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Te study proposes a fast fexible direct power fow solution for radial distribution systems and a fast fexible direct weakly meshed
power fow solution for weakly meshed distribution systems. Te algorithm is based on the direct forward sweep power fow
solution, which is an updated version of the backward/forward sweep solution. Te fast fexible direct power fow uses a unique
conversion matrix (CM) to rapidly determine the power fow solution. Te inverted conversion matrix and its slide-modifed
matrix are used to solve the power fow problem in a single forward sweep step, which is a novel feature of this work. To ensure the
invertibility of the conversion matrix, it is constructed to have a small condition number and a determinant of minus one, and all
of its eigenvalues must be equal to that of minus one. Additionally, by modifying the conversion matrix to accommodate the loop
branch using the break-point idea, a new weakly meshed conversion matrix (WMCM) is generated with the same following
modifcation as for the radial network and employed in the fast fexible direct weakly meshed power fow (FFDWMPF) solution
for the weakly meshed distribution network. Te usage of a single matrix in the power fow solution and advanced direct
techniques decreases the number of iterations and CPU execution time when MATLAB programming is executed. Furthermore,
the proposed method is fexible enough to incorporate any changes in the radial or weakly meshed distribution system just by
incorporating the changes in the CM and WMCM for any radial or weakly meshed system. Moreover, the robustness of FFDPF
and FFDWMPF is evaluated under various loading scenarios on balanced radial and weakly meshed distribution networks.
Finally, to validate the proposed algorithm, the proposed strategy is applied to numerous balanced and unbalanced
distribution systems.

1. Introduction

Analyzing the power fow of the distribution system is
crucial to understanding its behavior. Te power fow study
provides the steady-state value for the bus voltage and angle
on an unspecifed bus. Tis bus voltage and angle data assist
in determining the total system parameters in the power
distribution network, such as power fow (real and reactive)
and total line loss, which are critical for system stability
analysis. Furthermore, the modern smart grid faces the
challenge of collecting instant bus parameters (that is, the
magnitude and angle of bus voltage) through sensors [1]. To
fully meet the operational and planning requirements of
modern distribution systems, a robust, fast, and fexible
power fow technique is required.

Numerous solutions to the power fow problem have
been proposed since the mid-nineteenth century. Initially,
Dusten [2] introduced the power fow using a digital ap-
proach. Ward and Hale [3] successfully implemented this
work. Following that, most power fow techniques solve
power fow problems using the Ybus admittance matrix and
the Gauss–Seidel iterative method. Due to the difculties
associated with convergence, these methods have been
replaced in power fow solutions for the power system’s
primary transmission line by Newton–Raphson (NR) [4],
decouple [5], and fast decouple [6] techniques. Tese
updated methods are highly efcient for primary trans-
mission lines, but inefective for distribution system power
fow solutions. Since the distribution system has distinct
characteristics from the transmission line of the power
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system, the characteristics of the distribution system are as
follows:

(i) Te distributed line has a high r/x ratio
(ii) Transmission lines are highly looped, whereas

distribution lines are radial and weakly meshed
(iii) Because the loads on the phases are not equal, the

distribution system is naturally unbalanced,
whereas the transmission system is naturally
balanced

As a result, numerous solution techniques for the power
fow (PF) in the distribution system have been proposed by
researchers. Researchers have suggested using modifed NR
[7, 8] and fast decouple [9] methods to solve PF solutions of
the distribution system in the frst research stage. Moreover,
recently, a modifed version of the NR with the concept of
trust region has been used to solve PF for an unbalanced
distribution system with a shorter CPU execution time [10].
In addition to that, Liu et al. [11] introduced the NR method
to solve the sequential PF solution for the AC/DC microgrid
for an unbalanced radial distribution system. However, these
methods require more time-consuming derivative calcula-
tions of the Jacobian matrix. In some cases, the optimiza-
tion-based power management system is used for the PF
solution for the hybrid AC/DCmicrogrid [12]. However, the
solution to the optimization problem for power manage-
ment systems requires a difcult calculation, and the ac-
curacy of the result is not satisfactory. Terefore, most of the
researchers are sticking to the rule-based PF solution. In
rule-based PF solution, the backward/forward method is
used most popularly for PF solution of distribution systems.

Te popular backward/forward method has evolved in
subsequent stages and continues to evolve to the present day.
Te PF problem is solved using the straightforward KCL-
KVL technique in this approach. Te backward sweep is
used to calculate branch currents, while the forward sweep is
used to calculate bus voltages. To begin with, Shirmo-
hammadi et al. [13] successfully implemented the complete
BFSM for radial and weakly meshed radial systems using the
compensation technique. Te weakly meshed system is
converted to a radial system by breaking the loop branch,
and the injected current at the break point is calculated using
the compensation technique. Additionally, the system is
solved using the BFSM as a radial system. Additionally, an
enhanced version of this method is used to solve an un-
balanced feeder in real time [14]. Te method described in
[13] is repeated and slightly modifed in [15, 16]. In these
studies, simple algebraic equations (that is, KCL and KVL)
are used to solve the BFSM for the solution of PF of an
unbalanced distribution system [15, 16]. In [17], the PF
solution for the entire practical unbalanced distribution
system is developed using an algebraic equation and the
admittance matrix. Additional modifcations to [13] are
made in [18, 19] for the loop system. Wu and Zhang and Ju
et al. [18, 19] solve the PF solution using loop-based
mathematical equations. Augugliaro et al. [20] introduce a
PF technique for weakly and radially distributed networks.
Tis study uses some algebraic equations to calculate the bus

voltage through a backward sweep. Again, Dilek et al. [21]
replicate another efective PF technique for the heavily
weakly meshed system, in which the new stepping load
method is used to address the BFSM’s convergence problem
at higher loading rates. Similarly, in [22], the generalised
BFSM is used to solve the problem of a highly unbalanced
radial and weakly meshed distribution system. In [22–24],
the authors follow the conventional BFSM to solve the PF
analysis for the unbalanced distribution system in the
presence of distributed generation (DG). In [23], the author
proposed the power summation method in the analysis of
the BFS PF for an unbalanced radial distribution systemwith
the incorporation of DG. Similarly, in [24], the authors solve
the PF for the unbalanced radial distribution with the ad-
dition of optimal incorporation of DG with its uncertainty
characteristics. In addition to that, the BFSM and NR
methods are used together for the PF solution for the grid
and the islanded condition of unbalanced loop systems in
[25].

In all the studies mentioned, they are well equipped to
fnd the result of the PF solution with greater accuracy.
However, these techniques have some common faws. All
BFSM-based PF solutions require careful observation to
determine the load path or unique branch numbering to
perform a backward/forward sweep. Furthermore, to obtain
the PF solution, the weakly meshed system requires com-
pensation techniques and complex loop-based equations to
be solved, which is a difcult task. In addition to that, in
conventional BFSM, any bus voltage at the receiving end of a
distribution system is calculated as a function of its sending
end bus voltage. Tis chain work method signifcantly slows
down the convergence speed of PF solutions.

