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An interleaved high step-up converter topology based on the coupled inductor (CI) and built-in transformer (BIT) is proposed in
this study to provide high step-up voltage gain and high efficiency with a low number of power electronic components for
renewable energy applications. The voltage gain is increased by both of the turns’ ratio of CI and BIT, so there is no need to extend
duty ratio to obtain high voltage gain. The proposed topology is much more flexible than those with only either CI or BIT.
Moreover, the voltage stress across semiconductor devices can be relatively decreased by adjusting the turns’ ratio of the CI and
BIT. In addition, the input current ripple can be reduced when the interleaved structure is applied at the input of this converter.
Furthermore, turned-OFF and turned-ON zero current switching (ZCS) conditions for the diodes and power MOSFETs are
achieved, respectively, thanks to the leakage inductances of the magnetic devices. Hence, due to the control of the falling current
rate of the diodes by the leakage inductances, reverse recovery problem is alleviated. Moreover, the energy of the leakage in-
ductances is recycled by the clamp capacitors avoiding high spikes across MOSFETs. As a result, according to the abovementioned
advantages of the proposed converter, MOSFETs with low ON-state resistance and diodes with low forward voltage drop can be
used to decrease the conduction losses. A 600 W laboratory prototype with 27-400 V voltage conversion at switching frequency
50 kHz is built to verify the performance of the proposed converter. Experimental results confirm the theoretical analysis. The
efficiency reaches to 94.6% at full load which is close to the calculated of 95.8%.

1. Introduction

Renewable energy sources, such as photovoltaic (PV) and
fuel cell (FC), have been receiving more attention in recent
years as a result of a substantial increase in demand for clean
energy, concerns related to electricity generation based on
FC, and environmental effects of greenhouse gas (GHG)
emissions [1]. The output voltage of FCs and PV panels are
relatively less than the required amount. In isolated con-
verters, high voltage gain can be achieved by adjusting the
transformer ratio. In [2, 3], isolated LLC resonant converters
have been proposed. Introduced configuration in [2, 3] not
only reduces the voltage stress across MOSFETs to half of the

