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Due to the important characteristics of energy saving and carbon reduction, electric vehicles have attracted worldwide attention. It
can be predicted that the power grid will be faced with the access problem of large-scale electric vehicles. In order to master the
user behavior characteristics of electric vehicle load, it is necessary to establish the model based on electric vehicle charging
behavior. In this paper, combined with the electric vehicle charging demand and the situational awareness results of the dis-
patchable resources in the station area, the characteristic indicators of the electric vehicle load are quantitatively analyzed.
Situational prediction of electric vehicle load based on random forest algorithm is proposed, and the sample set is divided and
trained. A simulation example is used to verify the effectiveness of the method provided in load forecasting.

1. Introduction

Energy crisis and climate warming have become the key
problems that restrict the sustainable development of human
society. Electric vehicles have significant advantages in al-
leviating global energy shortages and environmental pol-
lution [1–3]. At the same time, distributed power generation,
which is mainly composed of photovoltaic and wind power,
develops rapidly [4]. However, the access of large-scale
electric vehicles and the intermittence of renewable energy
will aggravate the peak-valley difference of power grid load,
making the operation of power grid more difficult to control
[5, 6]. On the one hand, as a flexible load, the electric ve-
hicle’s off-driving charging time is usually longer than the
time required for its battery to be fully charged. Orderly
regulating the charging behavior of a large number of
electric vehicles can not only avoid the impact of large-scale
random access of electric vehicles to the power grid but also
realize the peak load cutting and valley load filling, which is
very important for the safe operation of the power grid in the
future. It is of great significance to improve the economic
benefits of the power grid [7–10]. On the other hand, due to
the strong randomness at the moment when electric vehicles

connect and leave the power grid, the state of charge of the
battery is uncertain, and the day-ahead scheduling process
can not accurately predict the connection and departure of
each electric vehicle in the future [11–13].

Short-term load forecasting is an important part of
power system load forecasting, which mainly forecasts the
load at any time in the future [14]. (e factors that affect the
accuracy of short-term load forecasting mainly include
sudden weather changes, seasonal changes, dispatching
plans, emergencies, large-scale social activities, and so on.
(erefore, short-term load forecasting has randomness and
uncertainty [15, 16]. However, in the process of random
change, the load still has obvious periodicity in different
periods, such as year, month, week, and day. (erefore, the
short-term load variation comprehensively appears as a
nonstationary random process in the time series [17, 18].
Accurate short-term load forecasting is of great significance
to the economic dispatch of electric power dispatching
departments, the control of unit allocation, and the current
developing electric market [19].

(e methods of early warning, decision making, and
visualization in situational awareness technology play an
important role in realizing the safe and stable operation of
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smart grids. Reference [20] has designed a distribution
network dispatching system based on situation awareness
technology, which can flexibly detect and evaluate the
running state of the distribution network. Reference [21] has
already applied situational awareness to microgrid, and
based onmicrogrid situational awareness, the situation leads
to active decision. Reference [22] has proposed that the
electric vehicle charging and discharging index is used for
situational warning of the power supply capacity of the
power distribution system. At present, the application of
situational awareness in the distribution system is mainly
aimed at the power supply and consumption early warning
and monitoring of distribution network. However, the sit-
uation awareness of the distribution system to forecast and
dispatch the charging load of electric vehicles has not been
deeply developed.

In this paper, the basic user behavior characteristics of
electric vehicle load are studied, and the charging behavior
model of electric vehicle is established. (e forecasting
method of electric vehicle load based on random forest
algorithm is put forward. (e sample set is trained and
compared with other methods in the field of short-term load
forecasting.(e validity and superiority of the random forest
algorithm for electric vehicle load forecasting are verified,
which can effectively improve the accuracy of electric vehicle
charging load forecasting.

