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Summary. Generation planning is an important aspect of the probabilistic production simulation (PPS) process for power systems.
)e inclusion of nondispatchable energy sources in the conventional system needs efficient algorithms for reliability evaluation.
Moreover, it is crucial to represent the availability of nondispatchable energy sources with a suitable probability distribution function
(PDF) that can be easily integrated with the conventional system. )e present work extends the generation reliability to include
nondispatchable energy sources in the reliability evaluation methodology. )e wind electrical system (WS) is represented using a
simple wind speed model based on the normal distribution function. )e multistate wind speed model based on the mean and
standard deviation of wind speed at a particular site is integrated with the conventional system for reliability study.)e proposed fast
Fourier transform (FFT)-based method eliminates extensive calculations encountered in the conventional approach due to
cumbersome time-domain convolution.)e efficacy of the methodology is validated with the case studies using the IEEE RTS-wind
system with loss of load probability (LOLP) and expected energy not served (EENS) reliability indices.

1. Introduction

One of the goals of generation planning is to ensure a reliable
power supply to the consumers. Recently, the global climatic
concerns have given impetus to incorporate more renewable
energy sources. Renewable energy sources are intermittent in
nature. Particularly, wind energy generation is quite variable
in nature due to its dependence on factors such as wind speed,
and density of air. Such variable energy resources thus come
under a category of nondispatchable energy sources [1, 2],
and incorporation of these sources in generation planning is
quite complex [3]. Wind energy has a significant share in
nondispatchable energy generation due to its expansion in
recent years [4, 5]. )erefore, generation planning should
incorporate the stochastic behavior of wind along with the
generator outages. Furthermore, the conventional dis-
patchable units (DUs) are represented by a model repre-
senting two states, but due to large variations, wind speed-
based nondispatchable units (NDUs) require a multistate
representation, which is complex. )e uncertainties in

nondispatchable generation can be modeled using PDF [6],
which can be correlated with the generated power and in-
tegrated with PPS to determine the generation adequacy and
reliability of the system.

1.1. Motivation. For efficient generation planning, it is also
necessary to model the uncertainties associated with the
DUs, which can be done by representing them in terms of
their probabilities [7]. )e most significant uncertainty in
generation planning is the forced outage of generators [8].

)e interaction of load probabilities, with the uncer-
tainties associated with all the connected generating units,
forms the basis for the probabilistic load model (PLM) used
for reliability analysis [9]. PLM is a continuous modification
of the load duration curve (LDC) considering generational
uncertainties. LDC determines the time duration of load
demands arranged in descending order in a given time
interval [10], which can also be represented by the proba-
bility of occurrence of a particular demand in a given time
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interval. In order to obtain PLM, the probabilistic model of
each generator is convolved multiple times with the LDC.
With the increase in generating units, the convolution
process becomes cumbersome and time-consuming. )e
complexity and memory requirement for convolution fur-
ther increases with the involvement of multistate renewable
generation sources. With ever-increasing demand and
generation requirements, an efficient algorithm with mini-
mal computation time is required. )e multiple steps re-
quired for convolution operation, performed in the time-
domain conventionally, can be reduced to a single step with
the application of the fast Fourier transform (FFT) algorithm
[11]. )is requires efficient probabilistic modeling of the
generation sources to obtain the reliability indices.

)e motivation of the present work is to integrate the
uncertainty associated with wind farms with the probabi-
listic generation of the DUs and reduce the computational
time and complexity of generation planning.

1.2. Related Literature. In recent years, numerous multistate
models for wind turbines and reliability assessments of wind
integrated power systems have been suggested due to the
integration of wind energy systems (WS) into the conven-
tional power system.)e proposed works have concentrated
on the reliability of protection systems [12], reliability
considering elements connected to the power system net-
work [13, 14], reliability enhancement using control strat-
egies [15, 16], and reliability considering reactive power
optimization [17]. However, the basic requirement of a
power system is to satisfy the load demands considering the
existing and upcoming system facilities [18], which needs to
be dealt with on a priority basis. Although significant work
has been done related to adequacy of generation considering
conventional generators, adequacy studies considering wind
integrated power system demands attention [19]. )e
amount of energy generated by wind farms varies with wind
speed, depending on the farms’ location. Hence, wind farms
need to be represented by a common multistate wind speed
model [20], representing uncertainty in wind generation.
Also, the number of iterations for PLM computation in-
creases with the increase of states, which needs to be
simplified.

