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*e concept of energy management in smart homes has received increasing attention in recent years, particularly on issues such as
creating a balance between user privacy and reducing energy costs. Accordingly, this article proposes a user-oriented multi-
objective approach, which minimizes energy costs and maximizes consumer privacy. In addition, a home energy management
system is suggested for smart homes to optimize the energy consumption pattern of appliances. On the other hand, considering
challenges in energy management of smart homes, the concept of demand-side management (DSM) is introduced. *e objective
of the proposedmethod is to reduce energy consumption to lower consumers’ electricity bills. Also, it improves user comfort (UC)
in average waiting time conditions. In this research, a smart home equipped with an energy management system and smart home
appliances that can inject electric power into the upstream network is considered the main system. *is framework leads to a
multi-objective optimization problem in which the two objectives mentioned above are considered two separate dimensions. To
solve the problem, an ITS-BF Algorithm is used, which employs a random search to schedule home appliances and batteries based
on the application of flexible devices in smart homes. *e case studies show that the proposed method can considerably respect
and satisfy users’ privacy and reduce the energy cost to an acceptable level. Finally, the numerical results obtained from the
simulation have been analyzed to evaluate the proposedmethod’s efficiency.*e simulation results show that an ITS-BF algorithm
performs better than the existing methods in reducing costs and waiting time.

1. Introduction

*e world has made amazing progress in developing new
technologies and putting them to innovative use. Electricity
is an important and necessary need in today’s world. Also,
home energy management is proposed to use energy effi-
ciently with minimum cost and maximum user comfort
(UC). Electricity is generated in power stations and dis-
tributed through different utility companies. In today’s
world, electricity crises in the form of blackouts, voltage
drops, voltage instability, and frequency drops are major
issues people face. Two different approaches are used to deal
with these issues. First, electricity production is increased by

using renewable energy sources (RER) and replacing them
with conventional ones, such as heat generators and fuel
cells; second, applicant consumption is monitored, sched-
uled, and restricted with new techniques. Also, traditional
networks cannot afford novel electricity demands with one-
direction power flow and a lack of links and connections
between different components. For this purpose, smart grids
(SGs) have been introduced as updated power networks to
provide a substructure for the emergence of the new power
industry and prospective applicants. SG is a network that
introduces a physical power system that connects infor-
mation control and communication technologies to a cus-
tomer satisfaction platform. *is modern system provides
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electricity for residential, commercial, and industrial zones
while allowing two-way communication between consumers
and generator units. *ere are various proposals for con-
trolling the power demand of smart grids. *e most popular
one is engaging the applicant’s behavior and consumption,
also known as demand-side management (DSM). It is one of
themost important parts of SG that balances load and supply
by informing customers about the real-time energy market.
Consequently, all applicants can take part in scheduling their
devices and make rational decisions about their electricity
usage patterns to reduce costs and increase network stability.
*e reason for choosing machine learning methods is their
ability to receive and record information and have no linear
characteristics, so in diverse environments they can offer
great performance compared to linear methods.

*e smart grid’s attributes and objectives require energy
consumption to be regulated so that costs and adverse effects
on the upstream grid are reduced as much as possible. One
indicator of minimizing these effects is reducing the Peak to
Average Power Ratio (PAPR).

A BEMS is an integrated system that uses tools such as
computers, network communications, and wiring to connect
all the indoor subsystems of home appliances and other
household devices. *is system illustrates the increasing role
of artificial intelligence in emerging big data technologies
and extraordinary computing power. *e new generation of
artificial intelligence is rapidly expanding and has become an
attractive research topic. With the increase in the volume of
data and complexity in similar systems’ management and
calculations, most engaged researchers emphasize the fun-
damental role of artificial intelligence in the power of in-
telligent data analysis. In this way, smart home technology
effectively focuses on managing consumption and opti-
mizing it at home, in addition to increasing the level of
comfort and security of residents by updating daily
schedules and constructing high-quality lifestyles. *e smart
home management system, which first started in the United
States, is one of the most fundamental technologies in smart
home system design. *ese microcontrollers are used to
monitor home appliances, lighting systems, and air condi-
tioning equipment (heating and cooling) according to the
defined conditions and functions. *e intelligent building
management system needs to learn the behavior and in-
terests of residents to provide a favorable environment. In
terms of creating an accurate model of the mentioned
systems for evaluating controllers’ performances, machine
learning-based ones are fine as proper methods that require
data processing, including classification and prioritization
using the proposed algorithms. It is necessary to define a
specific algorithm to combine the structural characteristics
of information and store them in a database for large-scale
public buildings. *is database can be used to detect im-
perfections or errors in the obtained data and correct them.

1.1. LiteratureReview. Based on the studies conducted in the
last few decades, researchers have focused on optimizing
energy consumption in the presence of diverse loads and
using combinations of various technologies to reduce costs

and improve the quality of delivered energy. *e research
focused on preparing a program for daily and weekly ac-
tivities in the building; only linear methods for predicting
the energy consumption of public buildings have been
proposed and used, but the prediction accuracy is not
provided [1]. *e MavHome (Management of an Adaptable
and All-Inclusive Home) project is a multi-stakeholder
research project at Washington State University and the
University of Texas. *e main goal is to maximize residents’
comfort and minimize operating costs [2]. In another study,
the simulation of household electricity consumption is in-
vestigated. *is model included household cooling, heating,
ventilation, air conditioning, lighting, and electricity con-
sumption. *e results of the studies presented patterns of
energy demand changes, load fluctuations, and variation
between location configuration and household size [3–6].