Tis limitation of traditional BFSM has been overcome
by BFS techniques based on matrix formation. Te BFS
technique based on matrix formation is described in
[26–38]. Using the substation voltage (that is, the root node)
and the branch voltage drop, the bus voltage is calculated
(that is, the product of the branch current and the branch
impedance). Te most widely cited matrix-based DLF
technique is described in [25], and this method is imple-
mented for the PF solution of an unbalanced distributed
system with DG integration in [26]. Also, the modifed form
of the DLF method is used for the PF solutions for the AC
island microgrid in the radial distribution system in [27].
Te DLFmethod performs a backward-to-forward sweep on
two matrices to obtain the PF solution for both radial and
weakly meshed distribution systems. Te matrix structure
eliminates the tedious task of numbering branches. How-
ever, matrix formation requires determining the number of
load paths between the source and the load end, which is a
difcult task when dealing with an extensive network or
when reconfguring a network. Additionally, the two ma-
trices require diferent works to form for each type of dis-
tribution network (radial and weakly meshed). When two
diferent matrices are involved, the calculation step is in-
creased. Although the iteration is optimal, there is a slight
increase in CPU time. In [29], a 3-phase PF technique is
introduced. Tis methodology uses the K matrix and the
branch impedance matrix to perform the backward and
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forward sweep to obtain the PF solution. Te formation of
the K matrix, on the contrary, requires an additional two
matrix formations using graph theory, which is a difcult
task. Furthermore, in graph theory, a unique branch
numbering scheme is used to obtain the K matrix. Tis
method [29] is extended again to the weakly meshed net-
work using the compensation technique. However, the
compensation technique itself is a complicated and time-
consuming process. In [29], a fast and fexible radial PF
technique is proposed for the 3-phase unbalanced system
using the BFSM. In addition to that, a similar incidence
matrix method is used in the BFSM to solve the PF solution
for the 3-phase unbalanced radial distribution system with
high penetration of DG [30]. In these methodologies, only
one reconfguration matrix or one incidence matrix is re-
quired to perform the PF. Tis method uses the most
straightforward bus numbering scheme. Te bus numbers
are in ascending order, and the branch number is less than
the receiving end bus number. Finally, the line data must be
sorted in ascending order of branch number. However, the
BFS calculation requires more step calculations, increasing
the convergence speed and time-consuming task. Moreover,
this method is not implemented in a weakly meshed system.
An advanced PF technique is proposed for the unbalanced
multiphase system [32]. Tis method uses the load current
matrix and its transformation to obtain the branch current
matrix.Tis branch current matrix is used in BFSM to obtain
the PF solution. However, getting the branch current matrix
from the load impedance matrix in a backward sweep is a
complex task. Tis matrix formation is difcult in large
complex networks, and the treatment for weakly meshed
systems is not presented. Furthermore, some methods use
graphical methods to create matrices [33–35], which are
then used in the PF solutions of radial and weakly meshed
distribution systems. To solve the PF solution for the dis-
tribution systems, a single incidence matrix is used for radial
and two matrices for weakly meshed [33]. Six signifcant
matrices are used in [34] to solve PF solutions for radial and
weakly meshed distribution systems using BFSM. However,
the difcult task in these two methods is determining the
load path, and the need for the formation of a large number
of matrices is greater, which requires more iteration and
CPU time. Similarly, in [35], a special topological-order
matrix derived from graph theory is used to solve the PF
solution with BFSM in less time. On the contrary, this
method requires careful observation to form the topological
matrix in a series of steps. Montoya et al. [36] propose PF
solutions for a three-phase unbalanced distribution system
using an upper triangular matrix and the BFSM matrix.
However, this method necessarily requires the load path-
fnding work to form the upper triangular matrix with the
multistep calculation from backward-to-forward to perform
the PF, which increases the number of iterations required to
converge. In the next step, the more direct forward approach
is introduced [37, 38]. Tese direct methods are derived
from the BFSM and have a faster converge rate with less
CPU time. In [37], a load impedance matrix is proposed,
which represents the topological structure of the radial
network calculated from the set theory. Furthermore, the

load impedance matrix is used only in the direct forward
method for the PF solution. Tis method is implemented for
both radial and weakly meshed distribution systems.
However, the task of constructing the set of branch im-
pedances for each load path (i.e., the path from the source
node load) is a difcult one. Again, the intersection of the
branch impedance sets is required to fnd the branch cur-
rent, which helps to fnd the bus voltage in a forward sweep.
Tis is computationally signifcant. Similarly, GhatakMu-
kherjee [38] presented a direct forward approach with only a
forward sweep with the help of a unique pathmatrix. Despite
the fact that the convergence rate and CPU time are ex-
cellent, forming the path matrix directly from the network
topology is a difcult task for both complex radial and
weakly meshed networks.

As a result of the abovementioned literature review, it is
clear that there is room for research in developing a fast,
fexible, and direct-forward-sweep PF method for radial and
weakly meshed distribution systems as the modern power
system requires more rapid and fexible PF solutions to
accommodate signifcant work such as innovative grid de-
velopment, network expansion, and reconfguration.

Tis study proposes a fast, fexible direct approach PF
(FFDPF) solution for radial and weakly meshed distribution
networks to address the needs mentioned above. Tis
FFDPF technique is based on a single novel CM, which
enables the direct forward sweep method to be used in the
FFDPF analysis. A simple bus numbering scheme is required
to create the CM.Te CM captures the topological structure
of the distribution network, allowing easy change of the CM
for network expansion and reconfguration. CM inversion is
also required for PF calculation in the FFDPF solution. In a
single step, the inversed CM and its transpose are multiplied
by the diagonal impedance matrix to obtain the voltage drop
matrix for each bus connected to the substation bus. Tis
voltage drop is subtracted from the substation voltage to get
the bus voltage in a single forward step. Te only forward
sweep step cannot be classifed as a BFS method, and this
proposed method is what this work claims to be novel. Tis
method employs minimal step and matrix computations.
Terefore, it converges faster and consumes less CPU time
during execution.

Another novel work is implementing a fast fexible direct
weakly meshed power fow (FFDWMPF) solution for a
weakly meshed distribution system with slide changes in the
conversion matrix. Additionally, the proposed method
demonstrated a high level of robustness under higher
loading conditions due to the matrix calculation in the al-
gorithm. To validate the algorithms of both FFDPF and
FFDWMPF, these algorithms are applied to a variety of IEEE
standard radial and weakly meshed systems (that is, bal-
anced 33-bus and 69-bus and unbalanced 10-bus and 25-bus
radial and weakly meshed distribution systems).