2. Modeling of Electric Vehicle
Charging Behavior

2.1. Electric Vehicle Charging Behavior Analysis. After elec-
tric vehicles are connected to the power grid on a large scale,
its charging load becomes an important factor that cannot be
ignored in the power grid. Because the large-scale electric
vehicle groups has certain aggregation characteristics, this
paper takes the large-scale electric vehicle group as the
research object and analyzes the charging demand of electric
vehicles from the aspects of battery characteristics, charging
time, mileage characteristics, and so on.

(e characteristics of the battery mainly include battery
capacity and the state of charge. (e features include
charging start time and charging duration. Driving features
mainly include daily mileage and power consumption per
kilometer of electric vehicles. (e relationship between these
3 properties is as follows:

Tch �
Qω · d

PEV(k)
�

QEV · 1 − SSOC( 􏼁

PEV(k)
, (1)

where Tch is the charging time in hours; Qω is the electricity
consumption per kilometer of the electric vehicle, in kilo-
watt-hours per kilometer; d is the mileage of the electric
vehicle, in kilometers; PEV(k) is the charging power in
kilowatts; PEV(k) is the battery capacity in kWh; and SSOC is
the battery state of charge, which is the ratio of the remaining
battery power to the fully charged state.

(e daily mileage of electric vehicles obeys a normal
distribution, and its probability density function is as
follows:

f(d) �
1

dδd

���
2π

√ exp −
1n d − μd( 􏼁

2

2δ2d
􏼢 􏼣, (2)

where μd is the expected value of daily mileage, and δd is the
standard deviation of daily mileage. According to [23], it is
advisable to take μd � 3.2 and δd � 0.88.

(e initial charging time of electric vehicles also has a
certain normal distribution, and its probability density
function is as follows:

fcar(t) �
1

tδt

���
2π
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2

2δ2t
􏼢 􏼣, (3)

where t is the initial charging time of each electric vehicle,
and its value is in the range of [0, 1440] (24 h is divided into
1440 time periods, each of which is 1 minute); μt represents
the expected value of charging time; and δt is the standard
deviation of charging time. According to [23], it is advisable
to take μt � 17.6 and δt � 3.4.

2.2. ,e Model of Single Electric Vehicle Charging Behavior.
It shows that the charging power of each electric vehicle is
constant and continuously adjustable in each optimization
period. (e mathematical model of the charging behavior of
a single electric vehicle is shown in

dEV(t) � η 􏽘
t

k�tin

PEV(k)Δt � d(t − 1) + ηPEV(t)Δt,

dmin tout( 􏼁 � dmax tout( 􏼁 � Dexpect,

dmin(t)≤dEV(t)≤dmax(t),

Pmax(t) �
min PEV,max, dmax(t) − d(t − 1)􏼐 􏼑

ηΔt
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ηΔt
,

Pmin(t)≤PEV(t)≤Pmax(t),
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(4)

where dEV(t) is the energy trajectory value of the electric
vehicle at time t; dmin(t) and dmax(t) are the lower and upper
bounds of the energy trajectory d(t) at time t, respectively; η
is the charging efficiency; PEV(k) is the electric vehicle
charging power at time k and remains constant during the
period between time k and time k + 1; Δt is the time interval
of the scheduling period; tin and tout are the access and
departure times of the electric vehicle, respectively; that is,
the electric vehicle is connected at time tin and leaves at time
tout; Dexpect is the charging demand for electric vehicles;
PEV,max is the upper limit of the rated charging power of the
electric vehicle battery; PEV(t), Pmax(t), and Pmin(t) are the
charging power of the electric vehicle at time t and the
maximum and minimum charging power limited by the
energy boundary constraints, respectively. (e schematic
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diagram of the energy boundary model of a single electric
vehicle is shown in Figure 1.

In Figure 1, it is assumed that the electric vehicle is
connected at time tin and left at time tout.(e curve abd is the
upper bound dmax(t) of the energy boundary of the electric
vehicle, which means that after the electric vehicle is con-
nected to the power grid, it will be charged with the max-
imum charging power immediately until it reaches the user’s
expectation Dexpect. (e curve acd is the lower bound dmin(t)

of the energy boundary of the electric vehicle, which means
that the electric vehicle delays charging after it is connected
to the power grid, until the user’s expectation Dexpect is
reached at the time of departure. (e slopes of ab and cd
represent the increase in battery power per unit time
according to the maximum charging power of the electric
vehicle, that is, ηPEV,max.