input voltage in the low voltage side but also makes the
converter suitable for high power applications. Moreover,
high operation frequency, high energy density, and wide
output ranges are advantages of such converters. Meanwhile,
nonisolated converters are typically used to increase the
output voltage of PV panels and FCs. The conventional boost
converter (CBC) with a simple structure and low cost can be
used as a fundamental solution [4]. As a result, appropriate
voltage levels can be reached for the inverter-fed AC utility
when connecting to the electricity grid. However, the CBC
should operate in a high duty ratio to achieve high step-up
voltage gain, leading to problems such as the increased
voltage rate of power MOSFETs and high peak currents.
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Consequently, power MOSFETs with higher on-state re-
sistance should be selected, increasing conduction losses,
reducing performance operation, and decreasing conversion
efficiency [5]. In [6], a quadratic boost converter is used to
increase the voltage step-up gain. Although it does not call
for a high duty ratio, this structure still suffers from the high
voltage stress across power MOSFET. Switched capacitor
(SC) and switched inductor (SI) topologies (known as
transformer-less converters) are presented in [7-11] to in-
crease voltage gain. However, Sl-based structures suffer
from problems such as high voltage stress across semi-
conductor devices. To deal with this problem, voltage
multiplier cell (VMC) converters are introduced [12-14].
These converters can achieve high voltage gain while re-
ducing cost, voltage stress, and duty ratio. By increasing the
number of VMCs, voltage gain can be boosted. However, the
more the number of VMC is, the more the circuit complexity
will be. High switching losses and reverse recovery due to
operating under hard switching conditions are other issues
associated with these converters. Coupled inductors (CI) are
other structures to obtain high step-up voltage gain [15-22].
They can provide zero current switching (ZCS) turn-on for
MOSEFETs thanks to the leakage inductances of the CI, which
will decrease switching losses and attenuate the reverse
recovery problem. Nevertheless, voltage spike during
switching transition due to the leakage inductor is the main
disadvantage of CI-based converters. Passive clamp circuits
can be implemented to recycle the leakage-inductor energy
and avoid efficiency degradation. To decrease voltage stress
across semiconductor devices, improve efficiency, and re-
cycle the leakage-inductor energy, CIs can be implemented
with VMCs [23-26]. A high step-up converter is developed
in [23] with low voltage stress across the main power switch,
in which voltage gain is increased by applying one CI and
two VMCs. Moreover, a capacitor is being charged during
the switch-off period using the energy stored in the CI,
increasing the voltage transfer gain. The energy stored in the
leakage inductance is recycled using a passive clamp circuit,
reducing voltage spike during switching transition. In ad-
dition, a built-in transformer (BIT) can be utilized with CI to
improve voltage gain further. Due to the zero average
current of the primary windings of the BIT, the RMS current
is also reduced. Thus, a low volume core can be selected
when fabricating the BIT. Nevertheless, the single-phase
nature of these converters restricts them to low power levels.
To use high voltage gain converters at high power, minimize
the input current ripple, and increase reliability, interleaved
converters have been introduced. The abovementioned
structures (i.e., SC, CI, and VMC) are adopted to interleaved
topologies to achieve high step-up voltage gain [27-39]. An
interleaved boost converter with a bi-fold Dickson voltage
multiplier is presented in [40], in which several diodes and
capacitors are employed to increase the overall voltage gain.
However, the added number of diodes and capacitors in-
creases losses and reduces efficiency. Another interleaved
boost converter using two Cls and a VMC is developed in
[41], achieving a very high step-up voltage gain without a
high turn ratio. The voltage stress across the semiconductor
switches and the passive components is reduced to lower
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than the output voltage. Interleaved high step-up converter
presented in [42] uses BIT and VMC to have more flexible
voltage gain. This topology delivers benefits such as high
voltage gain, low voltage stress across the power MOSFETs, a
low number of components, and low input current ripple. To
reduce the size and improve transient response, switching
frequency should be increased, leading to increased
switching losses. Interleaved boost converter in [43] utilises
the clamp capacitors and integrates the secondary winding
of the BIT. Nevertheless, the voltage gain is low and can be
increased when adding CI structure.

In this study, a new interleaved topology is proposed by
locating the secondary windings of the CI between the main
MOSFETs and the primary winding of the BIT. In such a
topology, the voltage gain is proportional to the multipli-
cation of the turn ratios of CI and BIT. The proposed
converter delivers the following advantages:

(1) High voltage gain (as a result of windings of the BIT
and CI)

(2) Low voltage stress across MOSFETs and diodes
(3) Low input current ripple

(4) Zero current switching (ZCS) turned-OFF condition
for diodes

(5) Zero current switching (ZCS) turned-ON condition
for MOSFETs

(6) Alleviated reverse recovery problem of the diodes
(7) High conversion efficiency

(8) Low number of components

The rest of this study is organized as follows. The pro-
posed converter and its operational principle are presented
in Section 2. The performance analysis of the proposed
converter is studied in Section 3. Performance comparison
and numerical design are discussed in Section 4 and 5,
respectively. The experimental results are given in Section 6.
Finally, conclusions are drawn in Section 7.

2. Operational Principle of the
Proposed Converter

The abstract model of the proposed converter is illustrated in
Figure 1. As can be seen, the built-in transformer (BIT) and
coupled inductor (CI) structures are utilized in this con-
verter. This converter can achieve high voltage gain by
adjusting the turns’ ratio of the BIT and CI. Two main power
MOSFETs (S, and S,), four diodes (D,,D,,D;,D,), and
three capacitors (C,, C,, C;) are some other components of
this converter. L,,; and L,,, also represent the leakage and
magnetizing inductances of the CIs, respectively. BIT con-
sists of primary, secondary, and tertiary windings with N,
N,, and N, number of turns. Ly, also indicates its leakage
inductor. Turns’ ratios of the CI and BIT are defined as n =
ny/n; and N = N,/N,| = N;/N,, respectively. The proposed
converter has 10 main operating modes in a single switching
period. However, due to the symmetrical feature of the
topology, only five operating modes are analyzed in detail in
the following. The key waveforms of the proposed converter
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FIGURE 1: The abstract model of the proposed converter.

and the related equivalent circuits in each mode are depicted
in Figure 2 and Figure 3, respectively.

