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Summary. When the microgrid topology changes, the power output of the inverter cannot be adaptively adjusted by traditional
droop control, and the dynamic performance and steady-state accuracy of the inverter are affected. To solve this problem, a three-
partition multistrategy adaptive fruit fly optimization algorithm (MSAD-FOA) is proposed, which performs a real-time opti-
mization of the PI parameters to realize microgrid droop control.,e fruit fly population is divided into three regions according to
the ranking of the fitness values of the algorithm. Next, the multistrategy model is automatically updated according to the
difference in the fruit fly performance in each region. ,e local fine search in zone I ensures that the population does not
degenerate. Zone II pertains to the adaptive adjustment to ensure the diversity and convergence of the algorithm. Zone III guides
the fruit flies to accelerate convergence. ,e effectiveness of the algorithm and feasibility of the proposed control strategy are
verified through a theoretical simulation and microgrid droop control simulation. ,e comparison with other algorithms
demonstrates the superiority of the development and exploration ability of the proposed algorithm. ,e response speed of the
inverter is 40 times higher when the proposed control strategy is used, and the steady-state error is reduced by 4.3%.

1. Introduction

Microgrid droop control refers to a double closed-loop
control system, which is composed of multiple PI controllers
in series and parallel [1]. ,e control effect of the system
varies in cases involving different PI parameters. Because the
microgrid is a dynamic system, when the system topology
changes, the conventional PI controller cannot adapt to the
changes in the system parameters, thereby reducing the
response speed of the inverter.,e output power, frequency,
and voltage of the inverter tend to be out of limit and os-
cillatory, and the dynamic performance and steady-state
accuracy of droop control are reduced. ,erefore, it is
necessary to adjust the PI parameters online in real time.

In recent years, the research on microgrid has been
continuous. Under the premise of considering voltage sta-
bility, a microgrid dispatching model for economy and
environmental pollution was established by Reddy et al. [2],
using multiobjective particle swarm optimization for

optimization, fuzzy logic selection of compromise solutions,
thereby improving the economy and stability of the system.
,e thermoelectric and wind energy integrated energy-
saving system was built by Reddy et al. [3], the adaptive
differential evolution algorithm was used to optimize the
solution, and it makes the operating cost of the microgrid
and the emission of pollutants be controlled in the best
condition.,is kind of literature is devoted to the research of
microgrid optimization dispatching, by establishing the
economic and environmental pollution model of the
microgrid, using intelligent algorithm optimization that
reduces operating costs and environmental pollution.
However, in addition to considering the economics of
microgrid operation, the stability of the microgrid should
also be considered. ,e research and education microgrid
control model was established in Momoh et al. [4], which
solved the control problems of voltage, reactive power, and
frequency. At present, droop control is a popular control
strategy of microgrid multimachine parallel operation in the
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island mode. ,e principle is to realize the load power
distribution according to the capacity by adjusting the
characteristic curve [5]. Many scholars have conducted
considerable research on droop control, for example, to
address the fluctuation and out of limit tendencies of the
frequency and voltage in droop control. Ling et al. [5]
attempted to prevent the overlimit frequency resulting from
the switching of heavy load or large-capacity DGs by using
an inverted-S droop control strategy.,e microsource could
promptly adjust the frequency in case of large load fluctu-
ations to prevent the values from exceeding the limit.
However, the problem of the voltage being out of limit was
not considered. A droop control strategy based on self-re-
covery was proposed by Chai et al. [6]. When the load
changed suddenly, the proposed approach could prevent the
dynamic response oscillation of the inverter output voltage.
However, the response speed of the inverter was low. For
complex nonlinear systems, it is difficult to simplify the
model and deduce the formula [7]. ,erefore, certain re-
searchers introduced an intelligent optimization algorithm
in droop control. ,e method of fuzzy sliding mode droop
control was studied by Zhu et al. [8]. ,e fuzzy control
strategy adjusts the parameters for droop control in an
online manner. When the load fluctuates, this method can
reduce the voltage error and increase the accuracy of the
power distribution. Shivam et al. [9] and Taghizadeh et al.
[10] used different algorithms to optimize the droop control
parameters. ,e robustness of droop control was enhanced,
and the fluctuation of the voltage and frequency was sup-
pressed. Although many scholars have proposed improve-
ment methods, the adaptive ability of droop control
strategies in events including microgrid topology changes
has not been considered. In practice, a microgrid is a dy-
namic system, and a microgrid performs not only load
switching but also microsource switching. ,erefore, wind
and light abandonment caused by the uncertainty in the
renewable power output and load demand often occurs [11].
,erefore, when the microgrid topology changes, it is
necessary to maintain the stability of droop control.

,e traditional droop control strategy includes many PI
controls. When the microgrid topology changes, the PI
parameter must be reset. If the PI parameters are not set, the
stable operation of the microgrid may be affected. With the
emergence of intelligent algorithms, many scholars have
introduced intelligent algorithms to adjust the PI parameters
of microgrids. A control algorithm based on GOA optimized
PI was proposed by Jumani et al. [12]. ,e minimum fitness
value was used as the optimization objective, the PI pa-
rameters were determined, and the problems of voltage and
frequency overshoot and total harmonic distortion were
solved. A PI automatic gain controller based on the genetic
algorithm was proposed by Ismayil et al. [13]. ,e opti-
mization objectives were the steady-state error, response
time, and maximum overshoot/undershoot of the system
response; the robustness of PI control was enhanced. A PI
inverter controller scheme based on the particle swarm
optimization algorithm was proposed by Roslan et al. [14].
,e inverter could effectively reduce the harmonics and
stabilize the frequency. Moreover, the online PI parameter

optimization strategy of the VSI inverter based on the fruit
fly algorithm was designed by Liu et al. [15]. Four PI controls
were simultaneously optimized, and the output performance
of the VSI inverter was enhanced. Among the above-
mentioned algorithms, the GOA formula is highly complex
and difficult to program, the genetic algorithm is complex
and easily falls into the local optima, and the computational
stability of the particle swarm optimization algorithm is low
[16]. In comparison, the fruit fly algorithm exhibits a high
optimization speed, simple structure, low amount of cal-
culation, adjustable parameters, outstanding global search
ability [16, 17], and strong ability to solve nonlinear
problems.,erefore, many scholars have applied the fruit fly
algorithm for the parameter optimization of microgrids.