2.3. Cluster Equivalent Model for Electric Vehicles. After the
electric vehicles are connected to the power grid, the electric
vehicles with the same departure time can be grouped into
the same subcluster according to the charging parameters
input by the owner. By superimposing the charging models
belonging to the same subcluster, the equivalent charging
model of a single subcluster can be obtained as follows:

dmin ,m(t)≤dm(t)≤dmax ,m(t),

dm(t) � η 􏽘
t
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(5)

where dm(t) is the energy trajectory of subclusterm at time t.
dmin ,m(t) and dmax ,m(t) are the lower and upper bounds of
the energy trajectory of subcluster m at time t, respectively.
Pm(t) is the total charging power of subcluster m at time t.
Pmin ,m(t) and Pmax ,m(t) are the lower and upper limits of the
charging power of subcluster m at time t, respectively. nm is
the number of electric vehicles belonging to subcluster m at
time t. dmin ,m,l(t), dmax ,m,l(t) and Pmin ,m,l(t), Pmax ,m,l(t) are
the lower and upper bounds of the energy trajectory and the
lower and upper bounds of the charging power of the L-th
electric vehicle of subcluster m at time t, respectively.

Because the electric vehicles belonging to the same
subcluster will leave at the same time, the cluster charging
model is equivalent to the single charging model; that is, the
charging strategy of the subcluster meeting the cluster
charging model must follow a certain energy allocation

mode. For the cluster charging amount set
s � [s1, s2, . . . , st, . . . sT] that satisfies the cluster charging
model, there must be at least one charging power distri-
bution method so that all electric vehicles in the cluster are
fully charged before leaving under the condition that the
single charging model is satisfied. According to the cluster
charging model, the following inequality holds for
n � 1, 2, . . . , T.

􏽘
n

t�1
􏽘

l∈ l|tout�t{ }

dl ≤ 􏽘
n

t�1
st ≤ 􏽘

n

t�1
􏽘

l∈ l|tin�t{ }

dl, (6)

where dl is the charging power demand of the L-th vehicle.
First, when n � 1, the inequality is transformed into

􏽘

l∈ l|tout�1{ }

dl ≤ s1 ≤ 􏽘

l∈ l|tin�1{ }

dl. (7)

Using the strategy of giving priority to charging the
electric vehicles that leave first, the charging plan for all
electric vehicles at departure time tout � 1 can be set as

Pl1 � dl, (8)

so that it can be filled before leaving. (erefore, when
n � 1, the proposition holds.

It is assumed that, for all time points m, the electric
vehicles that leave before time point m can be fully charged
within the cluster by adopting a strategy of charging the
electric vehicles that leave first. (at is, there is at least one
charging plan set that satisfies the following equation:

􏽘

tout

t�tin

Plt � dl, ∀l ∈ l|tout ≤m􏼈 􏼉,

Plt ≥ 0, ∀t � tin, . . . , tout,∀l ∈ l|tout ≤m􏼈 􏼉.

(9)

(e result is as follows:

􏽘

m

t�1
􏽘

l∈ l|tout�t{ }

dl ≤ 􏽘
m

t�1
st, (10)
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Figure 1: Energy boundary model of single electric vehicle.
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where 􏽐
m
t�1 st − 􏽐

m
t�1 􏽐l∈ tout�1{ }dl represents the total amount

of charge of the electric vehicle whose departure time is after
the time point m. Due to the strategy of charging the electric
vehicle that leaves first, once the electric vehicle at the de-
parture time point m has been fully charged, the electric
vehicle at the departure time point m + 1 will be prefer-
entially arranged to be charged.