Reliability assessment of wind farms considering wind
intermittency and parameters related to wind turbines have
been reported in [21, 22]. )e methods consider wind-re-
lated uncertainties, but the conventional generators have not
been taken into account. Although combined reliability
evaluation considering wind farms and conventional gen-
erators have been reported in [23], the methods do not
consider common wind speed model considering wind
farms at different locations. References [24, 25] have taken
into account wind models that consider topological varia-
tions, but the reliability evaluation methodologies of wind
energy-based power systems are complex. )e reliability
assessment of power systems with multistate energy sources
requires complicated and time-consuming calculations.
)erefore, it is imperative to use digital signal processing
(DSP) tools, which can reduce the computational burden. A

frequency-domain approach to calculate the reliability of the
system considering solar irradiation intermittency has been
proposed in [26]; however, the method has not been
implemented for wind speed intermittency.

1.3. Innovative Contributions. )e power generation ca-
pacity of nondispatchable energy sources is dependent on
nongovernable factors. )e factors can be accounted for in
reliability studies if they are represented by their occurrence
probability. Wind speed, which is a nongovernable factor of
WS, depends on the geographical conditions of the site,
which can be represented by a PDF divided into multiple
states. )e reliability evaluation involves the interaction of
this multistate model, the load behavior, and the other
generation uncertainties. Hence, a simple algorithm is re-
quired to represent the interactions to minimize the time
and memory requirements of the processor. )e following
are the innovative contributions of the current work in
comparison to the existing literature:

(i) Impact assessment of grid-integrated non-
dispatchable energy sources having variable gen-
eration on reliability in combination with PLM

(ii) Extension of generation reliability evaluation to
incorporate nondispatchable energy sources using
multistate generation model

(iii) Frequency-domain approach for simplification of
the process involved in the convolution of proba-
bilistic multistate generation model with probabi-
listic load model

2. Reliability Modeling of Generating Sources

2.1. Reliability Model for Dispatchable Unit. Generation
planning is an essential part of power system probabilistic
simulation. In order to achieve an appropriate planning
scheme, the simulation has to be run multiple times, and
hence, efficient functions are required to represent the
generation-load uncertainty.)is can be done through PLM,
which is derived from transformed LDC (where the axes are
interchanged to represent the time duration as a function of
the load) that expresses the duration of varying loads, as
shown in Figure 1. In the figure, T is the duration of time for
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Figure 1: Representation of load duration curve.
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the investigation, and xm is the maximum connected load in
the system (in MW). Also, (x,t) is the point on the curve,
representing the time duration t for which load exceeds the
value x and is expressed as t� F(x). PLM is a representation
of load (in MW) with associated probability sampled with a
load interval of Ts MW as shown in Figure 2(a). )e
probability “p” that the load is ≤x can be calculated from (1),
which is used to obtain PLM from transformed LDC. To
understand this consider a system having a base load of
1,800MW operating for 52 weeks(T), a load of 1,881MW
operating for 44 weeks, a load of 2,280MW operating for 31
weeks, and a load of 2,850MW operating for 1 week. )e
corresponding probabilities of loads ≤ given values used to
obtain PLM are (52/52�1), (44/52� 0.84), (31/52� 0.59),
and (1/52� 0.01), respectively. )e total energy (EL) under
the transformed LDC is given by (2), which is equal to the
energy under PLM.

pr � f(x) �
F(x)

T
, (1)

EL � 􏽚
xm

0
F(x)dx. (2)

)e forced outage of DUs has a tremendous impact on
the available power, which may occur due to aging of units,
failure of turbine and boiler, noncompliance with the safety
norms, and so on [27, 28]. Considering the outage of DU as
an individual event, the probability of outage of each unit
can be modeled into two states. )e probability of the failure
state is given as forced outage rate (FOR) “q” and the
probability of normal state is represented as p � (1 − q).”
)e PLM can be constructed using FOR, based on recur-
sively adding one unit at a time by convolution process. )e
formulation of PLM can be represented in pictorial form, as
shown in Figure 2.