*is research presents household appliance planning
and control techniques to implement demand-side man-
agement using a smart grid to control electricity con-
sumption in houses and offices.*emethods reduce the cost
of energy consumption, and consumers are encouraged to
program their devices’ operation periods using load-car-
rying methods [7]. In a study, electrical energy consumption
is investigated in a model of British domestic buildings to
identify trends in energy consumption. *is study also in-
troduced a series of new analysis techniques to improve the
understanding of household electricity consumption [8]. In
France, the research laboratory (G-SCOP) has created a
pattern of residents’ behavior in different states every hour of
the day and night to predict the possible state using a
Bayesian network. *ese patterns are created by examining
the European Union household energy consumption data-
base [9]. In another study, they made a model for adjusting
the house’s temperature using smart thermostats. *is
model focuses on the entry and exit of the residents, and the
considered database is created by monitoring a specific
location for one month [1].

*e methods used to design intelligent energy man-
agement programs can be categorized into artificial intel-
ligence (AI) and classical mathematical methods. *e sub-
optimal points are reached based on the local search of the
problem’s solution areas or using an expert’s experience. [10]
*is category includes fuzzy control methods [11] and ge-
netic algorithms [12]. *ese methods may get stuck at a
suboptimal point. As these techniques are created based on
experience, they are weak against changes and possibilities
and may be affected by human errors. In contrast, classical
methods are more complicated but provide optimal and
reliable answers. For example, the mixed integer linear
programming method has been used in [13] to optimize the
production energy of distributed production resources and
loads to reduce costs. In this article, the smart building is
equipped with a distributed generation of wind and solar
power, a storage battery, and electric vehicles that can be
connected to the network. *is article does not consider the
important factor of common welfare and comfort. Fur-
thermore, in [14], a general model for building energy
management is used, which can optimize and compromise
between user comfort and energy cost minimization. Also,
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the main emphasis is on the increasing use of hybrid cars
connected to the grid and its positive effects, such as the lack
of fossil fuel consumption and the use of energy stored in the
vehicle to meet demand for power in peak hours. It should
be mentioned that charging the batteries of numerous cars is
considered a major danger to the smart network.

Simultaneous charging of batteries may cause a sudden
overload of distribution equipment, especially if it occurs during
peak consumption, which leads to congestion in the distribution
system. *erefore, with proper planning, the destructive effects
of these cars can be reduced to the lowest possible level [15].*e
electricity prices at the time of use are a great factor in the
optimal use of household loads with the presence of electric
vehicles and energy storage devices [15]. Energy storage devices
and electric cars have the possibility of energy interaction be-
tween the smart home and the distribution network. Never-
theless, the mentioned study did not consider the sources of
distributed production. [16,17] examines manufactory pro-
duction from the standpoint of IoTmanagement.*is approach
greatly analyses and examines the need for components such as
the cloud-based approaches to managing the output of factories
as a particular service. *us, similar to this research, providing
such services through cloud technologies and IoTallows users to
organize their products according to local goals. *e main
objective of this research is to implement an intelligent service to
control the work schedule of electrical appliances in homes.
Accordingly, the considered approach has been employed in
various researchers’ works, demonstrating their validity and the
importance of the challenges raised in this research. To establish
the Internet of *ings, we can refer to [18] to cover various
aspects of the challenges [19], create smart cities [20], and an-
alyses the mutual role of the Internet of *ings [21]. Regarding
the role of service-oriented architecture in creating a platform to
realize the ability to achieve this research’s goals in the Internet of
*ings, we can refer to the analyses and approaches mentioned
in [22]. Also, in [23], the importance ofmiddleware in creating a
platform for establishing IoTs by receiving assistance is dis-
cussed. Also, in [24], a comprehensive study for designing
service-oriented middleware is introduced. Based on the liter-
ature review, many techniques have been proposed to optimize
the home energy management system (HEMS). Most of these
techniques are focused on reducing PAR and cost. In [25], the
authors presented a price signal for dealing with DR at the time
of use (ToU). *e DR approach’s goal is to plan and move the
maximum load to the minimum load. In this work [26], the
authors effectively considered the element of user satisfaction.
While in [27], the authors introduced the framework for
managing the load profile, which includes DSM. In addition,
they mentioned that if a customer has any issues related to the
priorities of the running equipment they have already set, they
should send feedback. Similarly, the authors in [28] presented
the results using experimental evolutionary techniques to
achieve the minimum electricity bill regardless of user satis-
faction. *e research authors [29] proposed a general DSM
model for residential users based on similar objectives of cost
reduction, PAR reduction, and UC level increase. A Genetic
Algorithm (GA) with Real Time Pricing (RTP) 2 has been used.
*e results show that UC has reached some classes in terms of
time. In HEMS, two price signals are used: dynamic and static.

