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Every year, each solar panel suffers an efficiency loss of 0.5% to 1%. %is degradation of solar panels arises due to environmental
and electrical faults. A timely and accurate diagnosis of environmental faults reduces the damage caused by faults on the panel. In
recent years, deep learning precisely convolutional neural networks have achieved wonderful results in many applications. %is
work is focused on finely tuning pretrained models of convolutional neural networks, especially AlexNet, GoogleNet, and
SqueezeNet. Based on the performance metrics, SqueezeNet is used for training thermal images of solar panels and for the
classification of environmental faults. %e results obtained show that SqueezeNet has a significant testing accuracy of 99.74% and
F1 score of 0.9818, which make the model successful in identifying environmental faults in solar panels and help users to protect
the panels.

1. Introduction

Photovoltaic systems are one of the most distinguished and
clean sources of energy which generate power by converting
solar energy from the sun into direct current electricity. In
2019, solar power delivered was 2.7% of total worldwide
electricity production. %e International Energy Agency has
stated by 2050, solar power would contribute up to 16% of
the world’s electric energy production with solar being the
largest renewable source of energy. Electric power generated
by a 1KW system of solar panels is roughly around 850KWh
per year. However, each year the solar panels suffer an ef-
ficiency loss of 0.5% to 1% resulting in reduced output power
generation. %is power loss in solar panels arises due to
environmental and electrical faults [1].

Environmental faults like shading, soiling, and snowing
tend to cause a significant power loss in PV modules. Solar
panels are expensive and require proper maintenance
throughout the year. Hence, it is necessary that faults in the solar
panels are detected and rectified in the preliminary stage [2].

%e goal of this research is to detect environmental faults in
the solar panels accurately. For this purpose, different con-
volutional neural networks (CNN), namely, AlexNet, Goo-
gleNet, and SqueezeNet are trained and their performance
metrics are obtained. Based on the results, a suitable network is
opted for training thermal images of solar panels and for the
precise determination of environmental faults in solar panels.

S.K. Firth conducted a survey and found that annually
the different faults in photovoltaic systems reduce the power
output by 19% [3]. To detect these faults, W. Chine proposed
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a feasible solution for the fault classification of photovoltaic
system using Artificial Neural Network (ANN) [4]. In this
proposed method, a simulation model is introduced for
computing a number of parameters like current, voltage, and
the number of peaks in the current-voltage (I-V) charac-
teristics of the PV cells. Two ANN architectures are
employed for environmental and electrical faults detection
in PV systems: the Multilayer Perceptron (MLP) and the
Radial basis function (RBF). For the MLP based model, the
true and false classification rates achieved are 90.3% and
9.7%, respectively, and for RBF-based model, they are 68.4%
and 31.6%, respectively.

C. Mantel developed a machine learning model where
electroluminescence images of photovoltaic panels were fed
to the model [5]. Two architectures, Support Vector Ma-
chine (SVM) and Random Forest Model (RF), were
employed. %e results obtained from SVM had an accuracy
of 0.997 and a recall of 0.274. %e RF model had an accuracy
of 0.967 and a recall of 0.193. %e results demonstrated that
SVM had an improvement of about 3% in terms of accuracy
compared to the RF model. However, the high accuracy of
both the classifiers (SVM and RF) makes them promising for
detecting faults in PV modules from electroluminescence
images.

Furthermore, Natarajan studied the above model by
using thermal images of photovoltaic systems [6]. Based on
the fundamentals of thermal image processing, an algorithm
is suggested for deriving the characteristics of the solar cells
in operation. %e images are classified by a classifier tool
called SVM, which determines whether the solar modules
are faulty or nonfaulty. %e results obtained are 97% ac-
curate with the comparison of test and training results. %is
fault classification technique is used in real time for the large
PV system with very less computation time.

Papadomanolaki on his research based on benchmark-
ing different deep learning networks for classification of
precise and sharp satellite multispectral data has trained
CNN from scratch using huge datasets comprising large
number of labeled data samples [7]. %erefore, employing a
pretrained deep learning model has been proposed and
successfully achieved in this paper.