,e fruit fly algorithm exhibits an outstanding global
optimization ability in the early stage and can rapidly find
the optimal value. However, the search ability in the later
stage is inferior, the algorithm easily falls into the local
optima, and it exhibits a low optimization accuracy in
solving complex problems [18]. ,ese deficiencies were
highlighted by Xiong et al. [19]. In terms of population
zoning, the sentinel mechanism and the multigroup
mechanism were introduced by Chen et al. [20].,e sentinel
mechanism consists of greedy selection and Gaussian var-
iation to enhance the convergence speed of the algorithm.
,e multigroup mechanism divides the fruit fly population
into several subgroups to enhance the exploration ability of
fruit flies. A double-driven fruit fly algorithm was proposed
by Feng et al. [21]. In this framework, fruit fly flight is guided
by the concept of multiple repellents and attractants.
Adaptive determination of the search radius is performed.
,e algorithm is used to optimize and enhance the per-
formance of the PID framework. To introduce a novel search
mechanism, a fruit fly algorithm for adaptive cloud escape
search was proposed by Zhang et al. [22].,e search method
considered the number of iterations as the guiding factor to
adjust the global and local search. Moreover, a new evo-
lutionary direction intelligent selection mechanism was
proposed by Wu et al. [23]. ,is selection mechanism
provides the correct direction for fruit flies, and the con-
vergence speed of the algorithm is increased. An improved
fruit fly optimization algorithm (IFOA) was proposed by
Yuan et al. [24]. By introducing the inertial weight function
to the search step, the search ability of the algorithm was
improved. In the abovementioned techniques, the intro-
duction of a new search mechanism can compensate for the
defects of the fruit fly algorithm; however, the improved
FOA algorithm relies on a single strategy to update the
positions of the fruit flies and thus cannot distinguish fruit
flies with different performances. In addition, real-time
detection of the optimization effect of the fruit fly algorithm
is not implemented in the improved methods. ,erefore, in
the context of the online optimization of droop control PI
parameters, the output of the droop control inverter cannot
be fed back in time, and the convergence and diversity of the
algorithm cannot be adjusted in time, causing the algorithm
to perform many invalid calculations.

To enhance the adaptive ability of the inverter of a
microgrid droop control system, this paper analyzes the
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basic principle of droop control and limitations of the
standard fruit fly algorithm. A three-partition multistrategy
adaptive fruit fly algorithm for microgrid droop control is
proposed. ,e algorithm can detect and feedback the op-
timization effect and adjust the PI parameters in real time.
When the topology and load change, a rapid response and an
accurate output of the inverter are ensured during the
operation of the microgrid. Consequently, the response
speed of the inverter can be increased, the error can be
decreased, and a more stable output can be obtained.

,e main contributions are as follows. A novel three-
partition multistrategy adaptive fruit fly optimization al-
gorithm is proposed in this paper. It has made great progress
in promoting the convergence and diversity of the algo-
rithm. ,e algorithm is applied to droop control strategy,
providing online optimization strategy and theoretical
framework. In terms of algorithm: (1) ,ree-partition and
multistrategy modes are proposed, the optimization ability
of each fruit fly is fully exploited, and invalid calculations are
avoided. (2) An evaluation index for the average individual
increment in the fruit fly population is proposed. ,e effect
of the algorithm optimization can be fed back in real time,
and the convergence and diversity of the adaptive adjust-
ment algorithm can be ensured. In terms of droop control
optimization, (1) the absolute value integral term of the PI
error derivation is introduced in the objective function of
microgrid online optimization, and the oscillation and de-
viation of the inverter output power are effectively sup-
pressed. (2) In noninitial optimization, the use of adaptive
and optimal delivery strategies shortens the online opti-
mization time.

2. Preliminary Study on FOA

In recent years, optimization technologies have continu-
ously developed, and intelligent optimization algorithms,
represented by particle swarm optimization algorithms and
genetic algorithms, have provided a strong technical support
to solve complex nonlinear problems. However, for the
particle swarm optimization and genetic algorithms, it is
necessary to update a variety of attributes, the calculation is
complex, and the program is difficult to implement. In
comparison, the update strategy of the fruit fly algorithm is
simple, easy to implement, and requires a small amount of
calculation, rendering this algorithm more suitable for
online optimization.

,e fruit fly algorithm is a new algorithm that imitates
the search of food by fruit flies [25]. ,e flowchart is shown
in Figure 1, and the updated formula is as follows:

xi,j(k + 1) � xi,j(k) + c · L · rand( ),

Yi,j(k + 1) � Yi,j(k) + c · L · rand( ),
(1)

where L is the optimization step size, c is a nonnegative
acceleration constant, rand is a random number generated
between 0 and 1, i is the number of fruit flies, j is the di-
mension, xi,j(k), yi,j(k) represent the global optimal posi-
tion, and xi,j(k) and Xgbestti,j, described in the following
text, are values with the same meaning.

,e fruit fly algorithm is applied to the PI parameter
optimization of droop control to ensure the stability of
droop control (minimum error) and obtain the optimal
droop control parameters. Parameter kp is a proportional
adjustment term to ensure the speed of adjustment. An
increase in kp can increase the regulation speed of the in-
verter, but an extremely large kpmay lead to the instability of
the inverter output. Parameter ki pertains to integral reg-
ulation, aimed at eliminating the steady-state error. An
increase in ki can shorten the time required for the inverter
to reach steady state; however, if ki is extremely large, the
overshoot may increase. ,e goal of the microgrid is to
ensure that in events involving topology changes, the droop
control promptly responds without any overshoot. After the
microgrid enters the steady state, the output power, voltage,
and frequency do not fluctuate, and the error is small. Four
PI controllers are included in droop control. ,e interac-
tions among the PI controllers [26] form a complex control
system. ,e dynamic performance and the steady-state
accuracy of the microgrid system are affected by the value of
each PI parameter; therefore, the accuracy of optimization
should be ensured. Online optimization should ensure a
higher optimization speed.

In the preliminary study, the standard FOA is applied to
the online optimization of droop control after many ex-
periments: (1) ,e FOA leads to a low response speed of the
inverter and a large error in the steady state (Figure 2). (2)
When many microsources exist, the FOA cannot ensure the
normal operation of each microsource, and the output
power of the inverter considerably fluctuates. (3) ,e op-
timization results of the FOA cannot be improved by
adjusting the algorithm step size and number of iterations
(Figures 2 and 3). Notably, the accuracy of FOA optimi-
zation is not high, the algorithm falls into a local optimum,
and the optimal PI parameters cannot be identified to ensure
the microgrid performance. (4) ,e convergence curve of
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Figure 1: Flowchart of standard fruit fly algorithm.
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the FOA indicates that the algorithm needs at least 80 it-
erations to ensure a low convergence accuracy. When the
number of microsources increases, the algorithm dimension
increases, and cliff convergence occurs in the optimization of
the FOA (Figure 4); thus, convergence in each iteration
cannot be ensured. ,e convergence of the FOA cannot be
changed by increasing the number of populations because
the algorithm performs many invalid calculations, which
adversely influence the convergence.