Dynamic price signals mainly influence DSM because it changes
from time to time. *e main goal of DSM is to obtain full UC
with minimum cost. In this direction, many DSM techniques
have been introduced in recent years. As in the article [30], wind
optimization techniques (WDO) and ToU tariff prices are used
to obtain minimum cost and maximumUC. In [31], a survey of
different DR designs is provided that are classified into different
categories. Various models for optimal control of DR strategies
have also been presented. In [32], the authors proposed a cost-
effective plan for load scheduling. *e fractional programming
(FP) approach is used alongwith the advancedRTPpricing tariff
so that the user can manage his electricity consumption pattern
by reducing the cost. *e simulation results show that the
proposed technique significantly leads to an economical energy
consumption pattern. However, reducing the cost to a mini-
mum is still a compromise, and UC and PAR have not been
discussed in this work. On the other hand, while dealingwith the
OPF problem, the main goal is the optimal distribution of the
generated power with the optimal settings of the control vari-
ables so that it can be solved with a specific objective function in
themethodology [33].*e classic OPF problem is only based on
the heat generator that mainly consumes fossil fuel. However,
with the increase in energy demand and environmental con-
cerns, RERs have been included to reduce the use of fossil fuels
because they play an important role in carbon emissions and
global warming. [34]. *e use of green energy has rapidly in-
creased the penetration of RERs in the power system. Integrating
RERs such as wind turbines and photovoltaic solar panels (PV)
is a complicated task because they have uncertainty in their
production due to the dependence of these resources on the
speed of the wind and solar radiation [35]. *e authors address
the problems of OPF and uncertainty in modeling wind, solar,
and demand load. *ey suggested PDF include the average
adjustment cost as an additional cost caused by the uncertainty
of RERs. *e battery storage system removes the uncertainty
regarding RERs and stabilizes the electricity flow and different
energy storage options. However, the writers ignored the cal-
culations of heat generators. In [36], moment-to-minute
changes have been used for load demand, photovoltaic solar
panels (PV), and wind farms. Every 15minutes, the OPF future
is calculated for resource planning and dealing with uncertainty.
However, the authors did not usemulti-fuel options, the effect of
point valve loading, heat generators’ carbon emissions, or
storage devices’ use in their work. Applicant contribution is
effective for load management by reducing PAR, minimizing
cost, and increasing UC in terms of reducing waiting time. For
this purpose, several innovative Tabu Search (TS), Bacterial
Foraging Algorithm (BFA), and Real-Time Pricing (RTP)
methods are used. GA is also used for the desired settings of
electricity generation from the network. *is study considers
three emission reduction cases (production and discharge),
voltage deviation, and fuel cost [37]. *ree different scenarios
have been considered to solve the energy management problem
in smart homes with the following three objective functions:

*e optimal time of indoor appliances by buffering the
storage device is also presented in [38] to minimize costs as
the objective of the optimization problem. Similarly, a
household appliance participation algorithm for household
load scheduling was introduced in [39] to reduce the cost of
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electricity consumption. Beyond what has been stated in the
demand-side management of smart networks, several
methods in recent work have been used for household
energy management and task scheduling. Creating local
access to energy and smart home components, improving
the house’s energy efficiency, and monitoring and
strengthening the house’s environment and the residents’
social welfare have been considered.

1.2. Contributions of the Study. For example, DR benefits
both generators and consumers when there is a high load
and the possibility of being turned off. On the other hand,
consumers will benefit by reducing electricity costs with ease
and comfort. In supply side management (SSM), optimal
methods of generation and providing services with en-
couraging features are used, whereas in demand side
management (DSM), consumers change their energy market
usage behavior. In both concepts, the main goals are to
reduce costs, improve the power system stability, and pre-
vent noticeable peaks in daily consumption curves. For this
purpose, there is a need to create an updated and improved
energy management system (EMS) that governs electricity
generation and consumption wisely. *e importance of such
a system is reflected through the assistance obtained, such as
the maximum reduction of charges, the minimum PAR, and
maximum user satisfaction, so that it can provide a solution
for the security, reliability, and stability of the system.
According to recent research, the main focus of this article
can be summarized as follows:

*is article introduces a new concept of demand-side
management (DSM) that can improve user comfort (UC) in
average waiting time conditions. *e proposed plan uses the
ITS-BF Algorithm technique, which can be more effective in
reducing the costs, minimizing the waiting time, improving
the UC level, and reducing the average waiting time for
household interests in general compared to the existing
plans. In addition to reducing the energy cost to a reasonable
level, the proposed method can respect and satisfy users’
privacy to a considerable extent.

2. Model System

*e offered system model is shown in Figure 1. A HEMS
has been proposed to launch intelligent applications for
reducing electricity, PAR, and waiting time. Smart homes
can be considered a network that includes smart devices,
SM, and energy management controllers (EMC). *e ap-
plications used in a smart home are planned in EMS, and
the planning is done by considering the consumption
patterns of each user and the electricity price. In this
technique, first price signals are received by SM from the
instrument and then transferred to the EMC section. After
prescribing the appropriate plan, the schedule is sent from
EMC to SM to control the periods in which each device is
allowed to work and consume electricity. For program-
ming, utility companies share their SM, EMC, and infor-
mation resources.