2.1. Mode 1 [t,—t,]. During this mode, both power
MOSEFETS S, and S, are in ON-state, and all the diodes are
reverse-biased. The magnetizing inductances of the CIs are
linearly charged by the input voltage, and the output ca-
pacitor supplies the output load:

V.

1 t)=1i =i (t)=—2— (t-t I to)»

Lml() lLKl() 151() Lm1+LLK1( 0)+ Lml(o) (1)
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(2)

2.2. Mode 2 [t, —t,]. Att,;, S, is turned-OFF. During this
mode, the parallel capacitor Cs, is being linearly charged by

the current of i;,,,. The voltage across the switch S, is given
by

I t
Vpss (£) = Lg—s(z‘) (t-1,). (3)

2.3.Mode 3 [t, — t;]. Att,,the diodes D, and D, are turned-
ON. In this mode, the leakage inductance L, y, is discharged
into the clamp capacitor C;. A positive voltage is applied
across the primary winding of the BIT. The output load is
supplied by the output capacitor and the secondary winding
of the BIT:

I (8) =ip, (1) + [N (n+ 1) + 1]ip, (1), (4)
irgp (£) = Nipy (), (5)

ipst () = I () +ip, (B) + N (n+ 1)ip, (1), (6)
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FIGURE 2: The key waveforms of the proposed converter.

2.4. Mode 4 [t; —t,]. Atts, the current of diode D, reaches
to zero, and it is turned-OFF with ZCS. During this mode,
the clamp capacitor voltage V-, is equal to the voltage across
power MOSFET S,. The current flowing through D, is
proportional to the leakage inductor’s current ij,. At the
end of this mode, the turn-ON pulse is applied to S, and
turns it ON with ZCS performance:

I () =[N(m+1)+1]ip, (8), (8)

ips1 (8) = I, (t) + N(n+ 1)ip, (2). 9)

2.5. Mode 5 [t, —t5]. Att,, S, is in ON-state. During this
mode, the current through L, is decreasing. At the end of
this mode, the current flowing through L, x, reches to zero.
In addition, the current through D, decreases and its falling
rate is controlled by the leakage inductances:

dip, (1) Ve = Vo
=7 2 .
dt n (LLKI + L) + N'Lg,

(10)

3. Performance Analysis

3.1. Voltage Gain Expression. 'The voltage across L,,; is equal
to V,, and V;, -V, for the switch S, being in ON- and
OFF-state, respectively. By applying the volt-second balance
principle to L,,,, the voltage across the capacitor C, can be
calculated as

ml>

Vin (11)

Ve = .
2=1_p




(0)
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FiGure 3: Equivalent circuits of the proposed converter. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4. (e) Mode 5.

The voltage across L,,, is equal to V, and V;, =V, for
S, being in ON- and OFF-state, respectively. By applying the
volt-second balance principle to L,,,, the voltage across the
capacitor C; can be obtained as

V.
Ve = —2 12
a=1"p (12)
Using the average currents of the diodes and equations
(4) and (8), the curring passing through them diodes can be
calculated as

ID1Ave = 72m D¢ = OTuta (13)
. I I
D2, Ave = Tm2D23 = ;m’ (14)

. ILml Iout
= _Iml_ (5 _op_D)="% (15
'D3,Ave 2[N(n+1)+1]( w) == (15)

. ILm2 Iout
—___m  _(p_op_p)=-% (16
"DiAve 2[N(n+1)+1]( n)=—> (16)

2(1-D)

Dy,=Dy=—n 7 17
BTEBTNMm+1)+2 (17)

where D,; and D, are normalized time durations of mode 3
and mode 8, respectively. Using (13)-(17), the average
currents of the magnetizing inductances can be obtained as

Nn+1)+2

2(1-D) (18)

ILm = ILml = ILmZ =

According to Figure 2, the following equation is obtained:
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FIGURE 4: Voltage gain of the proposed converter.