According to this analysis, the standard FOA can be
enhanced in terms of the following aspects: (1) Increase the
convergence accuracy and speed of the fruit fly algorithm as
follows: (i) adopt the updating method of the variable step
size; (ii) introduce the flight experience of the optimal in-
dividual of the fruit fly population in the updated formula.
(2) Enhance the development and exploration ability of the
fruit fly algorithm as follows: (i) adopt a new idea of pop-
ulation zoning and use different update strategies for fruit
flies with different performances to fully exploit the opti-
mization ability of each fruit fly; (3) the algorithm can

perform detection and feedback optimization in real time,
closed-loop control can be formulated, and negative feed-
back adjustments can be performed in the algorithm in time,
thereby avoiding invalid calculations.

,e population includes fruit flies with high, average,
and low performances. Fruit flies with different perfor-
mances exhibit different abilities, and it is easy to distinguish
superior and inferior fruit flies. However, the existing ap-
proaches cannot yield an accurate evaluation of fruit flies
with average performances because of the lack of a clear
evaluation standard. In practice, fruit flies with average
performance account for the majority of the flies, and these
fruit flies contain both slightly superior fruit flies and slightly
inferior fruit flies. In the process of optimization, these fruit
flies serve as a “pillar rock in midstrea.” ,erefore, in the
optimization process, it is necessary to effectively partition
the fruit fly population and consider their characteristics.
Division schemes for the fruit fly population were proposed
by Wang et al. [27] and Wang et al. [28]. Subgroups 1 and 2
adopted the methods of local search and global search,
respectively, to enhance the algorithm stability. ,e ex-
periment was conducted using dichotomy concepts. It was
noted that the convergence speed of the algorithm was not
increased. ,is phenomenon occurred because the method
considered only an extremely small number of optimal fruit
flies. Fruit flies with average and low performances were not
distinguished, the phenomenon of fuzzy partition occurred,
and the performance of each fruit fly could not be exploited.
,e strategy of dividing the population into multiple sub-
groups was proposed by Yang et al. [29] and Zhang et al.
[30]. Each subgroup performed a parallel search, and the
convergence accuracy was increased. ,e experiment was
conducted using themultipartitionmethod, and it was noted
that with the increase in zoning, the number of fruit flies was
required to be increased to ensure that a large number of
fruit flies were present in each subgroup, leading to a sig-
nificant increase in the amount of calculation of the algo-
rithm. ,erefore, while the partition strategy should ensure
that fruit flies with different performances can be
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distinguished and avoid the phenomenon of partition am-
biguity, the increase in the amount of calculation due to an
increase in the number of partitions must also be considered.

Considering the advantages and limitations of zoning
in the literature, in this paper, fruit flies with an average
performance are placed in the same area. ,ree partitions
are formed based on two partitions. ,e convergence
and diversity of the algorithm are adaptively adjusted by
these fruit flies. According to the unique search mech-
anism of the fruit fly algorithm and problems associated
with its optimization, a closed-loop control algorithm
that can detect the optimization effect in real time is
proposed. ,e algorithm adaptively adjusts the fruit fly
population in the target search and explores and develops
the region in an optimal manner. Increasing the pop-
ulation diversity can accelerate population convergence,
considering the diversity and convergence of the fruit fly
population. ,is algorithm is named the three-partition
multistrategy adaptive fruit fly optimization algorithm
(MSAD-FOA).

3. Implementation of MSAD-FOA Algorithm

3.1. 'ree Divisions of the Fruit Fly Population. ,is paper
considers the optimization minimum as an example. After 5
iterations of the algorithm, three partitions of the population
are schematically illustrated in Figure 5. ,e fruit fly pop-
ulation is sorted according to the individual evaluation index
of the fruit flies. A three-partition formula is as follows:

region(f(t))

I, rank(f(t))< α · n,

II, α · n≤ rank(f(t))< β · n,

III, rank(f(t))≥ β · n.

⎧⎪⎪⎨

⎪⎪⎩
(2)

In equation (2), α and β are positive numbers between 0
and 1, and n is the number of fruit flies. ,e fruit fly
population is divided into three regions based on the values
of α and β, and the number of fruit flies in each region is
determined. ,e values of α and β can be specified only after
determining the multistrategy mode and adaptive strategy.
Section 3.4 discusses the impact of the values of α and β on
the algorithm.

3.2. Determination of MultistrategyMode. Different renewal
strategies should be formulated according to the different
performances of fruit flies to enhance the exploration and
development ability of the fruit fly populations.

,e fruit flies in zone I exhibit the highest performance,
suggesting that the fruit fly population in zone I is closest to
the optimal target. ,e elite fruit fly population should be
maintained; no population degradation occurs, and the local
search capability increases. ,e concept of the historical
individual optimal is introduced in the fruit fly algorithm by
referring to the particle swarm optimization formula [31].
,e next position of a fruit fly is updated through a com-
bination of the fruit fly global optimum and the fruit fly
individual optimum. ,e updated formula for zone I is as
follows:

X
t+1
i,j � X

t
i,j + φ · L · rand1 Xpbestti,j − X

t
i,j  + rand2 Xgbestti,j − X

t
i,j  ,

Y
t+1
i,j � Y

t
i,j + φ · L · rand1 Ypbestti,j − Y

t
i,j  + rand2 Ygbestti,j − Y

t
i,j  ,

φ �
1
2

× 1 + cos π ×

����
t − 1
tmax



⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(3)

In equation (3), φ is the weighting factor, which de-
creases with the number of iterations. Xgbestti,j, Ygbestti,j
represent the global fruit fly optimal positions at time t, and
Xpbestti,j, Ypbestti,j represent the optimal positions of the
individual fruit flies at time t. ,is equation shows that for
the fruit fly population of zone I, the update direction of the
fruit fly position at the next moment is always toward the
optimal position.

,e fruit flies in zone II exhibit an average performance
but reach the fruit fly optimal target after a relatively small
number of iterations. In zone II, the superior or inferior fruit

flies are not distinguished, and thus, the fruit fly population
in zone II takes into account multiple styles and conver-
gence. ,e updated formula is as follows:

X
t+1
i,j �

Xgbestti,j + φ · L · rand, randi,j >G,

X
t
i,j + φ · L · rand · Xgbestti,j − X

t
i,j , randi,j ≤G,

⎧⎪⎨

⎪⎩

Y
t+1
i,j �

Ygbest
t
i,j + φ · L · rand, randi,j >G,

Y
t
i,j + φ · L · rand · Ygbestti,j − Y

t
i,j , randi,j ≤G,

⎧⎪⎨

⎪⎩

(4)

International Transactions on Electrical Energy Systems 5



where G is the evaluation index of the population conver-
gence and diversity.