*ere are many loads in residential sites which are
generally divided into two categories:

(I) Schedulable loads
(II) Constant loads

While loads such as refrigerators and stoves are considered
constant loads, vacuumcleaners, washingmachines, and clothes
dryers are examples of schedulable loads that provide the most
electricity in a household.*ey consume and behave differently
in response to changes in electricity prices over time [3].

3. Formulation

An energy management scenario is considered that can be
implemented in central control equipment. All intelligent
electrical equipment is controlled and programmed by the
central control of the smart home network. *e objective
function presented in (1) is:

Objective FunctionMin �
SP
LF

. (1)

SP represents the cost of operating a smart home, and LF
represents the load factor.

SP is defined as the difference between the cost of pur-
chasing energy from the upstream grid (CEP) with the profit
from the sale of upstream grid energy (CES) and the profit from
participation in the consumption reduction program (CDM).

SP � CEP − CBS − CDM, (2)

LF �
average of load
Peack of load

. (3)

Increasing the load factor can include reducing the peak
consumption or increasing the average consumption by
filling the valleys of the overall load profile.

Replaceable appliances in this study include water
pumps, vacuum cleaners, dishwashers, and water heaters
(category A). However, they are interrupted and transferred
to other time intervals after setting the working time. As
mentioned earlier, many devices do not have this feature due
to necessity and cannot be adjusted. *e user sets the active
time of these devices, so incentive plans are considered so
that users have a passion for using these devices optimally.
An air conditioner, a refrigerator, and a stove are suitable
examples of these devices (Category B). *e device is rep-
resented by ∀i ∈ I, D, B{ } and Xi represents the power
consumption. *e daily electricity consumption of each
household appliance is calculated based on (1).

Xi � 
t

t�1


iε I,D,B{ }

pi × σi(t) , iε I, D, B{ }. (4)

*e total cost of all devices at t interval is calculated
based on (2).

ςi � 
t

t�1


iε I,D,B{ }

pi × δ(t) × σi(t) , iε I, D, B{ }, (5)
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where T is the whole-time gap, Pd is the home appliance
electricity rates, and δ(t) is Electricity price. *e device’s
state is in a specific time gap calculated based on (3).

σi(t) �
0, if appliance is off ,

1, if appliance is off .
 (6)

*erefore, the total energy consumption and total cost
per day are calculated and provided in Table 1:

3.1. Central Energy Storage System (Battery). for managing
storage system an objective function should be described as
follows, which is presented in (7):

PC � 
144

H�1
TrH FEh + 

J

EjIjh +
1
ηB

⎛⎝ ⎞⎠

E
Bp

I
Bp

h  − η _B
E

Bn
I

Bn
h .

(7)

Obviously, the battery cannot be charged and discharged
at the same time:

E
Bp

+ I
Bp

h ≤ 1. (8)

*e amount of battery discharge in each period should
be less than the amount of stored energy so:

E
Bn

I
Bn ≤E

B
0 + 

h−1

m�1
E

Bp
I

Bp
m − E

Bn
I

Bn
m . (9)

*emaximum battery charge per period is limited by its
capacity:

E
B
0 + 

h

m�1
E

Bp
I

Bp
m − E

Bp
I

Bp
m ≤E

maxB
. (10)

Another objective function for optimizing a smart home
that includes PHEV and central batteries is introduced in
(11).

PC � 
144

h�1
Trh FEb − 

J

EJIJh +
1
ηB

  + E
BF

I
BP
h  +

1
ηB

  E
Pp

I
PP
h ηB

E
Bn

I
Bn
h  − ηB

E
Bn

I
Bn
h ⎛⎝ . (11)

*is energy can be sold to the grid if the energy dis-
charged from the storage system is greater than the amount
consumed in the house. *e energy transferred to the grid
for sale to companies is limited to the maximum allowable
energy.

E
T
h ≤ η

B
, (12)

E
T
h � ηB

E
BF

I
BP
h  + ηP

E
BF

I
BP
h  −

1
ηB

 

+ E
BF

I
BP
h  − 

J

EJIJh − FEh.
(13)

3.2. Distributed System Stores Energy in Bars. With the ad-
vent of high-efficiency electronic equipment and their ap-
plications in smart loads in the smart home, the central
battery can be used for some loads in a distributed manner.
*ese distributed batteries can be controlled separately. *e
ultimate goal in the presence of batteries distributed in loads
is described as (14).

PC � 
144

H�1
TrH FEEh + 

J

EjEjh
⎛⎝ ⎞⎠. (14)

*is energy can be sold to the grid if the energy dis-
charged from the energy storage equipment is greater than
the consumption of the house.

EjIjh + 

j

b

1
ηb

E
Bp

I
Bn
h  − ηB

E
Bn

I
Bn
h  � EEjh, (15)

EFh + 
b

1
ηb

E
Bp

I
Bn
h  − ηB

E
Bn

I
Bn
h  � FEEh. (16)

Also, this battery cannot be charged and discharged
simultaneously as the central trays.