)e original load duration curve can be represented as
the original PLM f(0)(x) given in Figure 2, illustrating the
load delivered by all generating units with associated
probabilities. )e PLM is sampled, with each sample having
an interval Ts. )e curve is modified in accordance with the
priority of the operation of DUs. )e outage of dispatchable
unit DU1 with a capacity of CD1 is represented by the

shifting of the original curve by CD1 as shown in Figure 2,
mathematically represented as a convolution of original load
duration curve and probability distribution of dispatchable
unit DU1 given by (3) [29]. )e generalized equation to
calculate the PLM for the outage of the unit DUα is given by
(4).

f
(1)

(x)�f
(0)

(x)⊗DU1 �p1f
(0)

(x)+q1f
(0)

x−CD1( 􏼁, (3)

f
(α)

(x)�f
(α−1)

(x)⊗DUα �pαf
(α−1)

(x)+qαf
(α)

x−CDα( 􏼁.

(4)

)e PLM represents the outage of the dispatchable unit
by an increase in load demand, which further signifies the
increase in energy as shown by the colored region in Fig-
ure 2. If the system has “g” dispatchable units with a total
capacity CDg, the PLM has a maximum capacity xm + CDg.

2.2. Modeling of Nondispatchable Units for Reliability
Analysis. )e DU outage is represented by a two-state
model; however, NDUs have uncertainties having multiple
states. )erefore, to include uncertainties with the units for
reliability evaluation, multistate models representing them
should be taken into account. If the uncertainty related to a
DU has Nc states, then the probability of generating
NDCi(i � 0, 1, 2, . . . , Nc − 1) power states are prNDCi(i �

0, 1, 2, . . . , Nc − 1) and is shown in Figure 3.

NDCi + NDCi � NDCβ, (5)

where NDCβ represents the maximum capacity of the wind
farm. All wind farms’ power states must fulfill the probability
constraint given by

􏽘

Nc−1

i�0
prNDCi � 1. (6)

)e convolution formula to obtain PLM after integrating
WS to represent the variability of power can be obtained by
the modification of the formula obtained for dual state
generating units. If the outage of (α) dispatchable units has
been taken into account for generation planning and the
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Figure 2: (a) )e PLM based on transformed LDC and (b) the modified PLM considering outage of single generator.
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convolution of PLM, f(x) is performed. For the addition of a
multistate nondispatchable generating unit NDj, having
power state NDCi with a probability prNDCi, the equivalent
load shared by generating unit is (x + NDCi). )is is
mathematically represented by shifting of PLM to the right by
N DCi, and hence, the curve is modified to f(x − NDCi)

having a probabilityprNDCi. Hence, the final PLM is a
weighted sum of all the generating states, given by

f
(j)

(x) � 􏽘

Nc

i�1
prNDCif

(j− 1)
x − NDCi( 􏼁􏽨 􏽩. (7)
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Figure 3: Power states of nondispatchable units with probabilities.
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Figure 4: A 10-step model for the San Francisco Bay Area.
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Figure 5: (a) )e speed power curve of wind turbine and (b) multistate probability representation of power with respect to wind speed.
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When Nc � 1, equation (7) reduces to (4), and when
j � 1, f(j− 1) is taken as f(α).