In addition, C. Szegedy has carried out a detailed study of
different CNN architectures, namely, AlexNet, VGG Net,
and GoogleNet in the computer vision community, and their
versions are made available publicly [8].

Diverse range of works in machine learning community
have successfully manifested the generalization power of
deep learning networks where large datasets have performed
well in regards with classification of other datasets, even
from different distinct. Motivated by these results, we apply
pretrained models of AlexNet, GoogleNet, and SqueezeNet
on a large-scale image classification dataset for fault clas-
sification in PV arrays [9–11].

%e following paper comprises various sections elabo-
rating in detail about environmental fault diagnosis of solar
panels using CNN. Section 2 describes about the various
environmental faults in solar panels while the Section 3
discusses about the identification of these faults. In Section 4,
the mechanism of deep learning and different neural

networks are elaborated followed by the explanation of
confusion matrix algorithm in Section 5. Section 6 displays
the corresponding experimental results for environmental
fault diagnosis of solar panels using various CNN
architectures.

2. Environmental Faults in Solar Panels

Solar panels are operated in the open air, making them
vulnerable to environmental conditions [12]. Under these
conditions, the PVmodule may fail to operate efficiently due
to the following effects:

(i) Shading effect: shading can arise from direct
shadows or temporary shadows. Direct shadows
cause serious impact on the performance of the
solar panel. Temporary shadows are caused due to
shades of buildings, trees, snow, etc. Shading effect
is classified into two types such as partial shading
and fully shading. Partial shading leads to reduced
current and voltage and the output power is
dropped to half the nominal value while full shading
leads to no output power extraction as shading of at
least 1/36 of the cell reduces the output power by
75% [13].

(ii) Soiling effect: the aggregation of dust particles like
sand, cement, mud, and leaves etc., on solar panel’s
surface is called soiling. %e various factors causing
soiling and power loss are climatic conditions, tilt
angle, and liquid used for cleaning solar panels [14].

(iii) Snowing effect: when a thick layer of snow is de-
posited on a solar panel, solar cells find it difficult to
absorb solar radiation, and this affects the output
power very badly. %is affects more worse when the
snow remains on the panel for a longer period of
time [15].

(iv) Temperature rise: solar panels are temperature-
sensitive. A temperature rise above the optimum
temperature 35°C degrades the output power of the
solar panel and causes excess heat emission, highly
affecting the open circuit voltage of the solar panel.

3. Identification of Environmental Faults

%e following section describes about the various stages
involved in the identification of environmental faults in solar
panels such as capturing and processing the thermal images
of the solar panels, detecting hotspots in the images, and
identifying those faults.

3.1. -ermography. Environmental faults like the temper-
ature rise in solar panels and shading effects cannot be
perceived by human eyes. In such cases, the solar panel fault
can be detected by the principle of thermography. Each
object having a temperature above the absolute zero point (0
Kelvin) emanates infrared radiation, which is directly pro-
portional to its intrinsic temperature [16,17]. A thermal
imager when placed at a distance of 1m from the solar panel,
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the imager perceives the infrared radiation from the solar
panel and determines the surface temperature of the panel.
%e imager converts the infrared radiation into electrical
signals and displays these signals with varying temperature
in different colors [18,19].

3.2. -ermal Image Processing. %ermal image processing
helps to enhance the characteristics of the image data. %e
image processing method used in this research captures the
accurate hotspot area of the panel, and the contrast level of the
image is adjusted for better training of faults in neural net-
works. In Figure 1, the actual thermal image of the panel is
displayed, whereas in Figure 2, the contrast level of the panel
is adjusted high using thermal image processing software.

3.3. Hotspot Phenomenon. Hotspots are high temperature
zones affecting a particular section of a solar panel, thereby
reducing the localized efficiency and lowering the output
power of the solar panel [20]. %e hotspot phenomenon
primarily occurs due to shading and dust accumulation on
the panel. %ese preliminary damages in the solar panel can
be detected using thermal images. In Figure 3, the black box
shows the hotspot of the panel indicating the abnormal
working condition of the solar panel. %e remaining blue
portion and faded yellow-green portion indicates the normal
functioning of the solar panel.

3.4. Fault Detection and Identification. Fault detection
checks for any abnormal working condition in the solar
panel. In this research, the faults are determined based on
the location of the hotspot in the thermal image [21].