I
Bn
bh + I

BP
bh ≤ 1. (17)

Furthermore, the discharge rate of the distributed bat-
teries in each period should be less than their available
charge:

E
Bn
bh I

Bn
bh ≤E

B
0b + 

h−1

m�1
E

Bn
h I

Bp

bm  − E
Bn
h I

Bn
BM . (18)

*e following equation estimates the capacity range of
batteries;

E
Bn
bh + 

h−1

m�1
E

Bn
h I

Bp

bm  − E
Bn
h I

Bn
BM ≤E

maxB
b . (19)
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Finally, the following equation is shown to achieve the
goal that should be optimized in the presence of PHEV and
distributed batteries.

PC � 
144

H�1
TrH FEEh + 

J

EEJH

1
ηb

⎛⎝ ⎞⎠ E
Pp

I
Pp

h  +
1
ηb

⎛⎝ ⎞⎠ E
Pp

I
Pp

h  − ηP
E

Pn
I

Pn
h ⎛⎝ ⎞⎠. (20)

3.3. PHEV Displacement Modeling. In this research, we use
the Gauss-Markov displacement model to design the PHEV
displacement model. Based on this model, each moving
agent frequently examines its spatial position and updates its
status whenever it reaches the boundary distance. In this
study, PHEV is the moving factor that updates its location
periodically and is frequently considered. *erefore, we use

the displacement model to implement the PHEV movement
pattern. PHEV speed depends on the time, which means the
location of each PHEV at the time t depends on its location
and velocity at the time t− 1 is stated below:

vt � αvt−1 +(1 − α)v + σ
���������

1 − α2Wt−1



. (21)

Generation

Transmission

distribution

Power Consumption

Power

Price Tariff

Smart Meter

EMC

Washer

Kitchen Ventilator

Smart Applications

PC

Phone
Microwave

Ventilator

TV

Light

Dishwasher

Figure 1: Proposed system model.
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(i) vt � [vx
t , vv

t ] Indicates PHEV speed at time t
(ii) α � [vx

t , vv
t ] Indicates variance at different times

(iii) σ � [vx
t , vv

t ] Indicates standard deviation
(iv) Wt−1 � [Wx

t−1, W
y
t−1] *e amount of random cor-

relation in the Gaussian process

*e displacement is evaluated in X and Y directions
based on the following equation and model relations.

v
x
t � αv

x
t−1 +(1 − α)v

x
+ σx

�����

1 − α2


W
x
t−1,

(22)

y � αv
y
t−1 +(1 − α)v

y
+ σy

�����

1 − α2


W
y
t−1.

(23)

4. Optimization Techniques

4.1. Bacterial Foraging Optimization Algorithm. *e Bacte-
rial Foraging Optimization Algorithm (BFA) was introduced
in 2002 [15] and is a relatively new model for solving op-
timization problems inspired by the social behavior of
Escherichia coli (E. coli) that is present in the human in-
testine. For many organisms, finding food includes steps
such as gathering members into certain groups and trying to
find food and gathering and consuming it at the most op-
timal time while minimizing the risk of being attacked and
injured by predators or assailant groups.

According to these biological interpretations, BFA is
formulated into the following basic steps [16]: Chemotactic 1
(rotation and swimming) is a process in which the bacterium
directs its movement according to certain chemical signals in
its environment. It is very important for a bacterium to
climb the food accumulation and avoid harmful substances
simultaneously. *e bacterial position in the (j+1) chemo-
tactic step is calculated from the position of the previous step
and the step length C(i) (as a step length unit) multiplied by
the random direction ϕ(i):

*erefore, the total energy consumption and total cost
per day are calculated by the following equations.

θi
(j + 1, k, l) � θi

(j, k, l) + C(i) × ϕ(i). (24)

ϕ(i) is a random direction for describing immersion
calculated from Equation (25):

ϕ(i) �
Δ(i)
������

ΔTΔ(i)

 , (25)

so that Δ(i) ∈ RD is produced randomly in the range [−1,1].
*e cost of each situation is calculated by (26):

J(i, j, k, l) � J(i, j, k, l) + Jcc θθi
(j, k, l) . (26)

In (26), the cost of position J(i,j,k,l) with the effect of
attraction and repulsion force between the bacteria in the
population that Jcc has been changed. If the cost of location i
of the bacterial species in j+ 1 of the chemotactic step shown
in J(i,j,k,l) is better (less) than the location θ̂i (j,k,l) in step j.
So, a bacterium takes a step of C(i) in the same direction to
reach the maximum possible number of steps. (MNN S).

Congestion 2 is a partial type of movement made pos-
sible by flagella and allows bacteria to pass through quickly
and between the surfaces of a dense environment.

for example, suppose Nreis the number of reproductive
stages, to reproduce, the bacteria with the minimum health
will die; these are the bacteria that could not collect enough
food during the chemotactic stages and will be replaced by
an equal number of healthy bacteria. As a result, the pop-
ulation size will remain constant. *e healthiest bacteria
(those with enough food value and the lowest value of the
cost function) are divided into two bacteria in an asexual way
and take the place of the dead bacteria. *e level of health
can be calculated with different methods. Here, a method
that considers the total amount of food received in each
chemotactic as a health criterion is used:

J
i
health � 

Ne+1

j�1
J(i, j, k, l). (27)

4.1.1. Elimination-Dispersal. Changes in the environment can
affect the behavior and population of bacteria.*erefore, when a
change occurs in the environment, either slowly (for example,
food consumption) or suddenly (for example, an increase in
temperature), all the bacteria in one area may die or spread to
other parts of the environment. Such movements have de-
structive effects on all previous chemotactic processes. While
they may also have good effects, this change may move affected
bacteria to a nutrient-rich area. *ese events lead to the defi-
nition of Elimination-Dispersal. Under such conditions, Ned is
the number of occurrences of Elimination-Dispersal, and for
each occurrence of each bacterium in the population, the
probability ped is set so that at the end, the number of bacteria in
the population remains constant (if one bacterium is deleted,
another bacterium A random event will be played) [16].