3. Wind Speed Uncertainty Model

Several methodologies for calculating wind farm output
power have been proposed [30, 31].)e reliability analysis of
a wind energy-based system requires a simplistic wind speed
model that is easy to integrate with the conventional gen-
erating system. )e output of the wind farms is wind speed
dependent, which is variable in nature. )is section elabo-
rates on the wind speed model described in [20], taking into

account the mean of wind speed (μ) and the standard de-
viation (σ) of past available wind data. )e correlation
between the varying wind speed and forced outage of
generating units is also discussed.

3.1. Wind Speed Model for Multiple Sites. Wind speeds ob-
tained from various locations very closely fit the Weibull
PDF. )e shaping parameters of the distribution vary with
different location and are difficult to calculate. However, the
probability distribution of wind speeds can be approximated
to normal distribution [20] by calculating the mean and
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Figure 6: Representation of FFT algorithm for calculation of PLM.
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standard deviation of past wind speed data. To consider
wind speeds during extreme weather conditions, the dis-
tribution is taken up to 10σ. For reliability evaluation
purposes, the PDF is divided into Nst number of states and
the width of each state being (10σ/Nst). If MPsti(i � 0, 2,

. . . , Nst − 1) is the midpoint of the states, then the midpoint
of each state can be calculated from (8), and the probability
of each step is obtained from (9).

MPsti � μ+ 10σ/Nst( 􏼁 × i −0.5× Nst( 􏼁 if Nst iseven

� μ+ 10σ/Nst( 􏼁 × i −0.5× Nst +1( 􏼁( 􏼁 if Nst isodd

⎫⎪⎬

⎪⎭
, (8)

psti �
Nspi

8760× Ny􏼐 􏼑
, (9)

where Nspi represents the total wind speed data points for a
particular state and Ny is the wind speed data points ob-
tained in a year. If multiple sites for wind farms are taken
into account, the probabilities of individual sites can be
combined to obtain a common wind speed probability for
multiple locations. )e common wind speed probability
Psti(i � 0, 1, 2, . . . , Nst − 1) of individual states for different
sites represented by “j” is obtained by taking the average of
probabilities Pstij(j � 1, 2, . . . , Ns) for Ns sites into con-
sideration. A 10-step model is used for the present work
based on [20] to represent the multistate wind as shown in
Figure 4 for the San Francisco Bay Area, with the probability
and midpoint of each state indicated. )e negative value of
wind speed is ignored as it has no significance. )e wind
speeds are obtained from [32], and each wind site indicates
an individual farm.

3.2. Common Wind Power Generation Model. )e power
generated by a particular wind speed at different sites can be
obtained from the speed-power curve of the wind turbine
generator. )e wind turbine generator starts generating
power at wind speed Vc, and the generator is shut off after
wind speed Vo for safety reasons. Rated power Pr is achieved
between rated speed Vr and Vo the power curve for the wind
generator, and multistate probability representation of
power with respect to wind speed is shown in Figure 5. )e

power-speed relation between speedsVc andVr is nonlinear,
and the generated power by a wind turbine PWi(i �

0, 1, 2, . . . , Nst − 1) for a given speed state MPsti(i � 0, 1, 2,

. . . , Nst − 1) is given by

PWi � 0, 0≤MPsti <Vc,

� Pr A + B × MPsti + C × MP2sti􏼐 􏼑, Vc ≤MPsti <Vr,

� Pr, Vr ≤MPsti <Vo,

� 0, Vo <MPsti.

(10)

)e constants A, B, and C have been calculated from
[21].

)e output of the wind turbine generator is zero when
the wind speed is less than Vc and Pr when the wind speed is
greater than Vo. Wind speed states corresponding to these
values can therefore be combined into a single combined
state whose probability Ppz is given by (11). )e output
power is rated power for wind speeds between Vr and Vo.
)ese states can also be combined into a single state, and the
probability of the combined state Ppr is given by (12).