4. Convolutional Neural Network

Deep learning is a crucial fragment of machine learning
where multiple layers of nodes perform complex operations
like abstraction and representation, which perceive images,
sound, and text. Figure4 represents the functioning of deep
learning network in a flowchart.

Convolutional neural networks (CNNs) are a subset of
deep neural networks which are designed to operate on
visual imagery [22, 23]. %e properties and features of the
input images are extracted and are encoded by the CNN
architecture resulting in the reduction of parameters in large
quantities compared to normal neural networks.

4.1. Types OF CNN.
(i) AlexNet: Alex Krizhevsky designed AlexNet (AN)

in 2012. %is network consists of eight layers where
the first five layers are convolutional layers suc-
ceeded by max-pooling layers and the last three
layers are fully connected layers. For better training
performance, AN prefers ReLu activation function
over sigmoid and tanh [24].

(ii) GoogleNet: Google developed the GoogleNet (GN)
architecture. %is network consists of nine incep-
tion modules where in the twenty-two layers, four

are convolutional layers and max-pooling layers,
three layers are for average pooling followed by a
section of five fully connected layers and three
softmax layers [25].

(iii) SqueezeNet: SqueezeNet (SN) was developed by
DeepScale in 2016 and has accuracy with 50x less
parameter. %is network contains eighteen layers
which begins with a single convolution layer fol-
lowed by eight fire modules and ends with a con-
volutional layer. Different activation functions like
ReLu, tanh, and sigmoid can be used where ReLu
provides a good boost in the performance [26].

5. Parameters for Determination of the
Suitable Network

Confusion matrix is a predictive analysis method used for
describing the performance of the classification model in
deep learning [27]. %e rows in the confusion matrix depict

Figure 1: %ermal image of a solar panel with fault.

Figure 2: %ermal image of the faulty solar panel with the contrast
level adjusted high.
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the true class, whereas the columns depict the predicted
class. %e confusion matrix reports true positive, false
positive, true negative, and false negative. Furthermore, it
helps to calculate statistical measures like accuracy, speci-
ficity, sensitivity, precision, and F1 score.

True positive (TP): the output class matches with the true
class. True negative (TN): the output class is not predicted for
other classes except the true class. False positive (FP): the
output class is predicted as the true class when it is not. False

negative (FN): the output class is not predicted as the true
class when it is. Figure 5 shows the true positive, false positive,
true negative, and false negative of a confusion matrix.

5.1. Statistical Measures. Accuracy: accuracy is the ability to
detect the target class and the output class correctly, that is,
to numerate the fraction of true positive and true negative in
all the evaluated classes.

Accuracy �
(TP + TN)

(TP + TN + FP + FN)
. (1)

Specificity: specificity refers to the ability to determine
the target class correctly by the predicted class, that is, to
calculate the proportion of true positive.

Specificity �
TN

(TN + FP)
. (2)

Sensitivity: sensitivity refers to the ability to determine
the proportion of true negative, that is, the fraction of true
positive classes in all the positive assessments.

Sensitivity �
TP

(TP + FN)
. (3)

Precision: precision is defined as the fraction of positive
predictions in all the predicted positive classes.

Precision �
TP

(TP + FP)
. (4)

F1 score: F1 score is the harmonic mean of precision and
sensitivity and is a better measure than accuracy. A high
value of F1 score determines that the neural network has
better performance on positive classes.

F1score � 2∗
(Precision × Sensitivity)

(Precision + Sensitivity)
􏼢 􏼣. (5)

Compared to accuracy performance metrics, statistical
measures like precision, sensitivity, specificity, and F1 score
provide better insights into the prediction accuracy of neural
networks.

6. Experimental Results

%e following sections discusses in detail about data col-
lection and clustering of environmental faults in solar panels
and provide a comparative analysis of the trained and tested
fault images in various neural networks. Figure 6 represents
the various steps involved in the collection of fault images
from solar panels.

6.1. Data Collection and Clustering. A total of 1197 real
images of solar panels for different fault conditions were
captured. For training of various neural networks, the im-
ages were further divided in the percent ratio of 70 and 30 for
training and testing of solar panel images. Table 1 shows the
number of images for each training class of real images. %e
total numbers of images for testing and training are 313 and
884, respectively.