When

􏽘
m

t�1
st − 􏽘

m

t�1
􏽘

l∈ l|tout�t{ }

d1 ≥ 􏽘
m

t�1
􏽘

l∈ l|out�m+1{ }

dl. (11)

(e electric vehicle whose departure time is m + 1 is
charged, and the electric vehicle with departure time point
m + 2 will be charged.

􏽘

m

t�1
st − 􏽘

m

t�1
􏽘

l∈ l|tout�t{ }

dl < 􏽘

l∈ l|tout�m+1{ }

dl. (12)

(en, the electric vehicle with departure time point m +

1 will be charged, and the total amount of charging is
􏽐

m
t�1 st − 􏽐

m
t�1 􏽐

l∈ l|tout�t{ }
dl.

When n � m + 1, because of

􏽘
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􏽘
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dl ≤ 􏽘
m+1

t�1
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it can be obtained as follows:

sm+1 ≥ 􏽘

l∈ l|out�m+1{ }

dl − 􏽘
m

t�1
st − 􏽘

m

t�1
􏽘

l∈ l|out�t{ }

dl
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (14)

(e above equations show that the charging plan sm+1
can meet the charging demand of the electric vehicle at the
departure time point m + 1.

􏽘

tout

t�tin

Plt � dl, ∀l ∈ l|tout ≤m + 1􏼈 􏼉,

Plt ≥ 0, ∀t � tin, . . . , tout,∀l ∈ l|tout ≤m + 1􏼈 􏼉.

(15)

Because the upper and lower limits of the cluster
charging power in the cluster charging mode will not exceed
the sum of the upper and lower limits of all electric vehicles
in the cluster, all charging strategies that meet the cluster

charging mode must have at least one power allocation
method so that the charging amount of the cluster at the start
and the single charging mode can meet.

3. Situational Awareness of Power Supply
Resources for Electric Vehicles

3.1. Situational Awareness Model of Electric Vehicle Power
Supply Resources. In the process of grid power resource
scheduling, it is necessary to extract the relevant factors of
electric vehicle demand change. (en, the situation is un-
derstood, the obtained information is integrated and clas-
sified, and finally, the situation is predicted, and the
development trend is predicted and judged. In this way, the
charging demand and power supply resources of electric
vehicles can be accurately grasped, and the corresponding
situation classification rules can be formulated so that the
power supply resources can be reasonably allocated
according to the real-time load status of the station area, as
shown in Table 1.

(e process of situational awareness mainly includes
three parts: (1) extracting the characteristic parameters of
situational awareness, preprocessing, and providing data
support for situational understanding and prediction; (2)
situational understanding, integrating, and classifying the
obtained information; and (3) making predictions and
judgments about the situation.

Based on the charging characteristics of the electric
vehicle, the characteristic parameters of the situational
awareness model are extracted, including the current
charging state of electric vehicle, the charging start time, the
charging time, and the charging pile usage interval time. We
quantify the indicators and then get the situational aware-
ness value, so as to reasonably dispatch the station resources.
According to the mined indicators, the original data are
collected, and the features are extracted to generate sample
sets. If the total number of samples is n and the number of
feature indicators is m, the sample matrix will be an m × n

matrix. (en, the training sample set is taken as the input,
and the value corresponding to the sample matrix is taken as
the training output, so as to train the integrated model.

3.2. Prediction of Electric Vehicle Load Situation Based on
Random Forest Algorithm. In this section, a situation pre-
diction model of electric vehicle power supply resources
based on stochastic forest algorithm is proposed, and the

Table 1: Classification rule of situation levels.

Situation
levels

Situational
range Regional status Detailed description

1 [0, 0.2) Unobstructed Resources can fully meet the charging needs of electric vehicles

2 [0.2, 0.4)
Basically

unobstructed
(e resources can basically meet the charging needs of electric vehicles, and

occasionally, there is insufficient supply

3 [0.4, 0.6) Light congestion Under normal circumstances, the resources can meet the charging needs of electric
vehicles, but sometimes there will be insufficient supply

4 [0.6, 0.8)
Moderate
congestion (e resources can meet the charging needs of electric vehicles in most cases

5 [0.8, 1.0] Serious congestion Resources are basically unable to meet the needs of electric vehicles and other loads
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situation prediction of electric vehicle charging demand and
regional power supply resources in the power supply station
is made.