AiD4 — ILm (19)
At [N(n+1)+1]D,Tg

By considering the leakage inductances in the steady-

state analysis, the voltage conversion ratio is derived as
Vo _ Nn+1)+2
Vi (1-D){1+(QIN(n+1)+2]/4(N(n+1) + 1) (1 - D)*)}

(20)

where Q = ([ (Lix; + Lix,) + N*L;x,]/RTY).
For Q =0, the ideal voltage gain of the proposed con-
verter can be calculated as
\%

M = out —
V.

m

Nn+1)+2
1-D

(21)

The effect of the leakage inductance on the voltage gain is
shown in Figure 4. As can be seen, the voltage gain of the
proposed converter is decreased by increasing the leakage
inductances.
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F1Gure 5: Normalized voltage stress across semiconductor devices.

3.2. Voltage Stress Analysis of the Semiconductor. From the
mode 3, voltage stress of the power MOSFETs can be
expressed as

V.

in Vout
= : (22)
1-D Nn+1)+2

VDSl = VDsz =

The voltage stress across diodes are given by
2V,

Vp =Vpy = ——2 23

b1 b2 Nn+1)+2 (23)
2N(n+1)+1

Vs =Vp =V (24)

MNm+1)+2

Figure 5 shows the normalized voltage stress across the
semiconductor devices. As seen, the voltage across MOS-
FETs is decreased when increasing the turns’ ratio of the CIL.

3.3. Current Stress of the Components. According to Figure 2
and the steady-state analysis, the current stresses of the
MOSFETs and diodes are obtained as

lSl,rms = lSZ,rms -

' ] N(n+1)+2
lDl,rms = lDZ,rms = Iout m’

2N(n+1)+1]*(1-D)

1D3,rms = lD4,rms -

_ 0utN(1’l+1)+2\/2D_1+ . (25)
2(1-D) [N(n+1)+1]

(26)

Iu[N(n+1)+2]  [(1-D)[2+3N(n+1)] 27)
20-D)[INm+D)+1] | 3[N(n+1)+2]

(28)

. . 2, . 2
lCl,rms - 1D2,rms +1D3,rms .



From (26) and (27), the RMS currents through the ca-
pacitors C;, C,, and C,, are derived as

. ’ 2 . 2
lCZ,rms = lDl,rms + 1D4,rms > (29)

2 (30)

[ 2 . 2
lco = \/IDS,rms +lD4,rms _Iout

Current ipp, (ipx,) is equal to Ip,,; — Nigy g
(Ipma + Nicym)> 0 using (29), its RMS value can be
expressed as

. . 2 2(. 2 . 2
lLkl,rms = lLkZ,rms = \/ILm +N (1D1y,mS + lDA,rms ) (31)

The RMS value of i}, can be derived using (27) as below:

. 2. 2 2. 2
lLKb,rms = \/N 1D3,rms +N 1D4,rms . (32)

3.4. Input Current Ripple. The input current ripple of the
proposed converter is given by

(ZD_I)(l_D) Vnut
= . 33
* meS ( )

The normalized input current ripple with the base value
of Vou/L,,fs is shown in Figure 6. As shown, the input

current ripple is decreased by the turns’ ratio of the BIT and
CL

ALy = [N(n+1)+2]

3.5. Efficiency Estimation. Figure 7 shows the equivalent
circuit of the proposed converter together with its parasitic
resistances. In fact, the effects of ON-state resistances of
MOSFETs and diodes, forward voltage drops of the diodes,
switching losses, resistances of the windings of the magnetic
devices, and equivalent series resistance (ESR) of the ca-
pacitors should be considered to calculate the efficiency.