Ppz � 􏽘 Psti for 0≤MPsti <Vc orVo <MPsti, (11)

Ppr � 􏽘 Psti forVr ≤MPsti ≤Vo. (12)

4. Reliability Evaluation Methodology
Using FFT

4.1. FFTfor PLM. )e convolution process to obtain PLM is
given by (4) and (7), which becomes tedious to perform
when generating units increase due to a large number of
convolutions involved. Also, the number of data points
obtained after each convolution increases twofold, which
increases the memory requirement. FFT converts the sam-
pled-time domain signal to the frequency domain, and thus,
the time-domain convolution process is transformed to
term-by-term multiplication. If f[x] and g[x] are two
discrete time-domain signals, the signals are converted to
F(n) and G(n) after FFT and are shown in the following
equation [11]:
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Figure 7: PLM for multiple generating units.
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f[x]⊗g[x] ⇌
FFT

IFFT
F(k)∗G(k). (13)

)e FFT algorithm minimizes the number of compu-
tations required for discrete Fourier transform (DFT) cal-
culations. )e number of data points used for computation
of FFTalgorithm should satisfy (14), where S is an integer. A
signal f(x) can be represented by r impulse function with a
scaling factor am, shifted by bm and given by (15). )is
equation can be represented by a uniform shifting of pulses,
with each pulse having a size Δx given by (16). )e signal
obtained is transformed to the frequency domain using (17),
where n� 0,1,2, . . ., N− 1; k � 0, 1, 2, . . . , N − 1; and
W � ej2π/N. )e signal after convolving in the frequency
domain needs to be converted back to the time domain and
is given by (18).)e sampling points for the present work are
calculated based on (19) [33], where T0 � xm + Ut as the
present work performs reliability evaluation based on PLM
and T is the sampling interval that in the present work is
chosen as 1MW.)e FFTmethod to obtain PLM is depicted
in Figure 6. )e FFT process reduces the computation time
drastically and is highly efficient compared to the conven-
tional method to obtain PLM.

N � 2S
, (14)

f(x) � 􏽘
r

m�1
amδ x − bm( 􏼁, (15)

g(x) � 􏽘
N−1

k�0
akδ(x − k · Δx), (16)

F(n) � 􏽘
N−1

k�0
akW

− nk
, (17)

yk � 􏽘
N−1

n�0
F(n)W

nk

f(n) � 􏽘
N−1

k�0
ykδ(x − k · Δx)

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (18)

N≥
T0

T
. (19)

4.2. Reliability Indices Calculation Using PLM. )e PLM
obtained using the FFT algorithm involves a convolution
process multiple times, which also results in continuous
modification of PLM, thereby changing the equivalent peak
load in the representation. If the number of generating units
in the system is “m,” having overall capacity Ut, the PLM,
after all the generating units have convolved, is represented
by the curve f(m)(x). )e peak load of the system is
modified to a value of (xm + Ut), illustrated in Figure 7. )e
conclusive modified PLM is used to obtain the loss of load
probability (LOLP) and expected energy not served (EENS),

which are the indices obtained for the assessment of the
reliability of the system. )e present work considers gen-
eration reliability assessment taking into account generation
adequacy, which is accurately represented by LOLP and
EENS [34, 35]. LOLP is the probability that the maximum
daily load of the system is greater than the capacity of
generation and is given by (20), where S is the set of states

Obtain the load data and
formulate the LDC for
the system considered

Obtain the wind
data for various

sites

Obtain the multistate
common wind
speed model

Formulate the
probability states for all

the generating units.

Perform convolution of
PLM in time domain

with probability state of
generating unit

All the units
convolved?

Yes

No

Obtain the
conclusive modified

PLM

Calculate the
reliability indices

Stop

Start

Loop run
multiple times

Figure 8: Conventional methodology for reliability evaluation.
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that are associated with the loss of load, pi is the probability
of the system state “i,” and ti is the duration related to loss of
load for system state “i.” EENS is the total energy not served
when the load of the system is greater than the generation
capacity and is given by (21) [35, 36], where Ui is the
generation capacity at state “i” and (xm − Ui) is the load
curtailment. )e LOLP and EENS can be obtained from
PLM as given by (22) and (23). LOLP from PLM can be
obtained in terms of the probability of loss of load for a given
time duration, as shown in Figure 7. )e PLM combines the
probability of loss of load for given states and capacity of
loss, as shown in Figure 7. It can be observed from Figure 7
and (22) and (23) that when the load is increased with

generation fixed, the indices also increase with the increase
in outage capacity.