Te remaining sections of the study are divided into the
following sections: Section 2 discusses three-phase line
modeling; Section 3 discusses power fow formulation;
Section 4 discusses power fow formulation for weakly
meshed systems, Section 5 discusses results and discussion,
and Section 6 discusses conclusions.
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2. Three-Phase Line Modeling

Te three-phase line model extends single-phase trans-
mission into a three-phase line section. Figure 1 illustrates a
branch section of a three-phase line. Carson’s rule can be
used to calculate the parameters of any line connecting two
buses. After that, Korn’s reduction technique is applied to
eliminate the neutral impedance and phase-to-neutral im-
pedance, and the modifed line impedance matrix of di-
mension 3× 3 is obtained [26], which is represented as

Zabc �

Zaa n Zab n Zac n

Zba n Zbb n Zbc n

Zca n Zcb n Zcc n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where Zaa n, Zbb n, and Zcc n are represent the self-im-
pedance and Zab n, Zbc n, and Zca n are the mutual im-
pedances in phase a, b, and c. Now, the bus phase voltages,
line current, and line impedance of the line section can be
represented in the equation below:

Va

Vb

Vc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

VA

VB

VC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −

Zaa n Zab n Zac n

Zba n Zbb n Zbc n

Zca n Zcb n Zcc n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

IAa

IBb

ICc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where VA, VB, VC and Va, Vb, Vc are the sending and re-
ceiving end bus voltage of the 3-phase line sections for each
phase. Furthermore, IAa, IBa, and ICa are the line section
current for phase A, B, and C, respectively. In the case of a
missing phase, the row and column elements of the cor-
responding phase in the impedance matrix must be flled
with zeros. For example, if phase C is absent, the line section
impedance matrix is denoted as the following equation:

Zabc �

Zaa n Zab n 0

Zba n Zbb n 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

3. Formulation of Power Flow

Te proposed FFDPF methodology is based on the simple
formulation of the CM. It represents the complete con-
nection between the sending and receiving end buses of the
distribution system under consideration. Te CM is formed
after applying the simple bus numbering rule in any dis-
tribution network, which is a simple work compared with
the complex numbering, load pathfnding, and the number
of buses ahead fnding, which helps in reducing the ob-
servation work and provides better fexibility. Te next step
is the inversion of the CM matrix to obtain the corre-
sponding two slide modifcation matrices and multiply them
by the diagonal branch impedance matrix. Tis multiplier
product matrix is againmultiplied by the load current matrix
to obtain the voltage dropmatrix for the diferent buses from
the substation bus. Te voltage drop matrix is directly

subtracted from the substation-rated voltage to obtain the
corresponding updated bus voltages. Furthermore, the load
current matrix is represented by the diagonalised complex
conjugate of complex load power and bus voltages to reduce
the BFSM to a direct forward method. So, all this helps to
obtain the voltage drop matrix for the diferent buses from
the substation bus in a single step. Tis single step reduces
the forward and backward steps to a single forward step,
which helps to fasten the convergence rate and save CPU
time. Apart from that, the CM provides the solution for the
weakly meshed system with sliding modifcation to include
the meshed branch of the network. Te proposed method is
frst implemented on a balanced system as a single-phase for
better understanding. Later, this work is implemented for
the 3-phase systems. Te derivation of the proposed work
using the CM matrix and the procedure of the PF is pre-
sented in the following sections.

3.1. Flexibility and Simplicity in Bus Numbering and Line
Section. Te radial and weakly meshed networks are con-
fgured uniquely, with the distribution substation serving as
the source bus. Te substation serves as the root node
(source bus), from which all power is distributed to all load
ends through the lateral and sublateral feeders of the dis-
tribution network. According to most reviews of the liter-
ature, a complex bus numbering rule is required to perform
power fow, which presents difculties for network recon-
fguration, mesh formation, and network extension for
distribution system planning. As a result, this proposed load
fow method for radial and weakly meshed distribution
systems adheres to the simple bus numbering rule. Te
proposed FFDPF method for radial networks adheres to the
simple bus numbering rule, which states that the receiving
bus number should be greater than the sending end bus,
which results in an overrepresentation of bus numbers in
ascending order in the lateral and sublateral feeders. Te
following step renumbers the branch numbers by one less
than the receiving end. Now, as specifed in [30], we arrange
the branch numbers in ascending order and use them as
input line data for programming. Tis straightforward bus
numbering scheme is illustrated in Figure 2 for the six-bus
radial distribution network.

3.2. Formulation of Confguration Matrix and Its Role in PF.
Only the CMmatrix is required for the FFDPF solution. Te
CM would be in charge of implementing any necessary
changes to the existing structure or the addition of new
networks. FFDPF requires only the results of the CM; no
additional matrices are required for the direct forward sweep
method. CM is a square matrix with the dimension of
NB×NB. Algorithm 1 is used to construct the CM for a
balanced distribution system.

Algorithm 1 can be summarised in a mathematical
representation of the entry of elements into CM as presented
in the following equation:
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CMrow(i) �

− 1, i, if i is either
a − sending bus i,

b − dead − end bus i,


1, j, k, l, . . . ,
if j, k, l, . . . are receving end buses

physically connected to bus i,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Algorithm 1 should be followed for the 3-phase unbal-
anced system with an increment in the dimension of the CM
by just multiplying three by the dimension of the balanced
CM. If any bus is missing for any phase or is a dead-end bus,
the only entry in its corresponding row is zero’s diagonal entry
similar to equation (3). For example, the resultant CM is as
follows when the CM formation algorithm is applied to the
six-bus radial distribution system (Figure 2):

CM �

− 1 1 0 0 0 0

0 − 1 1 0 0 0

0 0 − 1 1 0 1

0 0 0 − 1 1 0

0 0 0 0 − 1 0

0 0 0 0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

3.2.1. Signifcance of CM. Te CM is a nonsingular (i.e.,
nonzero determinant matrix), and the condition number
(CN) is small (i.e., 8.5048 for the CM of a 6-bus system).Te
condition number is understood as, if Ax= b, then the
maximum ratio of the relative error in x to the relative error
in b. Te condition number is small for CM, which signifes
the condition of a well-conditioned matrix. Te CM matrix
consists of only three elements minus 1, plus 1, and zero.
Terefore, if there is an increase in the loop number in the
system, there is only an extra addition of the column number
and a row number in the WMCM. In addition to that, there
is a change of minus 1 and 1 in the newly added column of
theWMCMmatrix corresponding to the row of the adjacent
bus. As a result of the new addition of rows and columns, the
matrix dimension of WMCM is increased. Tis change in
the matrix does not change much in the condition number
(CN) or the matrix’s nonsingularity (i.e., the eigenvalue and
the determinant are always minus 1 for CM). As a result, the

VA

VB

VC

VN

Va

Vb

Vc

Vn

Zan Zbn

Zcn

Zaa

Zab

Zbc

ZacZbb

Zcc

Znn

Figure 1: Tree-phase branch section model.
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Figure 2: Six-bus balanced radial distribution system.
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CM matrix’s inversion is always possible, and a unique
solution is possible even for the more extensive system.