Figure 3: Hotspot location in the solar panel.

Start

Gather data

Analyze the data

Train data
Yes

Yes
Test data? Model deployment

Stop

Split data? No

No

Figure 4: Flowchart representation of deep learning algorithm.
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Similarly, a total of 872 thermal images for various faults
were captured from the infrared camera and divided in the
percent ratio of 70 and 30 for training and testing, re-
spectively. %is clustering of images helps in proper and
efficient training of neural networks. Table 2 shows the
number of images for each training class of thermal images.
%e total numbers of images for testing and training are 272
and 610, respectively.

6.2. Neural Network Analysis. Real images collected are
trained in Deep Network Designer application in MATLAB
software for various pretrained networks: SN, AN, and GN.

For the proper fitting of the trained model, training options
are set as shown in Table 3.

%e execution environment employed for training is
CPU. Table 4 shows the intermediate results obtained from
the training of real images in SN, AN, and GN. Figures 7–9
show the training progress of the various pretrained net-
works where the blue and red lines specify the training
accuracy and loss while the black dotted line specifies the
validation accuracy and loss of the trained model.

From the following figures, it can be seen that the dataset
is finely trained by AN as it attains a training accuracy of
99.8% and 100% at epochs 2 and 3 at a faster rate of 14min
47 s while SN takes a time of 21min 15 s to train and attains a
training accuracy of only 91.9% and 100% at corresponding
epochs 2 and 3. Compared to the other two neural networks,
GN takes a longer time of 23min 31 s to reach a training
accuracy of 92.48% and 99.15% at epochs 2 and 3, respec-
tively. Hence, AN is more suitable for training solar panels
for the fault classification of solar panels due to better
training accuracy and shorter training time followed by SN
next.

A set of 100 images are selected from the testing images.
%e confusion matrix for these samples is plotted, and
corresponding statistical measures such as accuracy, sensi-
tivity, specificity, precision, and F1 score are calculated for
SN, AN, and GN are given in the following. Figures 10–12
are the confusion matrices of SN, AN, and GN while
Figures 13–15 are the statistical measures of SN, AN, and
GN.

Figures 16–18 show the solar panel faults classified by
various neural networks along with their testing accuracy for
twenty testing images.

Table 5 shows the average of testing accuracy, specificity,
sensitivity, precision and F1 score. For the selection of an
appropriate neural network for fault to provide better acuity
in prediction accuracy, it is necessary for the various sta-
tistical parameters such as testing accuracy, specificity,
sensitivity and precision to complement each other and
provide a good F1 score. From the three neural networks

A FLIR E5-XT infrared camera of 19200 (160 x 120)
pixels is used for obtaining thermal images of solar module.

(i) Healthey solar panels
(ii) Solar panel with partial and full shading effect
(iii) Solar panel with partial and full soiling effect.
(iv) Solar panel with rise in temperature.

�e four experiments were carried out in an open area on the same day
(March 20, 2021).

�e weather during the day was sunny and humid with the tempertature
ranging over 29°C to 34°C.

�e thermal images were extracted by importing the images from the
camera to the FLIR Tool using an USB cable.

�e thermal images were extracted by importing the images from the
camera to the FLIR Tool using an USB cable.

A 150W monocrystalline solar PV panel is used in this experiment for
collecting thermal images. �e dimension of the solar panel is 6� x 4�.

Four types of solar panel images were captured in
this research for the classification of various faults using FLIR E5-XT:

Figure 6: Methodology for data collection and clustering.
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Figure 5: Confusion matrix.

Table 1: Number of real images used in each training class.

S. no. Training class Image count
1 Normal panel 156
2 Partially cement covered 157
3 Fully cement covered 120
4 Partially snow covered 144
5 Fully snow covered 163
6 Mud covered 144

Table 2: Number of thermal images used in each training class.

S. no. Training class Image count
1 Normal panel 100
2 Partially shaded 100
3 Fully shaded 108
4 Partially soil covered 102
5 Completely soil covered 100
6 Temperature rise 100

International Transactions on Electrical Energy Systems 5



Table 4: Intermediate results for SqueezeNet, AlexNet, and GoogleNet.