LOLP � 􏽘
i∈S

piti, (20)

EENS � 􏽘
i∈S

8760∗ xm − Ui( 􏼁∗pi, (21)

LOLP � f
(m)

Ut( 􏼁, (22)
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data for various

sites

Start
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common wind
speed model

Formulate the
probability states for all

the generating units.

Obtain the load data
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Perform FFT

Perform convolution of
PLM in frequency domain
with probability state of all

generating units

IFFT

Obtain the conclusive
modified final PLM

Calculate the reliability
indicesLOLP and EENS

Stop

Figure 9: Proposed FFT methodology for reliability evaluation.

Table 1: Generator forced outage rate data.

Capacity of unit (MW) Type Forced outage rate (FOR)
400× 2 Nuclear 0.12
350×1 Coal/steam 0.08
197× 3 Oil/steam 0.05
155× 4 Coal/steam 0.04
100× 3 Oil/steam 0.04
76× 4 Coal/steam 0.02
50× 6 Hydro 0.01
20× 4 Oil/CT 0.10
12× 5 Oil/steam 0.02

Table 2: Ten-step wind speed model for San Frisco Bay Area.

Midpoint of wind speed state Probability
−3.6182 0
−1.0325 0
1.5532 0.0344
4.1389 0.3154
6.7246 0.3567
9.3103 0.2204
11.8960 0.0482
14.4817 0.0207
17.0674 0.0028
19.6531 0

Table 3: Ten-step wind speed model for Contra Costa County.

Midpoint of wind speed state (m) Probability
−7.1722 0
−3.6231 0
−0.0741 0.0096
3.4750 0.3817
7.0241 0.3010
10.5732 0.2408
14.1222 0.0547
17.6713 0.0096
21.2204 0.0027
24.7695 0

Table 4: Common wind speed model.

Output power of wind farm (MW) Probability
0 0.3706
97.866 0.3286
437.0464 0.2306
1,028.524 0.0516
1,526 0.0180
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EENS � 􏽘

xm+Ut

Ut

f
m

(x). (23)

4.3. Reliability Evaluation Methodology. )e reliability
evaluation involves obtaining load data for the system
considered to formulate the PLM. Wind data for different
sites is obtained, and each wind site represents a single wind
farm. To avoid the representation of different wind farms
with different characteristics, a wind speed model that can
represent all the wind sites having common characteristics
has been used in the present work. FFT is performed on the
initial PLM and probability states of generating units. All the

generating units are convolved with the PLM in a single step
to obtain the final PLM representing the generator outages
and wind uncertainty. )e reliability indices for reliability
assessment are finally obtained. )e proposed methodology
eliminated the loop, which is run multiple times to convolve
the initial PLM with all the generating units. )e conven-
tional methodology is shown in Figure 8, and the proposed
methodology is shown in Figure 9.

5. Results and Discussion

)e proposed methodology is validated by application to
IEEE RTS-wind [3]. )e IEEE RTS system has been used to
validate and benchmark various reliability algorithms. )e
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Figure 10: Original load duration curve for RTS-wind [3].
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Figure 11: Modified PLM considering outage of DUs.
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conventional IEEE RTS comprises 32 DUs, with a total
generation capacity of 3,405MW, and the maximum con-
nected load in the system is 2,850MW. )e conventional
system is modified to RTS-wind by replacing a 350MW
generating unit with a wind farm, consisting of 763 wind
turbines with a rated capacity of 2MW. )e forced outage
rate (FOR) of conventional generators is listed in Table 1,
along with their rated capacity.