3.3. Path Matrix (PM). After fnding the CM, the path
matrix is formed by inverting the CM and removing the frst
column and frst row of the inverse confguration matrix.
Te resulting path matrix is depicted in the following
equation:

PM �

− 1 − 1 − 1 − 1 − 1

0 − 1 − 1 − 1 − 1

0 0 − 1 − 1 0

0 0 0 − 1 0

0 0 0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

3.4. Bus Voltage Calculation in Forward Sweep. Now, to
calculate the bus voltage, the bus voltage drop is subtracted
from substation bus in the single forward sweep step, which
is represented as follows:

V � Vrated  − [ΔV],

V � Vrated − [[Transpose(PM) × diagZ] ×[PM]] × IL ,

V2

V3

V4

V5

V6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Vrated −

Z12 Z12 Z12 Z12 Z12

Z12 Z12 + Z23 Z12 + Z23 Z12 + Z23 Z12 + Z23

Z12 Z12 + Z23 Z12 + Z23 + Z34 Z12 + Z23 + Z34 Z12 + Z23

Z12 Z12 + Z23 Z12 + Z23 + Z34 Z12 + Z23 + Z34 + Z45 Z12 + Z23

Z12 Z12 + Z23 Z12 + Z23 Z12 + Z23 Z12 + Z23 + Z36

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

IL2

IL3

IL4

IL5

IL6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

Te voltage drop matrix is a positive matrix because the
multiplication of the two negative matrices (that is,
Transpose(PM) and PM) is resulted as the positive matrix.
Also, due to the positive diagonalise impedance matrix, the

complete voltage drop is positive. In the next step, the load
current can be represented in terms of the load complex
power and voltage. Te voltage equation is shown in the
following equation:

V � Vrated − [[Transpose(PM) × diagZ] ×[PM]] × diag(S)
∗

 
1

V
∗ , (8)

V2

V3

V4

V5

V6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Vrated −

Z12( S
∗
2 Z12( S

∗
3 Z12( S

∗
4 Z12( S

∗
5 Z12( S

∗
6

Z12( S
∗
2 Z12 + Z23( S

∗
3 Z12 + Z23( S

∗
4 Z12 + Z23( S

∗
5 Z12 + Z23( S

∗
6

Z12( S
∗
2 Z12 + Z23( S

∗
3 Z12 + Z23 + Z34( S

∗
4 Z12 + Z23 + Z34( S

∗
5 Z12 + Z23( S

∗
6

Z12( S
∗
2 Z12 + Z23( S

∗
3 Z12 + Z23 + Z34( S

∗
4 Z12 + Z23 + Z34 + Z45( S

∗
5 Z12 + Z23( S

∗
6

Z12( S
∗
2 Z12 + Z23( S

∗
3 Z12 + Z23( S

∗
4 Z12 + Z23( S

∗
5 Z12 + Z23 + Z36( S

∗
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
V
∗
2

1
V
∗
3

1
V
∗
4

1
V
∗
5

1
V
∗
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)
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where diagZ is the diagonal matrix of the branch impedance,
“IL” is the load current matrix, and diag(S∗) is the diagonal
matrix of the complex conjugate of the complex load power,
which are represented by the following equations,
respectively:

diagZ �

Z12 0 0 0 0

0 Z23 0 0 0

0 0 Z34 0 0

0 0 0 Z45 0

0 0 0 0 Z36

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

IL �

IL1

IL2

IL3

IL4

IL5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

diag S
∗

(  �

S
∗
2 0 0 0 0
0 S
∗
3 0 0 0

0 0 S
∗
4 0 0

0 0 0 S
∗
5 0

0 0 0 0 S
∗
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

At last, the solution of the PF can be obtained by solving
the following equation iteratively:

V
k+1

� Vrated − [Factor matrix]
1

V
k

 . (13)

3.4.1. Convergence Criteria of FFDPF. Tere should be a
convergence criterion for the FFDPF algorithm. Te con-
vergence criteria of FFDPF is the diference between the two
successive iterative complex voltages, and its absolute value
must be less than the tolerance value of “ε.” Te convergence
criteria are stated below in equations (14) and (15). Te
selection of the epsilon value is important in determining the
convergence rate of the algorithm. Because epsilon is the
diference between the two consecutive voltage values of the
two consecutive iterations, the epsilon decides up to how
many decimal points of accuracy is required. On the basis of
the need for accuracy, the epsilon value will be decided. For
instance, if up to three decimal points of accuracy are re-
quired, the epsilon value will be 0.0001:

ΔVk+1
bus � V

k+1
− V

k
, (14)

max ΔVk+1
bus ≤ ε, (15)

where ΔVk+1
bus � voltage diference between the two consec-

utive iterations, k� kth iteration, and ε� convergence tol-
erance value.

3.5. Te Algorithm for the Radial Distribution Network for
FFDPF. Algorithm 2 summarizes the proposed FFDPF
method that can be used to solve the power fow solutions for
the radial distribution system.

3.5.1. Required Modifcation in Algorithm 2 for 3-Phase
Unbalanced System. Te proposed Algorithm 2 can be easily
implemented into the 3-phase unbalance system by
changing the dimension by 3 × (NB × NB). In the dimen-
sion of the next step, the PM dimension is turned into 3 ×

(NBR × NBR). On the contrary, the line impedance matrix
has a size according to the number of phases present in each
line branch section, similar to equations (1) and (3). Te
diagonal impedance matrix is the diagonalization of all
branch impedance matrices and its dimension 3 × (NBR ×

NBR). Similarly, the diagonalization of the complex power
matrix is the diagonalization of each load power at each bus
(that is, Sa 0 0; 0 Sb 0; 0 0 Sc ), which has the di-
mension of 3 × (NB − 1 × NB − 1). Te corresponding
Factor_matrix is obtained with a size of 3 × (NBR × NBR).
Te updated voltage vector matrix in equation (13) is of
dimension 3 × (NB − 1 × 1), which starts from the second
bus number. Te bus vector matrix is represented as
[V2a, V2b, V2c, . . . VNB a, VNB b, VNB c]

t, and the Vrated
matrix is defned as [V2rated a, V2rated b, V2rated c, . . .

VNB rated a, VNB rated b, VNB rated c]
t.

4. Formulation of the Power Flow for Weakly
Meshed Network

Open tie switches can sometimes cause loops in the distri-
bution network in crowded load areas. Weakly meshed dis-
tribution systems are those with such feeders.Te presence of a
tie switch improves the feeder voltage profle, but loop currents
make the system analysis more complicated. Te following
section discusses the changes that must be made to the CM to
create the WMCM and the extension of the proposed method
to handle weakly meshed systems. Tus, discussing the for-
mulation of the PF problem for the weakly meshed network is
essential. To handle a weakly meshed system, some modif-
cations to the CM are required. Te following section focuses
on this aspect as a continuation of the proposed approach.