Table 1: Appliance parameters.

Type of appliance Appliance Daily use (hours) Electricity rate (kWh)

Interchangeable appliance

Vacuum cleaner 0.7 6
Water heater 5 12
Water pump 1 16
Dishwasher 1.8 5

Non-replaceable appliance Washing machine 07 5
Dryer 5 4

Basic appliance
Refrigerator freezer 0,255 18

AC 1,5 15
Oven 2,15 10

International Transactions on Electrical Energy Systems 7



4.2. ITS. In the tabu search algorithm, the neighborhoods
around which the search has been done are kept temporarily
and for a short period in a list called the forbidden list
(Tabu). As a result, by creating a forbidden list, the creation
of repeated neighborhoods will be prevented in a short
period of time.

Two operators can be employed to improve the
performance of the Tabu search algorithm: diversification
and elitism. By accepting the worst answer, the diversi-
fication operator enlarges the search space and prevents
getting stuck in local optima. *e elite operator is used to
select better answers and speed up the search process. In
the proposed algorithm, according to the initial answer

for the initial location of the carriers, the value of the
objective function is calculated from the allocation al-
gorithm, and the location of the carriers is added to the
forbidden list.

*e neighborhoods of answers will be checked, and the
best ones considering objective function values will be
identified and added to the forbidden list. In this algorithm,
the length of the forbidden list is considered fixed, and when
the number of forbidden neighborhoods is greater than the
length of the forbidden list, the first answer that enters the
forbidden list is deleted. In other words, every neighborhood
added to the forbidden list will remain on it until the number
of repetitions is reached, and then it will be removed. In the

Start

Initialize the electrical appliances data

Place Len=1 and the
primary location of

carries in T abulen sρ. 

Put g < ∑i∈N(|Pi| − 1) If
g=g+1 and go back to next

step

Initial the constrain

Initial condition of appliances within 24
(hours)

If the value FSitr > FSitr–1 Put
imp=imp+1 and per carrier iεN put in Sitr.

Give torimpi, layi = torimpi, layi+1

Problem formulation

: HEMS optimization
using BFA and ITS:

If the value FSitr > FSitr–1
Put imp=imp+1 and per carrier

iεN put in Sitr. Give

If the valueFSitr > FBest put,
FSitr = FBest, div=0 and go to

step 10, place otherwise div = div

Is time 24h=?

End

NO

verify?NO

If the termination clause is in place,
stop and report F Best. Otherwise

NO

Figure 2: *e Proposed protocol flowchart based on BFA and ITS.
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beginning, the algorithm adds the best answer of each it-
eration to the forbidden list, regardless of whether it is
improved or not, and continues searching around it. It also
keeps the number of repetitions that did not improve the
answer and the number of repetitions that improved the
answer compared to the previous answer in two variables:
div and imp. If there are still unimproved answers after
inverted terminal repetition (ITR), if the div variable is more
than imp, the diversification operator is executed; otherwise,
the elite operator is executed.

*e proposed protocol is implemented through the
following steps (according to the flowchart in Figure 2):

*e stop condition defines the time limit and describes
the following steps as the process considered for the pro-
posed algorithm.

Step 1: Place Len� 1 and sent the initial locations of carriers
in Tabulen sρ. For this place, the value FS0 using the Limit
function. Put: G′ � ∅,NE ≡ ∅, g � 1.FS0 ≡ FBest , itr �

1g″ � 1 Set all IoT and TI matrix values to zero.
g‴ � g′ + 1 and Scoreg � 0
Step 3: If g<i∈N(|Pi| − 1) Put g � g + 1 and go back
to step 2, otherwise go to step 4.
Step 4: Identify the highest value of objective function
and neighboring value related to Site−1 and set the
values Pu tSitr ANDFSitr respectively.
Step 5: If the value FSitr > FSitr−1 Put imp� imp+1 and per
carrier iεN put in Sitr. Give torimpi,layi � torimpi,layi + 1

Step:6 If the value FSitr > FBest put, FSitr � FBest,
div� 0 and go to step 10, place otherwise div� div+ 1:
Step 7 If is div< ITR, go to step 10, otherwise if is the
div< imp, go to step 8 and otherwise go to step 9
Step:8 Put imp� 0 and for |G′| Allowed neighbor from
NE, Scorey∗ � iεNtotimpi,layi

y
As y � 1, 2, . . . ..|G′|

calculate. Highest score, Scorey∗ Specify. Neighboring
it, NEy∗ and the value of the target function, FNEy∗ In
order FSitr And Sitr Put it and go to step 10.
Step:8 Put div� 0 and for |G′| Allowed neighbor fromNE,
Scorey∗ � iεNtotimpi,layi

y
As y � 1, 2, . . . ..|G′| calculate.