)e present work considers wind data from two sites in
California, USA, where each site is considered a wind farm.
)ewind data is obtained for a duration of two years, and the
locations chosen are San Francisco Bay Area and Contra
Costa County from [32]. )e mean speed and standard
deviation of the San Francisco Bay Area are 6.7246 and
2.5857, respectively; also, the mean and standard deviation
of the Contra Costa County are 7.0241 and 3.5491, re-
spectively. )e 10-step speed models for the 2 sites are
shown in Tables 2 and 3, respectively. Combining the
probabilities of the two sites, the common wind speed model
is shown in Table 4; two wind farms are represented by a
common power and probability model. )e present work
considers Enercon E82 wind turbine [37], with cut-in speed
of 4 (m/s), cut-out speed of 28 (m/s), rated speed 15 (m/s),
and the rated power 2 (MW).

)e LDC for the considered IEEE RTS-wind system is
shown in Figure 10, representing the variation of load with
time in weeks. )e LDC has a maximum load of 2,850MW,

which all the generating units cater to during normal op-
eration. )e PLM is obtained from the convolution of LDC,
and probabilistic outages of all the connected DUs are shown
in Figure 11. )e PLM has a maximum load of 6,255MW,
considering the outage of all the generating units. )e
conclusive modified PLM plot considering the variability of
power of wind farms is shown in Figure 12; the maximum
load of the PLM shifts to 7,431MW. )e LOLP and EENS
have been obtained from the curves.

)e reliability indices for the outage of different per-
centage of generation with wind variation are presented in
Table 5. It can be observed with the outage of a lesser
percentage of generating units that the reliability of the
system is very high and decreases with an increase in the
outage of the generating units. )e reliability indices cal-
culated from FFT-based PLM for different cases repre-
senting different load percentages are shown in Table 6. It
can be observed that the reliability has increased with the
inclusion of wind farms, as a large capacity wind farm
(763× 2MW) is included in place of a 350MW generator. It
can also be observed that as the load increases, the reliability
of the system decreases. When the system is underloaded,
the reliability of the system is high; as the load of the system
increases by 10%, the system is reliable as compared to the
conventional system. However, when the load increases by
20%, the reliability of the system slightly decreases. )e
reliability indices using the time-domain approach are also

Modified PLM Considering outage of
conventional generating units

Conclusive Modified PLM considering outage
of conventional generating units

Load (MW)

Pr
ob

ab
ili

ty

f (0) (x)

f(32) (x)

f(32) (x)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 12: Conclusive modified PLM considering outage of DUs and wind power variability.

Table 5: Reliability index values for wind variability and outage of different percentage of generating units.

Outage percentage of conventional units with respect to effective generation for IEEE RTS-Wind LOLP EENS
30.2790% (outage of oil units) 0.000044 0.0205
40.9538% (outage of oil + hydro units) 0.000046 0.0223
66.2261% (outage of oil + hydro + coal units) 0.000102 0.0678
100% (outage of all units) 0.0092 11.2956
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presented in Table 6; the indices are almost similar as
compared to the reliability indices obtained using frequency-
domain approach, which proves the precision of the pro-
posed frequency-domain approach.

6. Conclusion

)e replacement of conventional energy sources with re-
newable energy resources demands efficient and simplistic
algorithms for generation planning. PLM serves as an im-
portant tool in generation planning to determine the reli-
ability of the system. However, integrating a multistate wind
model is challenging and requires the simulation process to
run multiple times. )e present work has extended the
conventional two-state generation model considering gen-
erator outages to include multistate NDUs in generation
planning. Also, the complexity of computation associated
with multistate models is alleviated by using the frequency-
domain approach using FFT. )e efficacy of the proposed
approach has been validated through case studies using a
standard test system such as IEEE RTS and IEEE RTS-wind.
Since the NDUs have a lower capacity factor compared to
DUs, therefore, more NDU capacity addition is required to
maintain the same reliability indices compared to the DUs.
)e reliability indices such as LOLP and EENS of IEEE RTS-
wind are comparable with those of the original IEEE RTS
system when about four times wind energy generation is
integrated into the system.)us, proper generation planning
can ensure reliability even when NDUs are integrated into
the power system.
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