,e fruit flies in zone III exhibit a low performance, with
no notable contribution to the fruit fly population, and are
far from the optimal target. ,e convergence of fruit flies in
zone III should be accelerated. ,e update formula is as
follows:

X
t+1
i,j � X

t
i,j + φ · L · rand · Xgbestti,j − X

t
i,j ,

Y
t+1
i,j � Y

t
i,j + φ · L · rand · Ygbestti,j − Y

t
i,j .

(5)

3.3. Implementation of the Adaptive Mode. In algorithm, the
convergence and diversity contradict each other to a certain
extent. However, adaptively adjusting the convergence and
diversity according to the environment of the algorithm can
enhance the comprehensive performance of the algorithm.
Certain fruit flies are randomly selected from zone II to

perform diverse location updating. ,e remaining fruit flies
perform convergent position updating. ,e selection
method is randomized. ,e first update formula is selected
when the random number is larger than G. ,is update
formula is the standard update formula for the fruit fly
optimization algorithm, which has a global search capability
that can ensure population diversity. ,e second update
formula is selected when the random number is less than G.
,is update formula is based on the position in the previous
instance; the updated orientation ensures that the individual
fruit flies fly along the global optimal direction, and the flight
distance decreases with the number of iterations.,is update
method promotes the accelerated convergence of fruit fly
individuals. ,us, the adaptive G-value can automatically
adjust the convergence and diversity of the algorithm. An
evaluation index of the average individual increment (AII) of
the fruit fly population is proposed as the basis for adaptive
adjustment:

DI(t) �
1
n



n

i�1


dim

j�1
X(t)

j
i − Xpbest

j
i  + Y(t)

j
i − Ypbest

j
i  ,

DI(t − 1) �
1
n



n

i�1


dim

j�1
Y(t − 1)

j
i − Ypbestji  + Y(t − 1)

j
i − Ypbestji  ,

AII � DI(t) − DI(t − 1),

G � η · AII.

(6)

In equation (6), DI(t − 1) is the dimensional difference
between the fruit fly position at the previous moment and the
historical optimal position, and DI(t) is the dimensional dif-
ference between the fruit fly position at the currentmoment and
the historical optimal position. AII is the increment of the
difference in the currentmoment and the previousmoment. η is
the weighting factor. G is the adaptive adjustment parameter.
When the fruit fly updates its position to be near the optimal
position, theDI decreases. In contrast, a largerDI. A smallerAII
(G) means that the fruit fly population is closer to the optimal
position of the fruit fly at the current moment compared with
that in the previous moment. In this case, the diversity of the
fruit fly population should be increased, thereby enhancing the
exploitation ability of the fruit fly population. Similarly, when
AII (G) is large, the convergence of the fruit fly population
should be accelerated, thereby enhancing the exploratory ca-
pabilities of the fruit fly population.

,e dimensional difference between the positions at the
samemoment is considered.,e advantages of this method are
as follows: the same fruit fly may exhibit low and high per-
formances on different dimensions. However, the compre-
hensive evaluation of the individual fruit flies is enhanced, and
a direct summation can offset the deviation of the dimension
extremes to a certain extent, thereby preventing the bias from
affecting the overall evaluation of the individual fruit flies.

3.4. Partition Parameters α and β. Zone II can adaptively
adjust the convergence and diversity according to the en-
vironment of the algorithm; therefore, determining partition
parameters α and β is expected to affect the comprehensive
performance of the algorithm. Figure 6 shows the variation
curve of the AII evaluation index when solving F3 and F5.
,e value schemes are as follows: Case 1: α � 0.1N,
β � 0.9N; Case 2: α � 0.2N, β � 0.8N; and Case 3:
α � 0.3N, β � 0.7N.

According to Figure 2, the convergence rate of the al-
gorithm gradually decreases with the increasing population
size in zone II. Reducing the number of populations in zone
II accelerates the convergence of the algorithm. When the
number of fruit flies in zone II increases, the variation range
of the AII evaluation index increases and fluctuates more
significantly, indicating a higher diversity of the algorithm.
In contrast, less diversity is observed. When testing function
F3, the number of fruit flies in zone II is small in Case 3, and
the AII evaluation indicators are less volatile and exhibit a
steep descent, which shows that the algorithm lacks the
development capability. Consequently, the algorithm likely
falls into a local optimum. In Case 2, an increase in the
number of fruit flies leads to a larger range of variation in the
AII evaluation metrics, and thus, the performance of the
algorithm is improved. Moreover, according to the test for
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function F5, when the number of fruit flies in zone II de-
creases to a certain value, the convergence speed of the
algorithm does not significantly change. However, the ad-
dition of a large number of flies leads to slower convergence
of the algorithm. To ensure the performance of algorithm
exploration and development, in this study, the partition
parameters α and β are set as 0.2 and 0.8, respectively.

3.5. Steps of the MASD-FOA. ,e flowchart of the MASD-
FOA is shown in Figure 7, and the implementation process is
performed through the following steps.

Step 1. Initialize the maximum number of iterations, par-
tition parameters, population size, and other relevant
parameters.
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Figure 6: Variation of AII indicators under different zoning parameters taking schemes. (a) Optimization F3. (b) Optimization F5.
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Step 2. Calculate the fitness value of each fruit fly and update
the global optimal position Xgbestti,j, Ygbestti,j and the his-
torical individual optimal position Xpbestti,j, Ypbestti,j
according to

IF bestSmellt < smellbest
Xgbest � Xt(bestIndex),

Ygbest � Yt(bestIndex),


IF pbestit < smelli
Xpbestit � X

i
t,

Ypbestit � Y
i
t.

⎧⎨

⎩

(7)

Step 3. Calculate the convergence evaluation index AII of
the average individual increment of the fruit fly population

and rank the values based on the fitness value and zoning
population according to equation (2).

Step 4. Update the position of the fruit fly according to the
different update strategies for different zones, as indicated in
equations (3)–(5).

Step 5. Determine if the algorithm has reached the maxi-
mum number of iterations. If the maximum number of
iterations has been attained, output the optimal result;
otherwise, repeat steps two through four.

In equation (7), smellbest is the global optimal odor
concentration, bestSmellt is the current optimal odor
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Figure 7: MASD-FOA optimization flowchart.
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concentration, pbestit is the current individual odor con-
centration, smelli is the historical individual optimal odor
concentration, and bestIndex is the returned position
coordinate.

3.6. Complexity of AlgorithmCalculation. Assuming that the
population size is N, the dimension to solve the problem is
D, and the number of iterations is T, we can easily get the
computational complexity of each part. ,e computational
complexity of fitness value is O (N), the computational
complexity of fitness value sorting is O(NlogN) (assuming
that the quick sort method is used), the complexity of
population partition is O(N), and the position of fruit flies is
updated. ,e complexity is O (ND), and the calculation
complexity of the adaptive evaluation index is O(ND). ,e
computational complexity of this algorithm is O (NT (2D +
logN)).