(e decision tree of the random forest algorithm gen-
erally adopts the Classification and Regression Tree, which
can effectively deal with large data samples and solve
nonlinear problems. For classification problems, CART
(Classification and Regression Tree) uses the Gini index as
the attribute measure. (e smaller the Gini coefficient is, the
more accurate the classification effect will be. (e Gini
coefficient is defined as shown in

Gini � 1 − 􏽘
c

i�1
[p(i|t)]

2
, (16)

where p(i|t) is the probability that the test variable t belongs
to the sample of class i, and c is the number of samples.
When Gini � 0, all samples belong to the same class.

GiniA(C) �
C1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

C
Gini C1( 􏼁 +

C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

C
Gini C2( 􏼁. (17)

If the attribute satisfies a certain purity, the decision tree
generation algorithm divides the sample into the left subtree;
otherwise, it divides the sample into the right subtree. (e
CART decision tree generation algorithm selects the split
attribute rules according to the principle of the smallest Gini
index. Assuming that the attribute A in the training set C

divides C into C1 and C2, the Gini index of the given
partition C is shown in

GiniA(C) �
C1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|C|
Gini C1( 􏼁 +

C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

|C|
Gini C2( 􏼁. (18)

For the regression problem, CART selects the optimal
bisection cut point based on the sum of squared errors and

selects the optimal division attribute A and cut point c. (e
way to get it is as follows:

minA,s min 􏽘
xi∈R(A,s)

yi − c1( 􏼁
2

+ min 􏽘
xi∈R2(A,s)

yi − c2( 􏼁
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(19)

As an integrated algorithm based on decision trees, in
the process of building a random forest model, different
training sets are constructed to train each decision tree, thus
increasing the difference between the classifiers and making
the classification performance of random forest algorithm

Random 
Sampling

……

Decision Tree 2Decision Tree 1 Decision Tree n

Training set 1 Training set 2 …… Training set n

Training set

Figure 2: Random forest training process.

Data pre-processing

Start

Construct training sample set and prediction input set

Training a random forest model using a training sample set

Prediction using trained models

Get predicted 
results

End

Figure 3: Forecasting process.
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surpass that of a single decision tree algorithm. Figure 2
shows the random forest training process. To reflect the
randomness of the random forest model, the construction of
the training set includes the following two key processes.

(e random forest algorithm performs random sam-
pling with replacement on the original training dataset. We
construct a subdataset, the sample size of which is consistent
with the original dataset. Samples in different subdatasets
can be repeated, and samples in the same subdataset can be
repeated. We generate a decision tree for each subset of data.

(e splitting process of each decision tree in the random
forest model only uses some of all the candidate features.(e
random forest algorithm first randomly selects a certain
number of features from all the features to be selected and
then uses the decision tree generation algorithm to select the
optimal feature for splitting among the randomly selected
features.

(e specific implementation steps of the random forest
algorithm are as follows:

(a) Preprocess the data required for forecasting. And the
missing data are filled in by linear interpolation. (e
training sample set is divided according to the needs
of the prediction algorithm.

(b) Training the random forest algorithm by using the
training sample set. According to the parameter
settings of the random forest algorithm, several
decision trees are built, and the prediction model of
the random forest is completed.

(c) Use the characteristic data of the forecast samples to
make the forecast. In the model, the characteristic
data of the predicted samples will be followed by
multiple decision tree prediction processes. (e
random forest algorithm will summarize and output
the results to obtain the prediction results.

(e flowchart of short-term electric vehicle charging
load prediction based on random forest algorithm is shown
in Figure 3.

