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This paper considers the problem of tracking the global maximum power point (GMPP) in partially shaded conditions (PSCs) as a
multiobjective optimization problem and solves it using a novel multiobjective optimization algorithm on the basis of Bayesian
optimization formulation. Bayesian optimization is a metamodel-based global optimization method that is able to balance
exploration and exploitation. The Pareto solutions are obtained by using a multiobjective Bayesian optimization algorithm. Also, a
new acquisition function is proposed to improve the diversity and convergence of the Pareto solutions. Two objective functions
are introduced to remove the large tracking errors and oscillations of the operating point around the GMPP. The suggested
method is implemented online for GMPP tracking so that the suggested method monitors any change in environmental
conditions and generates the optimal duty cycle for the DC-DC converter for the GMPP tracking (GMPPT) by the PV array.
Several multipeak PSC scenarios are implemented and simulated to show efficiency of the suggested approach. The MATLAB/
SIMULINK is employed to implement a photovoltaic (PV) system comprising a PV array, a boost converter, and the proposed
multiobjective Bayesian optimization algorithm (MOBOA). The simulation results show a very satisfactory performance of the

MOBOA in terms of transient state and steady-state oscillations and tracking speed.

1. Introduction

With growing concerns about the degradation of the en-
vironment by fossil fuels, the importance of renewable
energy sources has become much more apparent to re-
searchers and policymakers today than ever before [1]. PV
modules are a viable alternative to conventional fossil energy
sources, taking into account ease of operation, low main-
tenance, perpetual sunlight, and constant price reductions.
However, large-scale implementation of solar farms still
requires high investment costs [1]. In addition, weather
conditions greatly affect the performance of PV modules. To
reduce these shortcomings, two solutions have been sug-
gested: the use of improved silicon semiconductors in the
fabrication of PV modules and the use of a maximum power
point tracker to increase the efficiency of PV arrays. The
second solution requires much less cost than the first so-
lution [2]. The principal purpose of the second solution is to

operate the PV array with the highest efficiency. To operate
the PV arrays at the MPP, methods such as perturb and
observe (P&O) [3], hill climbing (HC) [4], and incremental
conductance (IC) [5] were suggested as the most common
traditional MPP tracker. The benefits of these trackers are
easy implementation and uncomplicated structure. How-
ever, in the event of partial shading or rapid changes in the
irradiation, their performance is impaired, and they reduce
the efficiency of the PV array. The power fluctuations, de-
viation from the MPP, and consequent increase in the losses
dramatically decrease the PV array efficiency [6].
Considering advantages such as efliciency, precision,
fault tolerant, and speed of progress, MPP trackers based on
artificial intelligence (AI) can be considered as a trustworthy
alternative to traditional MPP trackers methods [7, 8].
Various techniques of the Al-based MPPT such as fuzzy
logic (FL) [9-11], neural networks (NNs) [12, 13] and PSO
[14, 15], firefly [16], genetic algorithm [17], pattern search
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[18], modified bat algorithm [19], bio-inspired memetic salp
swarm algorithm [20], hybrid whale optimization-simulated
annealing algorithm [21], wind-driven [22], musical chair
algorithm [23], following optimization [24], and spotted
hyena optimization algorithm [25] have been effectively
performed and implemented as an MPPT. However, the
main drawback of these methods is transient oscillations,
which reduce the efficiency of PV systems.

One of the most important branches of artificial in-
telligence is neural networks that have different uses in
MPPT studies. To estimate the voltage value at the maxi-
mum power point, an artificial neural network has been
used in [26]. In this regard, the neural network is trained by
a big dataset including the radiation level and the voltage
value at several MPPs. Thus, the neural network can un-
derstand the relationship between the radiation level and
the voltage value at the MPP. The neural network is then
used to generate the duty cycle of a DC-DC converter. In
[27], the duty cycle of a DC-DC converter is directly
generated by a neural network MPPT. Regardless of
suitable performance, the main drawbacks of employing
neural networks are the time-consuming training process,
overfitting, and so on [26-28]. On the other hand, simple
structure and implementation can be mentioned as the
benefits of the FL controller, while dependence on the
knowledge of the designer can be declared to be the main
problem [29-32].

In several articles, hybrid MPPT methods have been
suggested. These methods combine the proper offline
training and online process. This type of method is a
combination of optimization algorithms such as particle
swarm optimization [33-37] and a genetic algorithm [38, 39]
with artificial intelligence methods such as the fuzzy logic
[40-43] and neural network [44-47]. A number of papers
use different kinds of optimization algorithms to control
multiple PV modules [34] to optimize the classical HC al-
gorithm [35] and to optimize the P&O algorithm [48].
Again, the main problem of these approaches is transient
oscillations.

In [49], the Bayesian fusion is used to help the controller
avoid falling into the local minimum trap of the P-V shaded
curve. In [49] a dragonfly optimization algorithm (DOA) is
proposed to extract the MPPT in PV systems. Again, the
main drawback of these methods is transient oscillations.