4. Verification of the Algorithm Performance

4.1. Test Problems. To verify the performance of the pro-
posed algorithm, the MASD-FOA is compared with four
algorithms pertaining to the FOA, PSO, and NSGA in the
experiments. To ensure a fair comparison, the number of
iterations and the number of populations are set as 100 for all
algorithms. ,ree typical unimodal functions (F1–F3) and
three typical unimodal functions (F4–F5) are used in the
experiment, as shown in Table 1. ,e six typical test func-
tions have different characteristics, and the optimization
performance of the algorithms for different types of prob-
lems can be investigated. Dimension D of the six test
functions is set as 2, 5, 8, and 10, as indicated in Table 1. Fifty
experiments are conducted for each dimension, and the
average value (mean) of the convergence accuracy and the
standard deviation (Std) of the optimal value are calculated.

4.2. Algorithm Comparison Results and Analysis. ,e algo-
rithms are implemented in MATLAB r2020a. ,e experi-
mental results are shown in Tables 2 and 3. In 24
experiments, the MASD-FOA obtains the optimal average
value 21 times and the optimal standard deviation 16 times,
and the optimization effect is superior to those of the other
algorithms. ,e NSGA achieves the optimal results in the 2-
dimensional test of F3, and PSO achieves the optimal results
in the 8-dimensional and 10-dimensional tests of F2.
However, the MASD-FOA exhibits a reasonable perfor-
mance even in these tests. ,is phenomenon occurs because
when the local extreme value is far from the optimal value
point, in a certain iteration, the MASD-FOA falls into the
local optimum, resulting in partition blur. However, the
adaptive strategy increases the diversity of the algorithm,
enabling it to rapidly jump out of the local optimum.
,erefore, the MASD-FOA exhibits a high performance (the
convergence accuracy and optimal result are only slightly
different). When the other algorithms fall into the local
optimum, because there is no adaptive strategy, the prob-
ability of jumping out of the local optimum only by relying
on the algorithm’s random update strategy is very small. It is

worth noting that the farther the difference between the
global optimal and the local optimal is, the smaller the
probability of the algorithm jumping out of the local area,
which makes the algorithm’s convergence effect worse.
,erefore, an adaptive update strategy is necessary.

4.3. Comparison of Convergence Curves. Griewank (F5) is a
multimodal function that exhibits fluctuations and jumps in
the peak shape, and a higher dimension can more accurately
reflect the convergence of the algorithm. ,erefore, an ex-
periment with 10 dimensions is performed for test function
F5 to compare the convergence speed and convergence
accuracy of the algorithm. ,e results are shown in Figure 8.
,e 2-D line plot shows that the convergence speed of the
MASD-FOA is the highest. ,e log-log scale plot shows that
the convergence accuracy of the MASD-FOA is the highest.
Figure 8 shows that in the whole convergence process, the
MASD-FOA evenly converges. ,is phenomenon occurs
because the MASD-FOA can adaptively adjust the con-
vergence and diversity according to the environment of the
algorithm. ,e multistrategy update mode enhances the
exploration and development ability of the algorithm.
However, the PSO algorithm drops steeply in the early stage,
does not converge in the late stage, and falls into the local
optimal solution. A single update strategy will make the
algorithm weaker in development and exploration and
cannot guarantee the uniform convergence of the algorithm.
,erefore, the multistrategy update mode is necessary to
improve the algorithm development and exploration
capabilities.

4.4. Adaptive Index Change Curve. Figure 9 shows the
adaptive G-change curve with 6 test functions and 10 di-
mensions. To prevent excessive divergence and convergence
of the MASD-FOA, the range of variation of the adaptive G

is set between 0.2 and 0.8. ,e change curve is determined
according to the proposed evaluation index of the average
individual increment of the fruit fly population.

When G> 0.5, the diversity of the algorithms is main-
tained. When G< 0.5, the convergence of the algorithm is
maintained. When F4 and F6 are optimized, G continuously
fluctuates because the test function has more local extremes;
however, overall, the value exhibits the same trend as the
other four test functions. ,e fluctuation range is mostly less
than 0.5 in the late iteration, conforming to the algorithm
convergence variation.

5. Application of MASD-FOA in Microgrid
Droop Control

5.1. Overall Structure of the Droop Control System Based on
MASD-FOA. ,e droop control strategy is similar to the
primary frequency regulation of the grid and regulation of
the grid voltage and frequency by changes in the inverter
output power. Since the inverter output impedance is highly
inductive, its resistance can be ignored. ,e droop control
equation is defined as
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f � f0 − m P0 − P( ,

E � E0 − n Q0 − Q( ,
 (8)

where P0 is the reference active power; Q0 is the reference
reactive power; f0 is the reference frequency, generally set as
50Hz; E0 is the reference voltage;m and n are droop control
coefficients of the active and reactive power, respectively; E is
the actual voltage; and f is the actual frequency.

,e overall block diagram of the MASD-FOA applied to
droop control is shown in Figure 10. ,e droop control
strategy includes voltage and current dual loop closed
control, which refers to the decoupling control of the active

and reactive power. In the event of a sudden change in the
load, the dual closed-loop voltage and current control
schemes regulate the inverter to track the load power,
control voltage, and current stability. DC voltage source is
used to provide electric energy for the load.

,e voltage outer loop refers to the difference in the
given reactive power and actual reactive power after n
regulations. ,e value is compared with the given voltage to
obtain the difference and further compared with the value
after the outer loop controller to obtain the reference value
of the current inner loop control to ensure a stable output
voltage. ,e regulation formula is as follows:

Table 1: Six test functions.

Function Formula representation Extreme values
F1 (Sphere) f(x) � 

D
i�1 x2

i 0
F2 (Rosenbrock) f(x) � 

D
i�1[100(x2

i − xi+1)
2 + (xi − 1)2] 0

F3 (Ackley) f(x) � −20 exp(−0.2
�����������

1/n 
n
i�1 x(i)2



) − exp(1/n 
n
i�1 cos(2πx(i))) + 20 + e 0

F4 (Rastrigin) f(x) � 10 · D + 
D
i�1(x(i)2 − 10 cos(2π · x(i))) 0

F5 (Griewank) f(x) � 
D
i�1 x2

i /4000 − 
D
i�1 cos(xi/

�
i

√
) + 1 0

F6 (Schwefel) f(x) � 418.9829 · n − 
n
i�1 x(i)sin(

�����
|x(i)|


) 837.9658

Table 2: Comparison of convergence accuracy and standard deviation of optimal values of different algorithms.