4.1.WeaklyMeshedConversionMatrix (WMCM)and Its Role
in PF. Te frst step in bus numbering is to adhere to a
simple bus numbering rule that is analogous to the radial

(1) Make a square matrix with the required dimensions and fll in each element with zero.
(2) Substitute the ‘− 1’entries for all diagonal elements representing all sending end and dead-end buses.
(3) In each row, if the column index corresponds to an existing receiving bus, change the entry to 1.

ALGORITHM 1: Formation of CM.
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distribution network [30]. However, the branch that creates
the mesh in the weakly meshed network is numbered
randomly, as there is no need for proper numbering, i.e., left-
to-right numbering, after the nonmeshed branches are
numbered (i.e., the branch does not participate in mesh
formation). Te relationship between the NBR and NB is
indicated by the formula NBR� (NB − 1) +NL.

Steps to obtain the WMCM matrix are shown in
Algorithm 3.

4.1.1. Break-Point Concept. Most importantly, in the break-
point concept, an imaginary bus created by the loop branch
behaves like a receiving end bus for the two buses in which
the loop branch is connected [26]. However, the imaginary
receiving bus is denoted with a plus one and a minus one for
the two adjacent buses, respectively. Te mathematical
representation of the entry of elements into WMCM is
presented in equation (16), which is a summarised way of
forming Algorithm 3:

WMCMrow(i) �

− 1 i if i is either
a − sending bus i

b − dead − end bus i


1, j, k, l, . . . ,
if j, k, l, . . . are receiving end buses

physically connected to bus i,

± 1 and∓1, m,

if m is the imaginary bus acting like

receiving bus for busesp and q m( ) is connected,

in between the busp and q( ,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

After applying Algorithm 3 to the weakly meshed net-
work shown in Figure 3, the WMCM is as follows:

WMCM �

− 1 1 0 0 0 0 0

0 − 1 1 0 0 0 0

0 0 − 1 1 0 1 0

0 0 0 − 1 1 0 0

0 0 0 0 − 1 0 +1

0 0 0 0 0 − 1 − 1

0 0 0 0 0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Again, the WMPM can be derived from the WMCM
matrix just by an inversion of the WMCM matrix and
eliminating the frst row and frst column as shown in the
following equation:

WMPM �

− 1 − 1 − 1 − 1 − 1 0

0 − 1 − 1 − 1 − 1 0

0 0 − 1 − 1 0 − 1

0 0 0 − 1 0 − 1

0 0 0 0 − 1 1

0 0 0 0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Step 1: Apply the simple bus numbering rule to fnd the CM.
Step 2: Find the PM, transpose the PM, and diagonalise the branch impedance matrix.
Step 3: Calculate the factor matrix by multiplying the transpose of the PM and the diagonal impedance matrix, and then multiply by
the PM. At last, multiply the product with diagonal conjugate complex load power to obtain the Factor matrix.
Step 4: Start the iterative process by assuming that all bus voltages are equal to the substation-rated voltage.
Step 5: Update the bus voltage.
Step 6: Multiply the factor matrix and [1/V∗] matrix to get the voltage drop matrix of diferent buses from the source node and
calculate the bus voltage by subtracting the substation-rated voltage.
Step 7: Determine the absolute diference of bus voltage with the current iteration value and with pervious iteration value for all bus
voltages, and pick the maximum diference.

(i) If the diference is ≤ε
Solution achieved
Stop and terminate the FFDPF procedure.
Get the fnal bus voltage and branch current.

(ii) If not, use the result of this iteration (the bus voltage) to start the new one by returning to Step 5.

ALGORITHM 2: Formation of FFDPF.
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4.2. BusVoltage Calculation in Forward Sweep. Te next step
is to multiply the three matrices such as transpose of the
WMPM, diagonalise path impedance matrix, and WMPM,
to get the total branch path impedance matrix, which can be

again multiplied with the load current matrix to get the total
voltage drop matrix of each bus voltage from the substation
voltage, which can be mathematically represented as the
following equation:

ΔV

0
  � [[Transpose(WMPM) × diagZ] ×[WMPM]]

IL

0
 , (19)

ΔV1

ΔV2

ΔV3

ΔV4

ΔV5

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Z12 Z12 Z12 Z12 Z12 0
Z12 Z12 + Z23 Z12 + Z23 Z12 + Z23 Z12 + Z23 0
Z12 Z12 + Z23 Z12 + Z23 + Z34 Z12 + Z23 + Z34 Z12 + Z23 Z34

Z12 Z12 + Z23 Z12 + Z23 + Z34 Z12 + Z23 + Z34 + Z45 Z12 + Z23 Z34

Z12 Z12 + Z23 Z12 + Z23 Z12 + Z23 Z12 + Z23 + Z56 − Z56

0 0 Z34 Z34 + Z45 − Z56 Z34 + Z45 + Z56 + Z36

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

IL2

IL3

IL4

IL5

IL6

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Te change in bus voltage is represented as

V
k+1

0
  � V

k
rated  − [Transpose(WMPM) × diagZ] ×[WMPM]

IL

0
 . (21)

Here, the sum of the branch impedance of weakly
meshed (BIWM) matrix from the substation to bus is
denoted as

BIWM � [Transpose(WMPM) × diagZ] ×[WMPM] �
P Q

R S
 . (22)

By substituting the BIWM representation, equation (22)
is represented as

V
k+1

0
  � V

k
rated  −

P Q

R S

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
IL

0
 . (23)

As the zeroth row is present in the equation due to the
weakly meshed branch, to bring the matrix to the required
dimension, Korn’s reduction technique must be used to
remove the zeroth row (i.e., the number of buses in the

system) [37]. As a result, Korn’s reduction is applied to the
factor matrix. After that, equation (23) can be represented as

V
k+1

  � V
k
rated  − [P] − [Q][S]

− 1
[R]   IL  . (24)

Now, equation (24) can be represented with only the
complex conjugate of the load complex power and bus
voltage instead of load current as shown in equation (25).
Te resultant single forward step equation (26) is solved
iteratively to obtain the PF solution [37]:

(1) Build a square matrix of the required dimensions and fll each element with zero.
(2) Modify all diagonal elements with − 1 entries, representing all sending ends and dead-end buses.
(3) Now, the receiving end bus represents 1, corresponding to the sending end bus.
(4) For the loop’s column, change the loop element with a plus one and a minus one, or vice-versa for the two adjacent buses. In

between, the loop branch is connected.