Type of network Epoch Iteration Time elapsed (hh:mm:ss) Validation accuracy Training accuracy Validation loss Training loss

SqueezeNet

1 1 00 : 00 : 26 17.3585 18.95 3.3108 3.2987
2 75 00 : 07 : 07 92.376 91.9345 0.1751 0.06371
3 155 00 :14 :10 100 100 0.0436 0.00668

3 (end) 231 00 : 20 : 44 100 100 0.0267 0.01164

AlexNet

1 1 00 : 00 :18 13.5849 12.5 3.7124 4.5314
2 75 00 : 04 :11 94.5783 99.875 0.00021 4.575e-05
3 155 00 : 09 : 35 100 100 6.9009e-05 2.644e-05

3 (end) 231 00 :14 :16 100 100 9.0214e-05 0.0008

GoogleNet

1 1 00 : 00 : 28 18.4905 19.3834 2.63963 3.1751
2 75 00 : 08 : 07 96.9811 92.4764 0.13759 0.0445
3 155 00 :14 : 50 100 99.1528 0.02365 0.005

3 (end) 231 00 : 23 : 00 100 100 0.0124 0.0026

Figure 7: Training progress of finely tuned SqueezeNet.

Table 3: Training options employed for the pretrained networks.

S. no. Training option Value
1 Solver ∗SGDM
2 Maximum epochs 3
3 Mini batch size 8
4 Max number of iterations 231
5 Base learning rate 0.0001
∗Stochastic gradient descent with momentum.
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tested, SN provides a remarkable testing accuracy of 99.815%
and a F1 score of 0.992. On the other hand, AN despite
having better training accuracy, the testing accuracy of the
network is 94.975 and F1 score is 0.9559 which is com-
paratively low compared to the other two networks as GN

itself provides a testing accuracy of 92.285% and F1 score
of 0.9832. Similarly, the order of specificity, sensitivity and
precision results were obtained higher for SN as the cor-
responding values were 0.9978, 0.9907 and 0.9936 and the
lowest values were obtained for AN as the values were

Figure 8: Training progress of finely tuned AlexNet.

Figure 9: Training progress of finely tuned GoogleNet.
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0.9897, 0.9515 and 0.9664. For GN, specificity, sensitivity
and precision results were 0.9977, 0.975 and 0.9936. It can be
seen that the specificity and precision of SN and GN are
nearly equal. However, the F1 score and sensitivity of SN has
an edge over GN.

Table 6 represents the comparative results of different
neural networks based on the number of layers, the number

of images which can be processed, and their image size.
Furthermore, SN requires a low memory size of 4.6MB with
18 layers that can process a total of 1.24 million images. GN
with a memory size of 27MB can process up to 7 million
images in 22 layers. AN can process up to 61 million images,
and it requires a memory size of 227MB and has only 8
layers.
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Figure 10: Confusion matrix for SqueezeNet.
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Figure 11: Confusion matrix for AlexNet.
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Figure 12: Confusion matrix for GoogleNet.
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Figure 13: Statistical measures for SqueezeNet.
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Figure 16: Fault classified by SqueezeNet with testing accuracy.

Figure 17: Fault classified by AlexNet with testing accuracy.
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Based on factors such as testing and training accuracy,
statistical measures, training time, and memory require-
ment, it can be seen that SN is efficient for the fault clas-
sification of solar PV panels with precision. Hence, a set of
thermal images were trained in SN. Figure 19 shows the
training progress of thermal images of solar panels with
faults. Table 7 indicates that the time required for training
and validating 610 images is 11min 53 s where the training
accuracy attains a training accuracy of 99.861 and 100 at the
end of epochs 2 and 3, respectively. Figures 20 and 21 present
the classification of PV faults in SN for real and thermal
images.

%e confusion matrices obtained for a sample of
hundred real and thermal images are shown in Figures 22
and 23. From the confusion matrices, it can be seen that
for real images, the desired class matches with the output
class giving 100% accuracy while the confusion matrix for
thermal images gives an accuracy of 98%. Table 8 presents
the statistical measures of thermal images trained in SN

where the neural network trained has an F1 score of
0.9818.