Due to the ZCS turn-ON condition for MOSFETs, the
total power losses in the MOSFETs relates to conduction
losses and the switching losses during turning OFF:

p _ . 2 . 2
MOSFETs = "'Ds1ts1,rms  t 7' Ds22s2,rms

+ % (Vpsiisi (te)torrr + Vpsaisy (£1)torea)s
(34)

with rpg and rpg, being the ON-state resistances of S; and
S,, respectively.

ON-state resistance (r,) and forward voltage drop (vyp)
of the diodes can also contribute to power losses as below:

4
. 2 .
Pp = ) ("piipiems + VF Diibiave): (35)
i=1

The windings’ losses, including total CI and BIT losses,
are given by
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sidering the parasitic resistances.

P — . 2 . 2 . 2
wire = ["L112LK1,rms T 7L122LKbrms t 71217LLK2,rms

. 2,CI . 2 . 2
+ 71220 Kbrms | +[rb11LKb,rms * 52! D3,rms (36)

. 21BIT
+ rh31D4,rms ]

The power losses related to equivalent series resistance
(ESR) of the capacitors can be written as

. 2 . 2 . 2
P = rcilcrms tVc2lczms T colcoms - (37)
The core losses are given by

PCOl’e = AngﬂVe’ (38)
where V, is the volume of core, B is maximum flux density,
A, a, and f3 are the Steinmetz parameters given in datasheet
of the selection core. The calculated core losses for each of
the CIs are about 2.25 W, where it is about 1.5 W for the BIT.
Therefore, the total dissipations of the cores is about 6 W.

Total power losses of the proposed converter can be
written as

pLoss = PMOSFETS + PD + PC + PWire + Pcore' (39)
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TaBLE 1: Specifications of the proposed converter.

Components Parameters
Output power (pour) 600 W
Input-output voltages (Viy — Vour) 27V-400V
Switching frequency (f;) 50kHZ
Power MOSFETs (S4,S,) IPP076N12N3
Clamp diodes (D;,D,) MURS80
Output diodes (D3,D,) MUR1560
Clamp capacitors (Cy,C,) 5uF
Output capacitor (Coyy) 5uF

Coupled inductor
Built-in transformer

Ferrite core EE55, n=1, L,,,=168 uH, and n; =n,=19 turns

Ferrite core EE55, N=2, L, =800 uH, and N, =N;=2N; =32 turns

Finally, the efficiency and the voltage gain of the pro-
posed converter can be obtained as

Pout
n=s5—"p (40)
Pout + PLoss

By calculating the RMS currents through the circuit
components in Section 3.3, the power losses related to these
components can be calculated. The components specifications
of the fabricated prototype in Table 1 are assumed to be as

Tpsi = Fpsy = 7.5m(Q,

rel = ey = 20mQ,
100mQ,

o = 12mQ,  for i ={1,2,3,4}, (41)
vppj = 1.2V, for j={1,2,3,4},

<

Q

o
I

T = o = 12mQ,

TLip =T =T = Ty = 13 = 24mQ).

The conversion efficiency and the voltage gain of the
proposed converter are plotted in Figure 8. As shown, at a
given voltage gain, by implementing of higher turns’ ratios,
the duty ratio can be decreased.

4. Performance Comparison

A performance comparison is made between the proposed
converter and the previously presented interleaved con-
verters in [28, 31, 35, 38-41, 43]. The results are provided in
Table 2 and Figure 9. According to Figure 9(a), the voltage
gain of the proposed converter withn = N = 1 is higher than
the proposed converters in [38,43]. The presented converters
in [28, 35] have higher voltage gain than the proposed
converter; however, as shown in Table 2, these converters
have more number of components than the proposed
converter. Moreover, Figure 9(b) shows the voltage stress
across semiconductor devices versus different turns’ ratio.
As can be seen, the proposed converter has resulted in the
lowest voltage stress across power MOSFETs among all other
converters for the turns’ ratios more than 3. Moreover, as
shown in Table 2, measured efficiency of the proposed
converter is 94.6%. According to the output voltage 400 V,
output power 600 W, and switching frequency 50 kHz,
measured efficiency of the proposed converter is a