ALGORITHM 3: Formation of WMCM.
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V
k+1

  � V
k
rated  − [P] − [Q][S]

− 1
[R]   × diag S

∗
(   ×

1
V
∗ , (25)

V
k+1

  � V
k
rated  − Factor_Matrixweakly  ×

1
V
∗ , (26)

where the dimensions of the matrix P, Q, R, and Smatrix are
(NB-1)× (NB − 1), (NB − 1×NL), (NL×NB − 1), and
(NL×NL), respectively. Equation (26) solves iteratively to
get the PF solution of weakly meshed system. Te same
convergence criterion discussed for FFDPF is also applied
for the weakly meshed system. For implementing
FFDWMPF algorithm in a 3-phase system, the dimension of
WMCM, WMPMFactor_Matrixweakly, Vk

rated, diagZ, and
diag(S∗) is similar to the 3-phase dimensions of radial
distribution system as discussed in radial PF section.
Whereas the dimensions of the matrix P, Q, R, and S are 3×

((NB − 1)× (NB − 1)), 3× (NB − 1×NL), 3× ((NL×NB − 1),
and 3× (NL×NL), respectively. Te complete algorithm of
FFDWMPF is shown in Section 4.3.

4.3. Te Algorithm for the Weakly Meshed Distribution Net-
work for FFDPF. Te FFDWMPF algorithm can be sum-
marised as follows to solve the power fow solution for weakly
meshed distribution system, which is shown in Algorithm 4.

5. Results and Discussion

Te complete proposed Algorithms 2 and 4 are written in
MATLAB code version R2016a and run on a computer with
an Intel Core i3 2.4GHz processor and 4GB RAM. Te
algorithms are used in a variety of distribution power
networks, both balanced and unbalanced, and in its radial
and weakly meshed network categories. Both the proposed
radial and weakly meshed PF methods yield the power fow
results presented later in the latter section. Te performance
of the proposed approach is compared to that of an existing
power fow technique, whose studies are mentioned in this
study’s literature.

5.1. Balanced 3-PhaseNetwork. Te proposed Algorithm 2 is
applied to two IEEE standard three-phase balanced radial
distribution networks, namely, the 33- and 69-bus balanced
systems.Te single line diagrams for both systems are shown
in Figures 4 and 5, respectively, where the meshed branch is
omitted for the radial distribution network. Te simple bus
numbering rule is used to number the buses and branches of
the balanced distribution network. In a simple bus num-
bering rule, the buses in a lateral and sublateral feeder have
been numbered ascendingly, and the branch is smaller than
the receiving end bus.Te results obtained are not tabulated,
and the branch number is not depicted in Figure 5. Tis
conserves space and avoids the clumsiness in Figure 5.
However, as illustrated in Figures 6(a) and 6(b), the results
are graphed for both 33-bus and 69-bus systems. To validate
the results of the proposed method, the obtained results are
compared to the result published in [39] for both systems.
Te maximum voltage magnitude diference for a 33-bus
system was determined to be 1.54641 × 10− 5 p.u, while for a
69-bus radial distribution system, it was determined to be
0.0007009 p.u.

Furthermore, the proposed Algorithm 2 is compared
with four other methods in [1, 26, 40] for comparison of
iteration number. Moreover, for the sake of clarity, the CPU
execution time of the proposed Algorithm 2 is compared to
the most frequently cited DLF method [26] implemented on
the same computer system. Te 33-bus and 69-bus systems
are compared in the same way. Tables 1 and 2 illustrate this
number of iterations and CPU time comparisons for both
33-bus and 69-bus systems.Te convergence tolerance value
is defned as 0.0001 p.u for Algorithm 2 and other methods
compared. Te proposed Algorithm 2 has an optimal iter-
ation, which is consistent with previous research. However,
the CPU time required for execution is less than the most

Substation

Bus-1 Bus-3

Bus-4 Bus-5

Bus-6

Bus-2
B (3)

B (2)B (1)

B (5)

B (4)

B (6)Imaginary Bus-7

13

1514

16

12

:Branch
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: Tie Switch
: Meshed Branch

Figure 3: Six-bus balanced weakly meshed distribution system.
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Step 1: Determine the WMCM using the simple bus numbering rule and the break-point concept.
Step 2: Identify the WMPM and its transposition. At the same time, the branch impedance matrix is diagonalised.
Step 3: Multiply the WMPM by the diagonal impedance matrix, and then multiply by the transpose of the WMPM to obtain the
BIWM matrix.
Step 4: Apply Korn’s reduction to the BIWM matrix’s zeroth row until all zeroth rows are eliminated and then multiply the
diagonalise complex conjugate load power to reduced BIWM matrix to obtain the Factor_Matrixweakly.
Step 5: Begin the iterative process by assuming that all bus voltages are equal to the rated voltage of the substation.
Step 6: Update the bus voltage.
Step 7: Multiply the factor matrix and the [1/V∗] matrix to obtain the voltage drop matrix for each bus connected to the source node.
Subtract the bus voltage drop matrix from the substation-rated voltage to get the bus voltage.
Step 8: Determine the absolute diference of bus voltage with current iteration value with pervious iteration value for all bus voltage
and pick the maximum diference.

(i) If the diference is≤ ε
Solution achieved
Stop and terminate the FFDWMPF procedure.
Get the fnal bus voltage and branch current.

(ii) If not, use the result of this iteration (the bus voltage) to start the new one by returning to Step 6.

ALGORITHM 4: Formation of FFDWMPF.
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Figure 4: Tirty three-bus weakly meshed distribution system.
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frequently used DLF method [26]. Due to its matrix cal-
culation, the novel direct forward approach method is one of
the fastest methods in terms of CPU execution time when
compared to other methods. Te following conclusions are
inferred from the results of the proposed method.

Firstly, the proposed Algorithm 2 has fewer steps be-
cause it solves the problem in a single forward sweep, which

helps to reduce the number of iterations. Secondly, MAT-
LAB programming takes less CPU time to run because only
one CM matrix is used to solve the entire method; other
methods, on the contrary, we usemultiple matrix formations
to run their methods. Tis matrix calculation saves CPU
time by reducing the number of programming loops in
MATLAB. Lastly, fexibility can be provided in structuring
the network topology by using simple bus numbering rules
and uses in the formation of CM. Terefore, the proposed
algorithm can be easily used for a more extensive network
extension and reconfguration system by simply changing
the CM. Tis facility is a signifcant advantage over the
previously mentioned methods in the literature.

5.2. UnbalancedTree-Phase Network. Similarly, in the case
of an unbalanced system, the extended version of the
proposed Algorithm 2 is used for two unbalanced radial
distribution systems. Te frst is a radial distribution system
with ten buses [41], and the second is a radial distribution
system with twenty-fve buses [41]. Te bus numbering of
the 10-bus system has been retained from the source article,
but the bus numbers have been rearranged according to a
simple bus numbering rule for the 25-bus system as illus-
trated in Figure 7. Te efects of shunt capacitance are ig-
nored in these unbalanced systems. Additionally, to validate
the results, they are compared to previously published data.
In comparison with the result of [41], the p.u. maximum
voltage diference in phase A, phase B, and phase C is 4.36 ×

10− 5, 2.7403 × 10− 5, and 6.09525 × 10− 5, respectively.
Likewise, when the results are compared to the result of [42]
for a 25-bus system, the p.u maximum voltage diference is
0.000662, 0.002365, and 0.002989 for phase A, phase B, and

Vo
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 M
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. (

p.
u)

Bus Number
1 6 11 16 21 26 31 33

0.96
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0.9

1

Radial 33-Bus
Weakly 33-Bus

(a)

Bus Number
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u)
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0.9

1

(b)

Figure 6: Te magnitude of the radial and weakly meshed system voltages: (a) 33-bus and (b) 69-bus.