Table 9 depicts that the testing accuracy of thermal
images is 99.74% as the testing accuracy of each image tested
is above 0.95 while for real images the testing accuracy is
comparatively low, that is, 94.42%. However, the prediction
accuracy of real images by the pretrained SN is far better as
the accuracy is 100% while for thermal images the accuracy
is 98%. %e decrease in the prediction accuracy of thermal
images is due to the hotspots in the panels, which may arise
due to the temperature rise in addition to the actual fault in
the panel.

7. Limitations and Scope for Future Work

For efficient training of neural networks, a large number of
thermal images of solar panels are required. %is also in-
creases the training time which may extend from 1 hour to
2.5 hours and requires a better execution environment, most

Figure 18: Fault classified by GoogleNet with testing accuracy.

Table 5: Comparative measures of SN, GN, and AN.

Network type Testing accuracy of image Accuracy of prediction Specificity Sensitivity Precision F1 score
SN 99.82 0.997 0.998 0.991 0.994 0.992
AN 92.29 0.983 0.990 0.952 0.966 0.956
GN 94.98 0.993 0.998 0.98 0.994 0.983

Table 6: Parameters of various neural networks.

Network Type Memory size (MB) Image Size Image capacity (Million) Layers count
SN 4.6 227× 227 1.24 18
AN 227 227× 227 61 8
GN 27 224× 224 7 22
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Figure 20: Fault classified by SqueezeNet for real images of solar panels.

Figure 19: Training progress of SqueezeNet for fault classification of thermal images of solar panels.

Table 7: Intermediate results of thermal images trained in SN.

Epoch Iteration Time elapsed (hh:mm:ss) Validation accuracy Training accuracy Validation loss Training loss
1 1 00 : 00 :10 0 0 4.5739 5.0128
2 54 00 : 04 : 56 99.861 97.698 0.0675 0.1597
3 105 00::08 : 29 100 100 0.00236 0.0011
3 159 00 :11 :18 100 100 0.00054 0.00085
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preferably Graphical Processing Unit instead of CPU. In the
future, the average testing accuracy of SN for thermal images
can be increased by altering the number of layers in the
neural network. Also, a mobile application can be created

that executes the SN model for automatic classification of
faults in solar panels, so users with scarce or no knowledge
can employ the application to detect faults in solar panels
effectively.
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Figure 22: Confusion matrix for real images with fault in solar panels.

Figure 21: Fault classified by SN for thermal images of solar panels.
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8. Conclusion

%is research proposed a deep learning technique by
comparing CNN pretrained models and fine-tuning them
for the diagnosis of environmental faults in solar panels. %e
insight of this research focused on comparing the perfor-
mance of AlexNet, GoogleNet, and SqueezeNet with

different performance metrics and finding a suitable model
for fault classification.%e three models used in this research
were capable of classifying five faults in solar panels from the
productive class, in which the SqueezeNet model comprising
18 layers reached a testing accuracy of 99.815%. On the other
hand, AlexNet despite its significant training accuracy ob-
tained the lowest performance testing accuracy of 94.975%
compared to the other architecture. Hence, the SqueezeNet
model was used for training thermal images of solar panels
which provided a testing accuracy of 99.74% and F1 score of
0.9818. %e proposed method looks forward to make a
significant contribution to the solar industry.

Data Availability

No data were used to support this study.
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Figure 23: Confusion matrix for thermal images with fault.

Table 8: Statistics of thermal images in SN.

Class Accuracy Specificity Sensitivity Precision F1 score
Normal panel 0.98 0.971 1 0.938 0.968
Completely soil covered 1 1 1 1 1
Partially soil covered 1 1 1 1 1
Temperature rise 0.98 1 0.857 1 0.923
Fully shaded 1 1 1 1 1
Partially shaded 1 1 1 1 1
Average 0.993 0.995 0.976 0.990 0.982

Table 9: Prediction and testing accuracy of real and thermal
images.

Parameter Prediction accuracy
(%)

Testing accuracy of image
(%)

Real image 100 94.42
%ermal
image 98 99.74
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