At present, with the continuous improvement of electric
vehicle data and other external data collection and storage
level, there are many functions to choose from. (erefore, it
is impossible to find all the features to participate in the
fitting of the model, which may lead to problems such as
overfitting of the model and reduce the accuracy of pre-
dictions. (erefore, considering the current research status
of load forecasting, it is necessary to analyze the factors that
affect the trip behavior of electric vehicles. (is paper
summarizes the following factors involved in the con-
struction of feature engineering:

3.2.1. Historical Data of Electric Vehicle Charging Load.
(e charging load of electric vehicles in the group also has
the continuous characteristics of other conventional loads,
and the historical load data closer to the predicted time can
better reflect the load change trend. Of all the features, the
historical data of load often have the greatest influence on
the accuracy of the load model. (e load history data of
electric vehicle are selected as the input of the model, and the

built feature set determines the accuracy of the load fore-
casting model to a great extent.

3.2.2. Meteorological Factor Data. Meteorological factor
data are temperature, humidity, and weather conditions.(e
influence of temperature and humidity on the behavior of
electric vehicles is mainly reflected in the use of onboard air
conditioners of electric vehicles, which will increase the
power consumption of vehicles. (erefore, the influence
reflected in the EV charging load is a delay in the falling time
of the charging curve, which takes longer time to completely
charge the EV battery. (e weather often affects road
conditions and driving behavior of electric vehicles. Vehicles
that tend to drive in bad weather also consume more energy.

3.2.3. Date Type. (e types of appointments are mainly
divided into working days and weekends. In general, traffic
congestion will be caused during peak hours on weekdays,
which will affect the driving behavior of electric vehicles,
increase the electricity consumption, and also affect the
charging time of electric vehicles, thus affecting overall
performance.

3.2.4. Time Type. (e charging load of group electric ve-
hicle, like the conventional load, has certain periodicity.
(erefore, the difference of load capacity in this type at a
certain time of day will not be particularly great. (is is
mainly due to the fact that the charging characteristics of
group electric vehicles show a certain regularity. (erefore,
the type of torque can also be used as an optional input
feature.

4. Study Case and Simulation Results

In this paper, the charging piles in a certain area are selected
as the simulation object. We assume that the number of
electric vehicles connected to the charging station in this
area is 300 and that the connected vehicles are only pure
electric vehicles. (e electric vehicle parameters use the data
in Table 2. We assume an EV charging efficiency of 99%.(e
charging pile is an AC charging pile, and the power selection
is set to 3.5 kW and 7 kW; the two are randomly generated
with equal probability.

First of all, it is necessary to divide training data and
prediction data. (is paper selects the historical electric
vehicle charging load data, meteorological data, date type
data, and time type data of Shenyang City from November
15, 2021, to November 21, 2021, to construct the training
sample set, forecast the load from November 22, 2021, to
November 28, 2021, and compare the forecast results with
the actual values to verify the effectiveness of the method.

(e model input includes the following: load data at the
moment before the time to be predicted, load data at the
previous two moments, and load data at the same moment
last week, temperature, humidity, wind direction, wind
speed, weather condition information, date type, and time
type.
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(e linear interpolationmethod is used to preprocess the
numerical anomaly data of time series. It is assumed that a
few continuous data points show a linear variation. It mainly
adopts the mean value of the nonmissing time series data
before and after as the repair value of the missing data. It is
suitable for scenes with high data acquisition quality and few
missing values.

(ere are different processing methods for missing time
series data in different positions, mainly including beginning
and end missing and the middle missing. For the missing
data in the first and last numbers, the nonmissing value
closest to the first and last numbers will be used to fill in.(e
calculation formula is as follows:

a1 � a2 � · · · � as,

aN � aN−1 � · · · � ae,
(20)

where as is the nonmissing value closest to the first position
in the daily loading curve, and ae is the nonmissing value
closest to the last position. N is the data dimension of a
single load data.

For the abnormal data of time series, this paper adopts
the nearest-neighbor filling method. In the case of missing
intermediate data, if single data are missing and the data of

its front and rear load point are known, the corresponding
data can be filled by line interpolation; that is, the average
value of the load value before and after the time is used for
filling. If there are missing points, the linear expressions are
calculated for the front and back nonmissing data points,
and all the missing data points are calculated proportionally.
(e calculation formula is as follows:

ax � am +
an − am

n − m
(x − m), (21)

where ax is the missing data, and am and an are the nearest
nonmissing values before and after consecutive missing data.