Highest score, Scorey∗ Specify. Neighboring it, NEy∗ and
the value of the target function, FNEy∗ In order FSitr And
Sitr Put it and go to step 0.
Step:11 If the termination clause is in place, stop and
report F Best. Otherwise
g � 1, g′ � 1, itr � itr + 1, G′ � ϕ,NE � ϕ And return
to step 2.

4.3. HEMS Optimization Using BFA and ITS. In order to
optimize HEMS, the parameters of household appliances,
along with their initial state (Table 2), are given as input to
the hyper-innovative algorithms used in this research, i.e.,
BFA, ITS, and their combinations.*en, the initial efficiency
level of each of these necessities in 24 hours is calculated
based on the total energy consumption and the total cost per
day by equations (25) and (26). *en, the innovative

Table 2: Initial status of home appliance parameters (0 on −1 off).

Type of appliance Appliance Initial condition of appliances within 24 (hours)

Appliance whit timing capability

Vacuum cleaner [0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0]
Water heater [0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0]
Water pump [1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0]
Dishwasher [0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0]

Appliance whiteout timing capability Washing machine [0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Dryer [0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0]

Basic appliance
Refrigerator freezer [0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1]

AC [0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1]
Gas oven [0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0]
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Figure 3: Load during 24 hours.

unschedules
ITS

TS-BFA
ITS-BFA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hours)

0

50

100

150

200

250

300

350

400

El
ec

tr
ic

ity
 co

st 
(c

en
t)

Figure 4: Electricity cost based on TOU tariff during 24 hours.
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algorithms follow their evolutionary process on these values
until they reach the optimal state. *e optimal situation to
reduce energy consumption and minimize the total cost of
consumption is to use the merit function of equation (27).

MINXT + ςT. (28)

5. Simulations and Results

*e implementation and technological results of the pro-
posed smart house using simulation in MATLAB are de-
scribed in this section to study the proposed technique
results of ITS compared with BFA and TS. A solitary house
with nine devices to be programmed is intended, which are
divided into three categories:

Set A: replaceable devices (water pumps, vacuum
cleaners, dishwashers)
Set B: non-replaceable devices (for example, washing
machines and drying machines that cannot be stopped
during the working cycle)
Set D: impenetrable basic household appliances (for
example, refrigerators and freezers, AC, stoves)

In TOU, prices are divided into several blocks of the day,
and the price of each block is adjusted to a non-peak
constant time and a peak time. *e load is shown for 24
hours in Figure 1.*e power of scheduling technology is less
than the unscheduled scheme.

Figure 3 indicates that the maximum energy con-
sumption for one day is 13,525 kWh of unscheduled kilo-
watt-hours, and for ITS, BFA-TS, and BFA-ITS is 6,126 kWh
at 12,056 kilowatt-hours and 6,534 kWh, respectively. Total
electricity consumption is relatively low for programming.

Figure 4 shows the electricity cost (per hour) of the
proposed technique (ITS BFA) ‘s electricity cost (per hour)
with unscheduled loads, ITS, and TS-BFA. According to the
graph, taking the load from peak to time outside the courier
is practical because the cost during peak intervals is lower
than unscheduled loads. Also, the proposed combination
was successful in cost-saving compared to ITS and TS-BFA.

For example, during peak hours such as 18 : 00 to 22 : 00,
the proposed method has reduced consumption and final
costs due to the high tariff.

*e figure shows the four differences in the total cost of
electricity between ITS, TS-BFA, ITS-BFA, and unscheduled.
It is clear from this figure that ITS-BFA has the lowest cost
compared to unscheduled, ITS, and TS-BFA designs. In the
case of Unscheduled, the total cost is 1250.1 cents, and the
total cost of ITS, TS-BFA, and ITS-BFA is reduced by 1901.2,
850.4, and 790.8 cents, respectively. *e cost of all scheduling
plans is reduced. However, TS-BFA is the most expensive
planning scheme compared to other methods. Figures 5 and 6
show the times before and after the scheduling.

Figure 7 compares PARs between unscheduled, ITS, TS-
BFA, and ITS-BFA in 24 hours. PAR reduction positively
influences the network’s cost, load, and stability, so both
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Figure 5: Total cost of electricity for a 24-hour day.
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users and the power system can benefit. If the PAR value for
Unscheduled is 4,5476 and the PAR values for ITS, TS-BFA,
and ITS-BFA are reduced by 1.7977, 2.1559, and 1.1122,
respectively, compared to Unscheduled, there were de-
creases in PAR in all scheduled programs, with TS-BFA
experiencing the greatest decrease. Figure 8 easily shows the
user (UC) according to the average waiting time duration.
*e average waiting time is when a user should wait for the
device to turn on.