2 dim 5 dim
MASD-FOA FOA PSO NSGA MASD-FOA FOA PSO NSGA

F1 Mean 7.03e− 21 1.87e − 4 1.06e − 4 1.22e − 6 3.38e− 20 0.001 2.21e − 9 3.41e − 10
Std 4.15e− 20 1.01e − 5 1.49e − 11 2.18e − 7 2.0e− 19 4.24e − 5 6.8e − 9 1.51e − 15

F2 Mean 7.03e− 21 1.87e − 4 1.06e − 4 1.22e − 6 3.38e− 20 0.001 2.21e − 9 3.41e − 10
Std 9.41e − 4 0.0011 6.56e− 09 0.2651 0.1934 0.1708 1.4519 0.1645

F3 Mean 9.56e − 11 0.043 2.35e − 6 8.88e− 16 1.21e− 10 0.067 7.57e − 5 2.24e − 9
Std 1.99e− 10 0.2555 5.48e − 06 3.88e − 09 3.30e− 10 0.0018 0.1646 3.06e − 08

F4 Mean 7.93e− 15 0.0379 2.93e − 9 1.85e − 10 7.11e− 15 0.7218 3.7809 5.03e − 12
Std 0 0.3926 0.00995 0 7.11e− 14 1.1565 1.7898 3.99e − 9

F5 Mean 1.11e− 16 6.31e − 5 2.00e − 8 1.26e − 13 1.11e− 16 2.13e − 4 0.0155 0.0031
Std 0 0.0027 0.0033 0 0 0.0016 0.0115 8.93e− 4

F6 Mean 837.96 748.05 830.6269 1.9e − 3 1.9e+ 3 2.04e+ 3 2.08e+ 3 2.08e+ 3
Std 0.0221 52.2848 4.91e− 12 0.295 18.4367 72.787 1.5e− 9 1.7428

Bold numbers are the best optimization results.

Table 3: Comparison of convergence accuracy and standard deviation of optimal values of different algorithms.

8 dim 10 dim
MASD-FOA FOA PSO NSGA MASD-FOA FOA PSO NSGA

F1 Mean 1.69e− 20 0.0024 2.3e− 7 4.21e− 8 3.31e− 19 0.0036 3.12e− 6 7.78e− 6
Std 1.10e− 19 1.33e− 4 2.28e− 7 8.25e− 8 5.79e− 19 1.86e− 6 3.36e− 6 4.17e− 5

F2 Mean 6.8565 5.4518 3.3014 6.8612 8.2214 7.694 7.2325 8.8979
Std 0.0141 0.2007 2.0217 0.1682 0.0835 0.2841 11.1522 0.2525

F3 Mean 1.65e− 10 0.0852 0.2667 4.93e− 4 6.08e− 10 0.00947 0.601 0.0025
Std 2.53e− 10 0.0024 0.6674 2.74e− 4 4.33e− 10 0.0028 0.8054 0.0036

F4 Mean 1.42e− 14 1.4299 8.4009 1.49e− 4 1.42e− 5 2.3033 13.2594 0.0201
Std 0.0381 2.37 4.4361 0.0087 0.6042 2.6712 5.8735 0.1046

F5 Mean 4.28e− 8 3.58e− 4 0.0317 1.3e− 3 1.78e− 14 4.64e− 4 0.0309 0.00201
Std 0 1.57e− 5 0.0309 0.00192 0.001 0.059 0.0234 0.0039

F6 Mean 3.15e+ 3 3.28e+ 3 3.33e+ 3 3.33e+ 3 4.16e+ 3 4.09+ 3 4.15e+ 3 4.16e+ 3
Std 27.2146 134.3186 1.33e− 7 2.4722 39.6465 47.0489 0.526 2.7432

Bold numbers are the best optimization results.
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idref � Cf kp +
ki

s
  udref − ud(  − ωCfud,

iqref � Cf kp +
ki

s
  uqref − uq  + ωCfuq,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where udref and uqref are the reference voltages and ud and
uq are the instantaneous voltages. kp and ki are the pro-
portional and integral parameters of the PI controller, re-
spectively. ω is the grid angular frequency.

,e current inner loop refers to the difference between
the reference value of the current inner loop and feedback

current and current internal loop regulation via the internal
loop PI controller. ,e adjustment formula is as follows:

usd � kp +
ki

s
  idref − id(  − ωLi + ud,

usq � kp +
ki

s
  iqref − id  − ωLiq + uq.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

,e basic principle of the online optimization of the dual
closed-loop PI parameters for a microgrid drooped control
system is to optimize the parameters of the four PI
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controllers defined in equations (9) and (10) by using the
MASD-FOA algorithm: kp,1, ki,1kp,2, ki,2, kp,3, ki,3, kp,4, ki,4.

5.2. Determination of the Objective Function. In traditional
PI controller optimization, the PI error evaluation perfor-

mance index ITAE � 
∞

0
t|e(t)|dt is often used as the ob-

jective function. Considering the droop control, the change
in the output power is realized by adjusting the frequency
and voltage, and the stability of the frequency and voltage
can ensure the stability of the active and reactive power.
,erefore, the frequency deviation Δf and the voltage de-
viation ΔU are introduced in the objective function. Spe-
cifically, Δf � f − fref and ΔU � U − Uref , where Δf and
ΔU are the system reference values. ,e objective function
matrix is defined as

E1(t) �  |error|dt,  f − fref


dt,  U − Uref


dt ,

θ1 � [1, 1, 1]
T
,

(11)

where error is the error of the PI controller and θ1 is the
weight matrix of the droop control.

When the microgrid is optimized using equation (11) as
the objective function, the microgrid output is expected to be
unstable. Figure 11 shows that in the multiple simulation
experiments, when the objective function is extremely small,
the output power of the microgrid exhibits four

characteristics: startup oscillation, small amplitude oscillation,
small amplitude rise, and continuous oscillation. ,ese four
phenomena are not conducive to the stable operation of
microgrids. By changing the number of iterations of the al-
gorithm, resetting the initial parameters and adjusting the
step size, these phenomena cannot be effectively suppressed.
A several-cause analysis indicates that these four cases cor-
respond to the PI error curve. For example, when the PI error
output oscillates, the inverter output power also oscillates.
,erefore, while the stability of the PI error is guaranteed, the
stable output of the inverter can be ensured. To solve this
problem, the absolute value integral term of the PI error
derivation is introduced in the objective function in this
paper.When the PI error oscillates or deviates, the value of the
objective function continuously increases, and the unstable
output of the inverter can be avoided in the optimization
iteration. ,e new objective function is shown as follows:

E(t) �  |error|dt, 
derror
dt




dt,  f − fref


dt,  U − Uref


dt ,

θ � [1, 1, 1, 1]
T
.