Table 1: Comparison of iterations of the balanced 33-bus and
69-bus system.

Methods

Balanced
Iteration

33-bus
system

69-bus
system

Backward/forward sweep [40] 4 4
Current injection [1] — 5
Improved backward/forward sweep
[1] 4 4

DLF [26] 4 4
Proposed method FFDPF
(Algorithm 2) 4 4

Table 2: Comparison of the CPU execution time of the balanced
33-bus and 69-bus system.

Methods

Balanced
CPU time in sec

33-bus
system

69-bus
system

DLF [26] 0.05 0.066
Proposed method FFDPF
(Algorithm 2) 0.02496 0.045
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phase C, respectively. Te results are compared with the
voltage on the bus that is carrying the load. Additionally, the
line graph is illustrated only for the proposed method’s
results to conserve space.Te results are depicted in Figure 8.

As shown in Table 3, the proposed Algorithm 2 has good
convergence characteristics compared to the traditional BFS
quasi-coupled method, while the number of iterations is
identical to the most widely used DLF PF technique. However,
as shown in Table 4, the CPU execution time is lower com-
pared to all other methods. It is concluded that while CPU
time is not critical in distribution system PF analysis, modern
microgrid automation requires faster PF analysis operation.
So, in this case, the proposed FFDPF method could be highly
benefcial. Furthermore, the performance characteristics are
favorable in the case of a practical unbalanced system. Te
proposed FFDPF method can be used for network reconf-
guration and network extension without the need for many
matrices or time-consuming, complex path identifcation, as
most methods do in the literature.

5.3. Weakly Meshed Network. Te proposed Algorithm 4 for
the FFDWMPF method is tested on two weakly meshed
distribution systems.Te frst weakly meshed system has a 33-
bus and fvemeshed areas created by the fve tie lines as shown
in Figure 4. Te second system is a 69-bus system with fve

meshes created by the fve tie lines shown in Figure 5. Te 33-
bus and 69-bus system data are taken from [16, 43], respec-
tively. Figure 6 shows the voltage solutions obtained using the
proposed method. For 33-bus weakly meshed systems, the
maximum diference between the voltage obtained by the
proposed methodology and that obtained by the DLF [20] is
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2524 (24)(23)

Figure 7: Unbalanced 25-bus radial distribution system.

Table 3: Comparison of iterations of the balanced 10-bus and 25-
bus system.

Methods
Unbalanced
Iteration

10-bus 25-Bus
Backward/forward sweep [23] 5 4
Quasi-coupled method [41] 5 4
DLF [26] 4 3
Proposed method FFDPF (Algorithm 2) 4 3

Table 4: Comparison of the CPU execution time of the balanced
10-bus and 25-bus system.

Methods
Unbalanced

CPU time in sec
10-bus 25-bus (sec)

DLF [26] 0.08424 0.0538
Proposed method FFDPF (Algorithm 2) 0.060840 0.04836
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found to be 0.000706339 p.u. Similarly, the maximum p.u.
voltage diference is 0.002210 compared to the implemented
DLF [20] for the 69-bus system. Figure 6 shows the voltage
magnitude curve. Te convergence rate is compared with the
two methods, such as the DLF and the conventional BFS
method [28], for 33-bus weakly meshed systems. When
comparedwith these othermethods, the proposed FFDWMPF
method has the same iteration number as the DLFmethod and
fewer than the BFS and loop-based analysis methods [16].

A careful examination reveals that if the two buses are
connected through a tie line, the voltage magnitudes of
those buses do not difer signifcantly. Te results of an
analysis of the efects of the number of tie lines on the
convergence speed are shown in Table 5. Table 5 shows that,
as the number of tie lines increases, the convergence speed
increases because the tie line helps to improve the voltage
profle system, and there is not much voltage diference
between the buses, which is shown in Tables 5 and 6 for 33-
bus and 69-bus systems, respectively. Furthermore, while
the number of iterations for the DLF and proposed
FFDWMPF methods is the same, the proposed FFDWMPF
method can save a signifcant amount of CPU time, as

shown in Tables 7 and 8 for the 33-bus and 69-bus systems,
respectively.

Tis advantage is possible due to the reduction in the
calculation step in the direct forward sweep approach of the
proposed method and the only need for WMCM formation,
which helps reduce the CPU execution time.

Although previous research focused on reducing CPU
execution time and number of iteration using evolved direct
forward sweep [37, 38] from the conventional BFS, this
proposed work is the frst to introduce the fexibility in
topology structuring of the network by simple one matrix
formation (i.e., CM orWMCM), reducing the physical work
of fnding the load path and adding the direct forward sweep
to both radial and weakly meshed PF solutions to the op-
timum iteration and CPU execution time. Terefore, it has
been a widely preferred PF solution, that has an optimum
iteration and execution time. Te proposed FFDPF and
FFDWMPF can be widely used for the PF solution for the
distribution system.

Furthermore, even though some literature studies
[37, 38] have a little less iteration and CPU execution time
than the proposed method, however, the fexibility provided
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Figure 8: Voltage magnitude of (a) 10-bus and (b) 25-bus unbalanced distribution system.

Table 5: Comparison of iterations of the balanced 33-bus weakly meshed system.

No. of meshed in 33-bus system Proposed method FFDWMP (Algorithm 4) DLF [26] Backward/forward sweep [37]
Iteration Iteration Iteration

1 4 4 4
2 4 4 5
3 4 4 5
4 4 4 6
5 3 3 8
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in the formation of the WMCM cannot be achieved by the
above algorithm mentioned in [37, 38].

Moreover, the proposed method cannot be directly
applied to the reverse power fow condition in the presence
of more DG [44] or the islanded condition [45]. Te
combination of FFDPF and NR methods must be used for
the reverse power fow condition. FFDPF is used to calculate
the voltage at each node, and NR is used to calculate the
power mismatch of the DG node buses, which is the future
research scope of the proposed work. Te proposed method,
on the contrary, is easily applicable to the unidirectional
power fow condition in the presence of DG. Specifcally, the
unidirectional power fow condition is a condition in which
the DGs are not causing the reverse power fow condition in
the distribution network.

5.4. Robustness Test. In some cases, the distribution network
must provide the consumer with the highest load demand.
Te power fow algorithm should provide the correct data
about the system condition to the system operators in order

to run the system in a highly demanding environment. As a
result, the system power fow algorithm should have good
convergence characteristics when subjected to high load
demands (i.e., a high level of robustness).