100 : : ; ;

= 9 [~ Efficiency (%) 1
S 80t : .
g R=266 Q

3 700 1,N=1 |
) = =

2 n=1,

M 60 n=I,N=2 7
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FIGURE 8: Voltage gain (M) and efficiency (%) of the proposed
converter.

reasonable and acceptable value. Furthermore, the voltage
gain and the voltage stress across the semiconductors in the
proposed converter can be controlled by the turns’ ratio of
the CI and BIT, making the design more flexible than its
similar competitors.

5. Numerical Design

In this study, the circuit components are designed based on
the following values:

Vin =27V,
Vour = 400V,
s = 50kHZ,
(42)
P, = 600W,
I,, = 23.154,
D = 0.61%.

In addition, the turns’ ratios of the CI and BIT are as-
sumed to be n =1 and N = 2, respectively.

5.1. Cl and BIT Design. The magnetizing inductors of the CI
are designed based on the input current ripple, which is
considered 3% of input current:
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AIinfS

~(2x0.61 - 1) x (1-0.61) x 400

_ _(@Db-1)(1-D)_V
Lo = Loz = [N(n+1)+2] %

EE55 ferrite cores are chosen for CI. The cross-sectional
area A and the maximum flux density By, are 354mm?* and

6 % 0.03 x 23.8 x 50000

= 160uH.

320mT, respectively. n, is obtained as

Lm I Lm,Max __

Lm (ILm + (Dvin/ZmeS))

n; =
BMaxAC

B MaxAC

The value of n; can be obtained as

(43)

(44)

160 x 10~

6 x(11.53 +(0.61 x 27/2 x 160 x 107® x 50000))

]/l =
! 300 x 107> x 354 x 107°

= 18.9Turns,

(45)

where Byax = 300mT is the maximum allowed swing of the
flux density.

During mode 3, when S, is in ON-sate and S, is in OFF-
state, the voltage across the primary winding of the BIT can
be obtained as
(n+1)Vy,

1-D (1

ABA
- D)T,

vP,Built—In Transformer — (46)

EE55 ferrite cores are chosen for BIT. The cross-sectional
area A and the variation of the magnetic flux density AB are
354mm?* and 200mT, respectively. N, is calculated by

(n+ )V, T, 2x27x2x10°°
ABA. 200 x 107 x 354 x 10°°

N, = = 15.25Turns.

(47)

5.2. Design of Capacitors. The capacitors are designed based
on their voltage ripple x% (which can be extracted according
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FiGure 10: Photograph of the prototype.
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FiGure 11: Experimental waveforms of (a) input current and the currents of the leakage inductances of the CI, (b) output voltage and output
current, (c) the voltage stress and current of switch S;, and (d) the voltage stress and current of switch S,.
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FIGURE. 12: Experimental waveforms of (a) the voltage stress and current of diode D,, (b) the voltage stress and current of diode D,, (¢c) the
voltage stress and current of diode D;, (d) the voltage stress and current of diode D, {R4-7}, and (e) dynamic response.

to section 3). The voltage across the capacitors C, = C, and
C,.: are 69.2V and 400V, respectively.
By assuming the voltage ripples as x%V ¢, = 8%V,

and x%V oy = 3%V o> the capacitors’ values are obtained

as follows:
P P, [IN(n+1)+2]
VoutAVCfS x%Vout fS
(48)
600 x 6
= 5 = 5.6[/4F,
0.08 x 400 x 50000
- POUt — Pout
out VoutAVCouth X%Voutzfs (49)

~ 600 ~
0.03 x 400 x 50000

2.5uF.

5.3. Selection of Semiconductor Devices. The semiconductor
devices are selected according to their voltage stress and the
currents flowing through them (the maximum and RMS
values). Thus, (25)-(27) can be used to select appropriate
semiconductor devices.