(12)

5.3. Optimization Ideas and Processes. ,e core concept of
the optimization is to solve for the nonnegative minimum of
the objective function. Online optimization is transformed
to a mathematical solution problem. ,e proposed
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algorithm is applied to microgrid-drooped control, and the
optimization process of the algorithm is shown in Figure 12.
During microgrid operation, when the microgrid topology
changes, the control module sends the deviation information
to the MASD-FOA module. ,e process can be summarized
as follows: (1) Perform weighted calculation of the deviation
information. (2) Calculate the target fitness function and
result of the fruit fly concentration. (3) In this paper, the fruit
fly population is divided into three regions according to
Formula (2), and then the multistrategy model is updated
according to the performance of the fruit fly and the en-
vironment in which the algorithm is located, and the cal-
culation is iteratively calculated until the end. ,e MASD-
FOA module interacts with the control module in real time,
transmitting the parameters to the PI controller of the
control module and dual closed-loop controls to regulate the
voltage and current, and a sine wave pulse width modulation
(SPWM) signal is generated.

5.4. Microgrid Model. To verify the effectiveness of the
proposed control strategy, build Simulink simulation
according to the basic principle of Section 5.1; set the DC
voltage source as 800V according to the load capacity in the
simulation [32]. Other simulation parameters are shown in
Table 4. ,e line impedance is negligible, and off grid op-
eration is considered. Figure 13 shows a frame diagram of
multiple microsources in parallel.

Experiment 1. Optimization results of different objective
functions.

Experiment 1 verifies that the introduction of the PI error
derivative absolute value integral term into the objective
function can effectively suppress the oscillation and deviation
of the inverter power output. Only microsource 1 runs for
0.2 s (to more clearly display the output waveform at the
startup time of the microgrid). MASD-FOA is used to op-
timize microsource 1; load: 3000W, 1000 Var. In situations 1
and 2, Formulas (12) and (11) are used as the objective
functions for the optimization, respectively. In this case: STS1
and STS3 are closed, and STS1 and STS3 are disconnected.

Experiment 2. Control effects of different strategies.
Experiment 2 verifies the performance of theMASD-FOA

online optimized PI control strategy. When the topology of
the microgrid changes, the MASD-FOA can optimize the PI
parameters of the microgrid in time and ensure the stable
output of the inverter. At 0 s, microsource DG1 works in-
dependently. In this case, STS1 and STS3 are closed, and STS1
and STS3 are disconnected. load: 3000W, 1000 Var. After
0.5 s, microsources DG1 and DG2 simultaneously operate
with loads of 8000W and 3000 Var. In this case, STS1 to STS4
are all closed. Equation (12) is used as the objective function.

In the experiment, MASD-FOA is compared with FOA,
PSO, NSGA, and traditional methods. Among them, the
traditional method 1: do not adjust the PI parameters; the
traditional method 2: manually adjust the PI parameters;

5.5. Comparison and Analysis of Experiments

5.5.1. Comparison and Analysis of Experiment 1. As shown
in Figures 14 and 15, in situation 1, the output power of the
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inverter slowly fluctuates in a small range, and the range of
fluctuation is constant. After optimization based on Formula
(12), when the system starts, the output power of the inverter
considerably fluctuates. In the steady state, the output power
continues to oscillate at a high frequency, and the oscillation
range is large. With time, the output power exhibits a small
deviation. ,erefore, the absolute value integral term of the PI
error derivation can suppress the oscillation and deviation of the
output power.

5.5.2. Comparison and Analysis of Experiment 2.
Figures 16 and 17 show the frequency and voltage output
by the inverter, respectively. ,e MASD-FOA is adopted

to ensure prompt responses of the inverter. In terms of the
frequency, the output is stable, and no frequency over-
shoot occurs. At 0.5 seconds, both the topology and the
load have changed (the topology is changed after STS2 is
closed, and the load is changed after STS4 is closed), so it
is necessary to reoptimize the droop control PI param-
eters. ,e increase of the load leads to the increase of the
output power because the increase of the output power
causes the frequency to decrease slightly. ,e frequency
stability complies with the national standard GB/T15945-
1995 [33]: the frequency of the power system is controlled
within the range of 50 ± 0.2 Hz. ,e other four algorithms
exhibit frequency oscillations; for example, after NSGA
optimization, the frequency of the microgrid greatly
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Table 4: Simulation parameters.

Parameter name Numerical value
DC side voltage (V) 800
Filter inductors (H) 1.35 × 10−3

Filter capacitor (F) 50 × 10−6

Rated frequency (Hz) 50
Rated voltage (V) 311
Active power droop factor 1e−4

Reactive power droop factor 3e−4

Reference active power (W) 3000
Reference reactive power (Var) 0
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fluctuates at the moment of startup, and the overshoot
reaches 0.3 Hz. Although PSO stabilizes the frequency
output, the difference in the output frequency and ref-
erence frequency is large. It can be observed from Fig-
ure 16 that the error of inverter output frequency can be
reduced by the MASD-FOA algorithm, which is caused by
the introduction of the frequency error term in the ob-
jective function. In the algorithm optimization, the
steady-state frequency with smaller error can be obtained.

Both exploitation and exploration capabilities of the
proposed algorithm are greatly improved by population
partitioning, multistrategy, and adaptive scheme, re-
spectively. Facing the complex nonlinear systems,
according to the evolutionary environment where the
algorithm is located, the convergence and diversity of the
algorithm are adaptively adjusted by the MASD-FOA
algorithm, and the best PI parameters can be found. With
the increase of dimension of the optimization problem,
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the remarkable performance of the MASD-FOA algo-
rithm can be still remained, and the small error of the
inverter output is guaranteed. In terms of the voltage
stability, the MASD-FOA can render the inverter voltage
output highly stable, and no fluctuation occurs in a small
range, corresponding to the minimum error. In the tra-
ditional method 1, because there is no online optimization
of PI parameters, causing huge fluctuations in microgrid
frequency and voltage, microgrid cannot work properly.
In the traditional method 2, the PI parameters are
properly adjusted according to human experience. It can
be seen that the artificial adjustment accuracy is not high,
especially with the increase of microsources, the adjust-
ment difficulty increases, resulting in high-frequency
oscillation of inverter output voltage and frequency, and
the oscillation amplitude is large.