Figure 4 shows the prediction results based on the
random forest algorithm on weekdays and weekends. (e
trend in the figure can also see the travel habits of electric
vehicles in this area. After 8:00 p.m., it gradually entered the
charging peak, reached its peak around 11:00 p.m., and
maintained a high level at around 5:00 a.m. Some vehicles
have been charged, and the load begins to drop. It reaches a
valley value around 8:00 a.m. and then continues to climb,
with a small peak appearing at around 12:00 noon and then
dropping.

In order to verify the effectiveness and superiority of the
random forest algorithm for electric vehicle load forecasting,

Table 2: Pure electric power electric vehicle parameter model.

No. Model name Calibration mileage (km) Battery capacity (kWh) Power consumption per 100 kilometers (kWh/100 km)
1 BYD E9 506 64.8 15.8
2 Xiaopeng P5 460 55.9 14.6
3 WULING MINIEV 170 13.9 10.5
4 BJEV EC5 403 48 14.5
5 GAC AION S 410 58.8 13.9
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Figure 4: Forecasts for different time types. (a) Weekdays. (b) Weekends.
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the other three algorithms are selected for forecasting, and
the forecasting effect was compared with that of the random
forest algorithm. (ey are support vector regression ma-
chine, Bagging regression machine, and stochastic gradient
descent regression.

(e prediction performance of the algorithm was
evaluated using mean absolute percentage error (MAPE)
and mean square error (MSE). (e calculation formulas of
MAPE and MSE are shown in following equations:

δ �
1
N

􏽘

N

1

Pi
′ − Pi

Pi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%, (i � 1, 2, . . . , N), (22)

ε �
1
N

􏽘

N

i�1
Pi
′ − Pi( 􏼁

2
, (i � 1, 2, 3, . . . , N), (23)

where Pi
′ is the predicted load value at the time i predicted by

the algorithm. Pi is the actual load value at the time i
moment of the day. (e smaller δ and ε are, the more ac-
curate the prediction effect of the algorithm is.

Table 3 shows the statistics of load forecasting error of
each forecasting algorithm. Among all experimental algo-
rithms, the random forest algorithm has the smallest pre-
diction error. It shows the effective load forecasting ability of
electric vehicle. At the same time, horizontal comparison can
be made, which shows that the method adopted in this paper
can effectively improve the prediction accuracy of electric
vehicles.

5. Conclusions

(is paper analyzes the basic user behavior characteristics of
electric vehicle load and establishes a single electric vehicle
charging energy boundary model and a clustering classifi-
cation model. A random forest algorithm-based electric
vehicle load situation prediction method is proposed. (e
situational awareness results of the dispatch able resources in
the power supply area are divided into sample sets and
trained. Compared with other methods in the field of short-
term load forecasting, the validity and superiority of the
random forest algorithm for electric vehicle load forecasting
are verified, and the charging performance and load fore-
casting accuracy of electric vehicles can be effectively im-
proved. (e following points can be explained by the
simulation example.

(a) According to the usage habits of electric vehicle
users, the travel model of electric vehicles is estab-
lished, and then, themathematical model of charging
behavior of electric vehicles clusters is established,
and its correctness is proved. Aiming at the adverse
impact of electric vehicle disorderly access on power
grid dispatching, and considering the changing

characteristics of both the supply and demand sides,
a situation awareness method is proposed to rea-
sonably evaluate and forecast the power supply
situation.

(b) From a data-driven point of view, a method of
electric vehicle load forecasting based on random
forest algorithm is proposed, and the training set is
constructed, which improves the accuracy of electric
vehicle charging load forecasting. Moreover, the
actual bearing capacity of the power supply area can
also be taken into account while meeting the needs of
users to the maximum extent.
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