At higher load demand conditions, the FFDPF (Algo-
rithm 2) and FFDWMPF (Algorithm 4) algorithms also
exhibit good convergence characteristics. Even if the balanced
load increments up to three times, the FFDPF method can
give the PF results for 33- and 69-balanced radial distribution
systems. Similarly, the FFDWMPF can give the power fow
results for the balanced load increments up to 6.5 times for the
33-bus and 8.0 times for the 69-bus distribution systems,
respectively, which are illustrated in Table 9.Te robustness of
the weakly meshed system is higher than that of the radial
distribution system because of the better voltage stability of
the weakly meshed system. Te robustness in Algorithms 2
and 4 is due to the involvement of matrix calculation in the
algorithm. Terefore, from the above discussion and obser-
vation, the proposed FFDPF and FFDWMPF methods are
best suited for PF solutions for the distribution system, with
the characteristics of speed, fexibility, and robustness.

Table 6: Comparison of iterations of the balanced 69-bus weakly meshed system.

Number of meshed in 69-
bus system

Proposed method FFDWMPF
(Algorithm 4) DLF [26] Loop-analysis- based

method [18]
Backward/forward sweep with

compensation [18]
Iteration Iteration Iteration Iteration

1 4 4 7 7
2 4 4 7 7
3 4 4 7 8
4 3 3 6 9
5 3 3 5 10

Table 7: Comparison of the CPU execution time of the balanced 33-bus weakly meshed system.

Number of meshed in 33-bus system Proposed method FFDWMPF (Algorithm 4) DLF [26]
CPU time in sec CPU time in sec

1 0.02652 0.05304
2 0.03276 0.06397
3 0.03588 0.06708
4 0.03744 0.06864
5 0.03900 0.0702

Table 8: Comparison of the CPU execution time of the balanced 69-bus weakly meshed system.

Number of meshed in 69-bus system
Proposed method FFDWMPF

(Algorithm 4) DLF [26]

Iteration CPU time in sec. Iteration CPU time in sec.
1 4 0.03276 4 0.05616
2 4 0.03744 4 0.05772
3 4 0.0468 4 0.06864
4 3 0.03588 3 0.0468
5 3 0.04056 3 0.0678
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6. Conclusions

Te study proposes a fast, fexible direct power fow method
for radial (FFDPF) and weakly meshed power fow
(FFDWMPF) for balanced and unbalanced systems. Te
power fow solutions suggest that the proposed methods are
well equipped to solve the power fow for a high R/X dis-
tribution system. Te crucial aspect of the proposed method
is the conversion matrix, which allows one to solve the
power fow with only the direct forward sweep method. In
addition, it provides vector calculation, which helps to re-
duce CPU execution time and the number of iterations. In
addition, the CM ofers the proposed method with good
robustness features. Terefore, the proposed method be-
comes a fast, fexible, and more direct method with good
robustness. In addition to that, the CM matrix provides
better fexibility in the extension of the network and
reconfguration of the network. Taking this all together, the
proposed method ofers a novel perspective on how to solve
the power fow problem in a balanced and unbalanced
distribution system. In the future, the proposed method is
best suited for supervisory control and data acquisition. It
may also suit the automation and control of the distribution
system, as the algorithm gives results quickly. Moreover, due
to the better fexibility in the algorithm, the proposed
method is fruitful for the reconfguration of the distribution
network. In addition to that, the proposed method can be
used to solve the PF solution for the islanded AC-DC
microgrid in a balanced and unbalanced distribution system.

Abbreviations

CM: Conversion matrix
WMCM: Weakly meshed conversion matrix
FFDPF: Fast fexible direct power fow (radial

power fow)
FFDWMPF: Fast fexible direct weakly meshed

power fow

BFSM: Backward/forward sweep method
BFS: Backward/forward sweep
BFM: Backward/forward method
NB: Number of buses
NBR: Number of branches
NL: Number of loops
CN: Condition number
DLF: Direct load fow
PM: Branch path from the substation bus to

the diferent bus matrix
[ΔV]: Te voltage drop matrix
diagZ: Diagonalization of branch impedance
Transpose(PM): Transpose of the path matrix
IL: Load current matrix
Vrated: Substation-rated voltage
V: Bus voltage matrix
k: K th iteration
ε: Tolerance value
WMPM: Weakly meshed path matrix
Factor matrix: Factor matrix of radial system
Factor_Matrixweakly: Factor matrix of weakly meshed

system
BIWM: Branch impedance matrix of weakly

meshed system
PF: Power fow
NC: Not convergence.

Data Availability

(1) Te (33-bus radial and weakly system data) data used to
support the fndings of this study have been deposited in the
(Network reconfguration in distribution systems for loss
reduction and load balancing) repository (DOI: 10.1109/
61.25627). (2) Te (69-bus radial and weakly system data)
data used to support the fndings of this study have been
deposited in the (Optimal capacitor placement on radial
distribution systems) repository (DOI: 10.1109/61.19265).

Table 9: Diferent loading conditions in the 33-bus and 69-bus weakly meshed system.

Diferent loading condition
Number of iterations for 33-bus system Number of iterations for 69-bus system

Radial (Algorithm 2) Weakly (Algorithm 4) Radial (Algorithm 2) Weakly (Algorithm 4)
(P + jQ) × 0.5 3 3 3 3
(P + jQ) × 1 4 4 4 4
(P + jQ) × 1.5 5 4 5 4
(P + jQ) × 2 6 4 6 4
(P + jQ) × 2.5 8 5 8 4
(P + jQ) × 3.0 11 5 14 5
(P + jQ) × 3.5 (NC) 6 (NC) 5
(P + jQ) × 4 (NC) 6 (NC) 5
(P + jQ) × 4.5 (NC) 7 (NC) 6
(P + jQ) × 5 (NC) 8 (NC) 6
(P + jQ) × 5.5 (NC) 9 (NC) 7
(P + jQ) × 6.0 (NC) 12 (NC) 7
(P + jQ) × 6.5 (NC) 21 (NC) 8
(P + jQ) × 7 (NC) (NC) (NC) 10
(P + jQ) × 7.5 (NC) (NC) (NC) 12
(P + jQ) × 8 (NC) (NC) (NC) 18
(P + jQ) × 8.5 Not converge (NC) Not converge (NC) Not converge (NC) Not converge (NC)
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(3) Te (10-bus radial Unbalanced Distribution Data) data
used to support the fndings of this study have been de-
posited in the (Quasi-coupled three-phase radial load fow)
repository (DOI: 10.1109/TPWRS.2003.821624). (4) Te
(25-bus radial Unbalanced Distribution Data) data used to
support the fndings of this study have been deposited in the
(Direct solution of distribution systems) repository (DOI:
10.1049/ip-c.1991.0010).
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