Figure 18 shows that the MASD-FOA ensures the rapid
response of the inverter when the microsource is started or
the topology changes. Almost no overshoot occurs, the
inverter can promptly follow the load change, and a precise
power output can be guaranteed in the steady state. In
contrast, the NSGA algorithm decreases the response speed
of the inverter. ,e standard FOA increases the steady-state
error of the inverter and decreases the response speed. ,e
MASD-FOA is compared with the PSO algorithm: the lo-
cally magnified view indicates that in the case of the MASD-
FOA, the response of the inverter is a smooth rising curve;
however, PSO causes the output power of the inverter to
oscillate at startup. At 0.5 s, in the case of the MASD-FOA,
the steady-state response time of the inverter is extremely
small, and no overshoot occurs. In contrast, the steady-state
response time of the inverter is extremely large in the case of
the PSO. In the traditional method 1, the output of the
inverter will oscillate because the PI parameters do not
adjust in time when topology changes. ,e original PI pa-
rameters do not enable stable operation of the microgrid. In
the traditional method 2, due to the insufficient regulation
accuracy, the output power of the inverter fluctuates after
0.5 seconds, and the steady-state error is large.

In order to measure the deviation between the output
power of inverter and the required power of load, Formulas
(13) and (14) are used to calculate the relative error of the
power.

Perror �
Pi − Pload

Pload
%. (13)

Qerror �
Qi − Qload

Qload
%, (14)

where Pi is the effective value of active power, Qi is the
effective value of reactive power, Pload is the required active
power of the load, and Qload is the required active reactive
power of the load.

Table 5 shows the comparison of the results under
different algorithm optimizations. Microsources 1 and 2
correspond to the statistics of operation for 1 s and 0.5 s,
respectively. ,e overshoot amount is the maximum
overshoot that occurs during the entire operation of the

microsource. ,e rise time is the time required for the in-
verter output to reach the first extreme value at system
startup. ,e steady-state response time is the time at which
the system enters the steady state. ,e performance of the
MASD-FOA is summarized in Table 6. ,e MASD-FOA is
slightly inferior to the other algorithms in terms of the
overshoot; however, it outperforms the other algorithms in
terms of the error and response speed. ,e performance in
terms of the amount of overshoot is not optimal, but the
value of overshoot is extremely small and in accordance with
microgrid operation requirements. In terms of the stabili-
zation time, the stable state of the system can be induced in
0.005 and 0.008 s after MASD-FOA optimization, almost 40
times faster than other algorithms.

5.5.3. Comparison of Running Time. It is difficult to design a
reasonable experiment to explain the computational com-
plexity or computational time of the algorithms. Many
methods have been proposed [34–36]. A general and simple
one is adopted in this paper, that is, the running time of the
algorithms under the same environmental platform and the
same maximum number of iterations. On the basis of
comparing the convergence and diversity, the running time
of each algorithm is measured simultaneously to fairly
demonstrate the computational complexity of the proposed
MSAD-FOA algorithm.

In this article’s optimization strategy, all algorithms set
the maximum number of iterations to 60. In the first op-
timization, each algorithm will give the same initial value
range. ,e initial value range of the next optimization is
determined by the optimal value of the previous optimi-
zation, and this strategy is called optimal delivery strategy
(ODS). ,e sampling time of the algorithm is 0.001 seconds.
,e adaptive strategy proposed in this paper can detect the
environment of the algorithm, and the algorithm stops
optimization when the detection environment indicators
converge. For an algorithm without an adaptive strategy, the
objective function F is used to determine whether the
convergence is completed, the optimization is stopped when
the convergence is completed, and the optimization is
stopped when the maximum number of iterations is reached
if the convergence is not completed. ,e comparison of
different algorithms for the computational time is presented
in Table 6.

It can be seen from Table 6 that the optimization strategy
proposed in this paper is much shorter than other strategies
in terms of optimization time because the strategy proposed
in this paper greatly reduces the number of iterations of the
algorithm and makes the algorithm converge quickly. In
particular, the method of determining the algorithm initial
value of this time based on the optimal value of the previous
time can significantly reduce the number of iterations. ,is
is because the use of ODS can reduce the range of opti-
mization to a certain extent, and adaptive adjustment will
also intensify the convergence of the algorithm, converging
rapidly in the optimal direction. ,erefore, adaptive regu-
lation strategy plays an important role in online
optimization.
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Table 5: Comparison of algorithm stability margins.

Comparison
algorithm Microsource

Relative
error of
active
power

Relative
error of
reactive
power

Frequency
deviation

Voltage
deviation

Pi1
error

Pi2
error Overshoot Rise

time

Steady-state
response
time

MASD-FOA

Microsource
1 1.061 1.428 0.005352 0.1063 0.4554 0.6871 104 0.005 0.005

Microsource
2 0.217 0.3463 8.681e− 5 0.01558 0.424 0.3649 33 0.008 0.008

FOA

Microsource
1 10.62 10.89 0.04618 0.3513 10.85 6.532 0 0.235 0.235

Microsource
2 7.067 7.254 0.03628 0.2077 6.02 3.169 0 0.25 0.25

PSO

Microsource
1 1.182 2.798 0.1648 0.3784 0.6387 0.8562 3690 0.005 0.22

Microsource
2 0.3488 0.6297 0.08 0.2251 0.5632 0.5424 95 0.005 0.2

NSGA

Microsource
1 4.673 5.191 0.05449 0.3764 5.205 3.64 0 0.2 0.2

Microsource
2 3.736 3.848 0.05112 0.2247 2.241 1.421 0 0.2 0.2
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6. Conclusion

,e response speed, output power oscillation, and voltage
and frequency stability of inverters in microgrid droop
control are studied, and the following conclusions are de-
rived: (1) when the microgrid topology changes, the pro-
posed three-partition multistrategy adaptive fruit fly
optimization algorithm can optimize the PI parameters of
the microgrid droop control in real time and enhance the
robustness of droop control. Consequently, the inverter
exhibits a faster response, a smaller error, and more stable
output. (2) Microgrid experiments with different objective
functions verify that the PI error derivation absolute value
integral term can effectively suppress the oscillation and
deviation of the inverter output power. (3) Six test functions
are used. ,rough a comparison with the FOA, PSO, and
NSGA algorithms, the effectiveness of the three-partition,
multistrategy, and adaptive update mode is verified. ,is
framework can help exploit the development and explora-
tion ability of each fruit fly when solving different problems.
Consequently, the MASD-FOA exhibits a high convergence
speed and convergence accuracy. (4) In noninitial optimi-
zation, the combination of adaptive strategy and ODS
greatly reduces the number of iterations of the algorithm,
thereby reducing the time for online optimization.

,e three-partition multistrategy adaptive fruit fly op-
timization algorithm proposed in this paper can not only
solve the problem of optimizing droop control parameters,
but the algorithm can be applied to more scenarios in the
future. Compared with other algorithms, the advantages of
this algorithm are as follows: the algorithm can detect the
algorithm environment, adaptively adjust the convergence
and diversity of the algorithm, quickly jump out of the local
optimum in the development phase, and improve the
convergence accuracy during the exploration phase. ,e

multistrategy update mode can maximize the development
and exploration capabilities of fruit flies, thereby avoiding
invalid calculations.
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