In this research, an individual house has been con-
sidered for simulation purposes. *e tool set includes nine
tools classified based on power rating and execution time.
*e simulation results show that the proposed combined
optimization method based on ITS and BFA is more ef-
fective than other existing techniques in reducing the cost,
improving the UC level, and minimizing the waiting
room’s average waiting time (PAR). *e proposed pro-
gramming has reduced the cost of the finished price of
electricity without reducing the amount of power con-
sumed by the subscribers, and in exchange for avoiding
the creation of a peak during the cheap price hours, it did
not create a problem for the electricity distribution
company. In the end, it can be said that by using the
proposed method and providing the least possible means
of improvement, increasing demand in the domestic
sector was limited, and the monthly electricity cost was
reduced for the subscribers. In the future, other innovative
algorithms can be used along with a combination of fuzzy
techniques to increase the efficiency of load management
in smart homes. In addition, we have focused on the issues
of privacy protection and smart network security. *is
research can be expanded by using multiple houses and
different price ranges.

6. Conclusion

Considering the importance of using new energies to reduce
the consumption of fossil fuels, the optimal allocation of
energy resources along with the optimal timing of smart
home electricity consumption is one of the important topics
of researchers’ attention. *is is an optimization problem,
the purpose of which is to reduce the cost of electricity
consumed by the smart home with the optimal timing of the
smart home. *e inputs of the problem include basic and
technical information about the battery, hourly amounts of
consumed power, hourly prices of electricity, and hourly
amounts of essential and unnecessary loads. *e variables of
the problem, whose optimal value is considered as the
output of the problem, are the amount of displacement of
unnecessary loads, the amount of power produced or
consumed by the battery, and the amount of power ex-
changed between the smart home and the network every
hour of the day and night. *e constraints of the problem
include the maximum and minimum energy stored in the
battery, the production-consumption balance in the smart
home, the zero energy of the battery day and night, and the
comfort of the house residents. Considering the number of
inputs and the dynamic nature of the environment, opti-
mizing the problem with an intelligent algorithm is

necessary. In this article, the mentioned issue is optimized by
the ITS-BF Algorithm. Also, this article introduced a new
concept of demand-side management (DSM), which can
improve user comfort (UC) in the average waiting time
conditions. Minimizing the waiting time, improving the UC
level, and minimizing the average waiting time (PAR) for
household goods and showing overall better performance
than other methods were shown. In addition to the proposed
method reducing the energy cost to a reasonable and ac-
ceptable level, it also significantly respects and satisfies users’
privacy. In addition to the cases worked on in this article, for
future research, other renewable sources and the supply of
loads through CHP electricity and heat simultaneous pro-
duction sources can be investigated in the cloud computing
platform.

Abbreviations

FP: Fractional programming
OPF: Optimal power flow
RER: Renewable energy resources
PV: Photovoltaic
EMS: Energy management system
EMC: Energy management controllers
PAR: Peak-to-average ratio
PHEV: Plug-in Hybrid Electric Vehicle
ITR: Inverted terminal repetition
HEMS: Hierarchical energy management strategy
SH: Smart House
AC: Alternating current
bj: Start the allowable interval of operation of the

device j
gp: Start the allowed period outside the PHEV house
cp: End of allowed period outside PHEV
ej: End of allowable period of operation of the device j
EB

o : Initial charge of storage system (kWh)
E

p
o : Initial charge of PHEV battery

Ej: Energy consumption of device h in each period
(kWh)

EBn: Battery charge rate (period / kWh)
EBP: Battery charge rate ¢ (period / kWh)
Emax: Maximum allowable energy received from the

network (period / kWh)
EmaxB: Storage system capacity
EmaxP: PHEV battery capacity (kWh)
Emax S: Maximum allowable energy for sale to the grid

(kWh)
EP: PHEV energy consumption outdoors (kWh)
EPn: PHEV battery discharge rate (period / kWh)
EPp: PHEV battery charge rate (period / kWh)
FEh: Energy consumption of uncontrollable periodic

appliances in loads h (kWh)
Bp: Mode of battery chargers distributed in loads
Bn: Discharge mode of distributed batteries in loads
EBp: Chemical energy produced in batteries distributed

in bars
EBn: Chemical energy consumed in batteries distributed

in bars
DSM: Demand-side management
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UC: User comfort
ITS-
BF:

Improved Tabu Search- Bacterial Foraging
Algorithms

SG: Smart Grids
PAPR: Peak to Average Power Ratio
HEMS: Home energy management system
TOU: Time of Use
DR: Demand Response
GA: Genetic Algorithm
RTP: Real Time Pricing
UC: Utility company
WDO: Wind optimization technique
h: Volume index
H: Planning time horizon
j: Controllable appliance index
ET

h : Transmission energy between grid and house in
period h (kWh)

Ij: *e vector of the j device in the on or off position
IjH: Binary index of j device in period h
I

Bp

h : Binary battery discharge indicator
IBn

h : Binary battery charge indicator
IPn

h : PHEV Charge Binary Discharge Indicator
I

Pp

h : PHEV binary charge index
PC: Payment function
yjh: Binary index of device startup j
Zjh: Permanence indicator of device failure j
EEjh: *e amount of surplus energy that network

programmers receive
FEEh: *e amount of surplus energy that non-network

programmers receive
Trh: Tariffs in the period h (¢ / kWh)
Uj: Number of operating cycles for the device j
ηB: Ac-dc conversion efficiency for storage system
ηB′ : Dc-ac conversion efficiency for storage system
ηP: Ac-dc conversion efficiency for PHEV battery
ηP′ : Dc-ac conversion efficiency for PHEV batteries.
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