6. Experimental Verification

To validate the practical feasibility of the proposed topology
a 600 W, 27V input to 400 V output laboratory prototype
with the specifications provided in Table 1 is fabricated. The
photograph of the prototype is illustrated in Figure 10. The
duty ratio is approximately 0.61. In Figure 11(a), the ex-
perimental results of the input current and the currents
through the leakage inductances of the CI are shown. As
shown in this figure, according to the symmetrical config-
uration, input current phases are equal and also the input
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FIGURE 13: (a) Measured and calculated efficiency of the proposed converter; (b) pie graph of the losses distribution at full load.

current ripple is small. Therefore, due to the equal current
sharing between two phases, the ripple cancellation is ob-
tained. Figure 11(b) shows the output voltage and the output
current. In Figure 11(c) and Figure 11(d), the experimental
results of the voltage and current waveforms of the main
switches S; and S, are illustrated. As can be observed, ZCS
turn-on condition is provided for both switches.
Figure 12(a) and Figure 12(b) show the experimental results
of the voltage and current of clamp diodes D, and D,. Also,
Figure 12(c) and Figure 12(d) show the experimental results
of the voltage and current of the output diodes D; and D,.
From the theoretical analysis in (23) and (24), the voltage
stress of diodes are obtained V, =V, =133.3V and
Vs =Vp, =600V. As it clearly shows, ZCS turn-off con-
dition is achieved for all of diodes. So, the reverse recovery
problem of the diodes is alleviated. Dynamic response is
shown in Figure 12(e).

Measured and calculated efficiency curve of the pro-
posed converter is illustrated in Figure 13(a). The maximum
efficiency of 96.5% is occurred at 500 W. Measured efficiency
under full-load condition (600 W) is 94.6% which is almost
close to the calculated of 97%.

Figure 13(b) shows pie graph of the losses distribution at
full load (600 W) which is 18.51 W. Power losses due to
windings, cores, diodes, MOSFETs, and capacitors are
495W, 6 W, 3.81W, 3.36W, and 0.39W. It is seen the
calculated and measured conversion efficiencies are almost
close and confirm each other.

7. Conclusion

An interleaved high step-up converter topology based on the
coupled inductor (CI) and built-in transformer (BIT) is
proposed in this study. The proposed converter has the
following features:

(1) By using BIT and CI, high voltage gain without
extreme duty ratio is achieved.

(2) The proposed converter is much more flexible than
the converters with only one of this magnetic means
because of having an extra degree of freedom with
simultaneous implementation.

(3) By increased turns’ ratio of CI and BIT, the voltage
stress across MOSFETs relatively is decreased which
facilitates the utilization of low voltage-rated
MOSFETs with low ON-state resistance.

(4) Due to the interleaved structure at the input of this
converter, the input current ripple is minimized

(5) The leakage inductances of the BIT and CI provide
turned-OFF and turned-ON ZCS conditions for all
the diodes and power MOSFETS, respectively.

(6) The energy of the leakage inductances is recycled by
the clamp capacitors avoiding high spikes across
MOSEETs. Moreover, the reverse recovery problem
of the diodes is attenuated due to the leakage in-
ductances of CL

It is worth noting that the voltage stress across output
diodes is higher than the output voltage which is the main
advantage of the proposed converter. Finally, a laboratory
prototype with 27V-400V voltage conversion with the
conversion efficiency of 94.6% at full load (600 W) has been
implemented and tested to demonstrate performance of the
proposed converter. As a result, the proposed converter is
suitable for renewable energy system applications.

Abbreviations

ZCS: Zero current switching

D:  Duty ratio

M:  Voltage gain

n: Turns’ ratio between n; and n,

N: Turns ratio between N; and N, and N; and N;
uF:  Micro-Farad

uH:  Micro-Henry
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Ly Magnetizing inductance
W:  Watt

A: Ampere

Vi Volt

Lix: Leakage inductance

irpr: Current of magnetic inductance
KHz: Kilohertz

PV:  Photovoltaic system.
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