation cost (M$) 36 36 34
Distribution transformer cost (M$) 2.4 1.6 1.3
Feeders cost (M$) 10.38 9.89 5.3
Purchased power from main grid (M$) 74.52 74.52 69.48
Losses cost (M$) 3.86 3.17 2.12
Total (M$) 127.16 125.18 112.2
Item LV part
Feeders’ cost (M$) 5.06 4.59 2.25
DG installation cost (M$) 0 0 12.4
DG operation cost (M$) 0 0 8.046
Purchased power from MV part (M$) 34.83 34.83 29.58
Losses cost (M$) 5.425 4.213 2.332
Emission cost (M$) 24.74 24.74 12.52
Total (M$) 70.056 68.373 67.128
Total cost (M$) 197.216 193.553 179.328

14 International Transactions on Electrical Energy Systems



(iii) Integrated planning considering DGs in the LV system
with uncertainty in demand and RESs (case #3)

In case #1, the planning is executed while the medium-
and low-voltage networks are two independent networks.
'e results of all the case studies are shown in Figures 7–9
and Table 10.

'e types of lines and transformers installed on the
network are marked with parentheses on them. 'e overall
results from Table 10 show that the minimum total cost is
obtained in case studies 2 and 3, which actually use the
proposed algorithm; as expected, the minimum planning
cost was obtained for the third study, in which DGs were
used. Figure 10 shows a good comparison between the cost
components in both networks.

'e highest planning cost was obtained for the first case
study, which shows that the bi-level model reduces ex-
pansion plans.

As can be seen, case #3 has the lowest costs, and this is
due to the undeniable fact that the penetration of distributed
generation sources in the low voltage network allows the
installation of transformers and lines of smaller sizes, and
that the medium voltage network is also affected, which has
the lowest operating costs.'is shows that the bi-level model
reaches the planning point at a lower cost by considering

DGs and, in fact, proposes a topology that also has lower
losses.

Table 11: 'e obtained results for the case studies.

Ref. Total cost (M$) Pollution Losses Transformers
[23] in scenario 1 204.72 × ✓ ×

[23] in scenario 2 180.80 × ✓ ×

[15] in case #1 18.72 × × ×

[15] in case #2 18.93 × × ×

[15] in case #3 19.28 × × ×

'is paper (bi-level model) 179.328 ✓ ✓ ✓

Table 12: Sensitivity analysis on load demand.

Load percent (%)
Costs (M$)

DGs (installation and operation) Losses (MV and LV) Emission Total
80 19.774 4.002 9.26 159.117
90 20.036 4.212 10.57 168.209
100 20.446 4.452 12.52 179.328
110 20.866 4.773 14.65 190.984
120 21.652 4.925 16.85 203.016
150 22.055 5.324 19.04 215.197

Table 13: Sensitivity analysis on price of electric energy.

Price percent (%)
Costs (M$)

DGs (installation and operation) Losses (MV and LV) Emission Total
80 16.929 3.606 13.489 142.449
90 18.810 4.007 12.921 159.808
100 20.446 4.452 12.52 179.328
110 23.513 4.898 11.894 199.054
120 26.805 5.387 11.549 223.339
150 32.434 6.678 10.856 273.474
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Figure 10: Comparison of the cost components in MV and LV
networks.
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In case #1, the existing initial lines are more chargeable,
and therefore, the existing substation will have a higher
chargeability than the proposed substation, and this to-
pology has more technical losses than the other two cases
due to the increase in current circulating through the net-
work. 'e same is true for the medium voltage network,
which in case #2 and case #3 causes the electric current of the
lines to decrease, and this in turn will reduces the losses of
electrical energy. 'erefore, it can be said that the bi-level
model finds solutions that better distribute the current flow
in the network.

Table 11 compares the material in this study with other
studies in this field, and as seen, the proposed algorithm is
very efficient.

In Tables 12 and 13, sensitivity analysis was performed
on load demand and electric energy price, respectively, and
their impact on the total cost, pollution cost, and the cost of
DGs has been determined. 'e results showed that, with the
decrease in the price of electric energy, the use of DGs
decreased and caused more pollution.

6. Conclusion

In this study, a bi-level model is presented to simulta-
neously perform expansion planning in both medium
voltage and low voltage distribution networks. To this end,
a control variable called the capacity of distribution
transformers was used. 'erefore, first a capacity is selected
for the distribution transformers, and then, according to
the constraints of the problem, the low-level problem or
low-voltage network planning is done in such a way that if
the low-level constraints are not satisfied, the capacity and
location of the distribution transformers must be changed,
and if the constraints are satisfied, then the high-level
problem is solved, and again, if the constraints of the high-
level problem are satisfied, the result is checked to check the
optimality of the overall solution; otherwise, the location
and capacity of the distribution transformers must be
changed again. 'is process continues until reaching an
optimal solution. 'erefore, by using a bi-level model, an
attempt has been made to propose a location and capacity
for distribution transformers that is acceptable from the
point of view of each network. 'e proposed problem was
solved by a genetic algorithm, and the results illustrate the
efficiency of this method because it allows finding good
quality settings for the experimental system under study.
According to the results, it was particularly clear that
planning separately in each medium-voltage or low-voltage
network alone cannot be an optimal solution for the entire
network. 'erefore, it is better to consider planning in both
medium-voltage and low-voltage networks so that the
requirements of each network are met, and in better words,
the conflict between the two networks, which is the optimal
placement of transformers, is resolved. It should be
mentioned that the application of distributed generators is
also undeniable in the optimal operation of the network. As
a suggestion for future work, the following items can be
mentioned:

(i) Use of electric vehicles at a low voltage level
(ii) Involve private owners and expression new objec-

tive functions
(iii) Conflict analysis when private owner’s express

different objectives
(iv) Consider correlation among the scenarios in the

stochastic approach

Nomenclature

Sets and Indices
f: Index for objective functions
S: Index for scenario
t: Index for time
i, j: Index for bodes in the medium voltage part
i′, j′: Index for nodes in the low voltage part
B: Index for nodes
LB: Index for load nodes
c: Index for distribution transformer
λ: Index for candidate substation
z: Index for existing substation
g: Index for DGs
e: Index for pollution
T: Set of time period
ΛB: Set of nodes in medium voltage part
ΛB
′: Set of nodes in low voltage part
ΛLB: Set of load nodes in medium voltage part
ΛLB′ : Set of nodes in low voltage part
Λλ: Set of candidate substations
Λz: Set of existing substations
Λc: Set of candidate distribution transformers
Λs: Set of scenarios
ΛDG: Set of DGs
ΛE: Set of pollutant gases.

Parameters
d: Discount rate
Zij: Impedance between nodes i and j in the medium

voltage part
Zi′j′ : Impedance between nodes i′ and j′ in the low

voltage part
Cij: Cost of installing a new line between nodes i and j

in the medium voltage network
Z ′i′j′ : Cost of installing a new line between nodes i′ and j′

in the low voltage network
Cλ: Cost of installing a new substation
Cc: Cost of installing a new distribution transformer

C′INV
i′,g : Cost of installing a new DG of type g in node i′

C′OP
i′,g :

Operation cost of a new DG of type g in node i′

SBase: Base kVA of the network
πs: Energy price in medium voltage part in scenario s
πs
′: Energy price in low voltage part in scenario s

Umin
i : Minimum voltage of node i in medium voltage part

Umax
i : Maximum voltage of node i in medium voltage

part
Umin

i′ : Minimum voltage of node i′ in low voltage part
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Umax
i′ : Maximum voltage of node i′ in low voltage part

SPS−max: Maximum capacity of existing and candidate
substations

Smax
c : Maximum capacity of a distribution transformer c

Smax
ij : Maximum capacity of a line between nodes i and j

Smax
i′ i′ : Maximum capacity of line between nodes i′ and j′
pf: Penalty factor for pollution emission
Vw

cutin: Minimum wind speed (m/s)
Vw

cutout: Maximum wind speed (m/s)
Vw: Wind speed (m/s)
ρw: Air density (kg/m3)
Aw: Wind turbine blade area (m2)
ηw: Wind turbine power coefficient
GT: Solar radiation (kW/m2)
GT,STC: Solar radiation in standard test conditions (STC)

(kW/m2)
T: Cell temperature (°C)
PWT: Output power of wind turbine (kW)
PPV: Output power of photovoltaic (kW)
PPV,STC: Maximum test power in STC (kW)
Tamp: Environmental temperature (°C)
NOCT: Normal operating cell temperature (°C)
c: Power-temperature coefficient
SFec : Iron losses of a distribution transformer c

SCuc : Copper losses of a distribution transformer c

EDG
g,e : Pollution emission of type e from DG type g

EG
e : Pollution emission of type e from the main grid

δs: Probability of scenario s

Variables
σs,t,ij: Integer variable for a new line between nodes i and j

in scenario s and time period t in medium voltage
part

σ′s,t,i′ ,j′ : Integer variable for a new line between nodes i′ and
j′ in scenario s and time period t in low voltage part

σs,t,i,λ: Binary variable for a new substation λ in scenario s
and time period t in node i

σs,t,i,c: Binary variable for a new distribution transformer c

in scenario s and time period t in node i
σs,t,i′,g′ : Integer variable for a new DG type g in scenario s

and time period t in node i′
Us,t,i: Voltage of node i in scenario s and time period t in

medium voltage part
Us,t,
′

i′ : Voltage of node i′ in scenario s and time period t in
low voltage part

Ss,t,i,λ: Injected power by a substation λ in scenario s and
time period t

Ss,t,i,z: Injected power by an existing substation z in
scenario s and time period t

Ss,t,i,c: Injected power by a distribution transformer c in
scenario s and time period t

SDG
s,t,i′,g: Injected power by a DG of type g at node i′ in

scenario s and time period t.
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