The main objectives in MPPT design are as follows: MPP
tracking, minimum steady-state oscillations, and minimum
transient oscillations. MPPTs based on optimization algo-
rithms need an objective function to achieve the above
objectives. All of MPPT methods have so far used a single-
objective function that may not include all the important
information in the system. Therefore, it is necessary to use
more than one objective function to achieve all design
objectives. This paper formulates the problem of the PSC
with minimal steady and transient oscillations and rapid
convergence into a multiobjective function and solves it with
a novel multiobjective optimization algorithm. To cancel the
oscillations around the MPP in transient and steady states
and to remove the large tracking errors, two objective
functions are proposed. The proposed MOBOA generates
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FIGURE 2: The equivalent circuit of the single photovoltaic cell.

the optimal duty cycle to minimize these two objective
functions.

In section 2, a PV system is described briefly. In section
3, the objective functions are provided to design an MPPT.
In section 4, the multiobjective Bayesian optimization al-
gorithm is presented in detail. Section 5 presents detailed
simulation results.

2. System under Study

Different types of PV systems are proposed in the literature
to evaluate MPPT algorithms such as grid tied, standalone
grid [50], and grid/hybrid [51]. In this paper, the grid-tied
type of PV systems is used. The general block diagram of a
PV system is shown in Figure 1. As seen in this figure, this
system consists of a PV array, the suggested MOBOA, a DC-
DC converter, and a DC/AC converter [52, 53]. A PV array
is connected to a utility grid through a DC-DC converter and
a three-phase three-level voltage source converter (VSC).
The DC-DC converter is controlled by the proposed GMPPT
which is the proposed MOBOA in this paper, and the DC
voltage is then converted into the AC voltage by using the
DC/AC converter.

3. Mathematical Modeling of the Single PV Cell

Figure 2 plots a solar cell equivalent circuit that is modeled
by

V=ﬁ1n<ﬁ+1>, (1)
q I

q(V+IRS)>] V + RgI
I=1,.-1 exp( - ) (2)
R[ nKT Ry,

where I is the short-circuit current of the PV array, T'is the
cell temperature, I is the reverse saturation current, I is the
short-circuit current of the PV cell, g is the electronic charge,
K is the Boltzmann constant, n is the diode ideality factor,
Ry, is the resistance in parallel, R; is the resistance in series, V'
is the PV cell voltage, and I is the PV cell current.
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FIGURE 3: Four PV modules in series: (a) partial shading pattern 1, (b) partial shading pattern 2, and (c) P-V curve of the PV array.

4. Partial Shading Conditions

PV modules are usually connected in different configura-
tions to increase voltage and current of the PV array. Due to
the presence of bypass diodes, the occurrence of the PSC
creates a number of global and local peaks in the P-V curve
of the PV array. Figures 3(a), 3(b) and 3(c) show an ar-
rangement including four PV modules in series with two
various shading patterns along with their P-V curves,
respectively.

5. Objective Functions to Design an MPPT

The main objectives in MPPT design are as follows: MPP
tracking, minimum steady-state oscillations, and minimum
transient oscillations. MPPTs based on optimization algo-
rithms need an objective function to achieve the afore-
mentioned objectives. All of MPPT methods have so far used
a single-objective function that may not include all the
important information in the system. Therefore, it is nec-
essary to use more than one objective function to achieve all
design objectives. In this paper, two objective functions are
proposed to design an MPPT controller using the MOBOA.
The first objective function is the integral squared error (ISE)
and the second one is the integral of time-weighted absolute
error (ITAE). Minimizing the ISE leads to removal of the
large tracking errors caused by sudden changes in irradiance.
Minimization of the ITAE will reduce oscillations around
the MPP. The objective functions can be formulated as

follows:
t(dP (1))
ISE:J- ZRVAT ) A, 3
O(dVPV(T)> ! &
L dPpy (7)
ITAE = BV dr, 4
JOTdVPV(T) 4 @

where Vpy and Ppy are the PV array voltage and PV array
power, respectively.

6. MOBOA and Its Application in the
Design of MPPT

It is necessary to use the MPP tracker to increase the effi-
ciency of the PV system under different environmental
conditions. In this section, a method for GMPP tracking in
PV systems under different radiation patterns is introduced.

6.1. Multiobjective Optimization. The following equation
presents a general structure of multiobjective optimization
problems:
min F (x) = {f, (0, £, (), £, ()}
g;(%) <0, N (5)

xlb <x< xuh,

i=12,...

where F(x) includes a vector of individual objective func-
tions, gj(x) is the constraint, and x,; and xj; denote the
upper and lower bounds. Due to trade-offs between the
objective functions, the multiobjective optimization prob-
lem given in (5) usually has a set of optimal solutions in the
Pareto sense. In other words, there is no optimal solution
that is superior to other solutions. That is, there is no op-
timum solution that is superior to the other in terms of all
objectives [54].

6.2. The Kriging Model. Bayesian optimization usually uses
the Kriging or Gaussian process regression model. In
general, the Kriging model can be expressed as the surrogate
of the expensive function f(x) as a realization of a stochastic
process Y(x).

Y (x) = u+ Z(x). (6)

In which, Z(x) and y denote the error and mean term of
the Gaussian process, respectively. Here, the simple Kriging
model is utilized and Z(x) follows a normal distribution with
the nonzero covariance and zero mean and y is a fixed value.
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FIGURE 5: The modified quality metrics: (a) MHD; (b) MOS.

The following equation represents the Gaussian spatial
correlation function between the values of function f at two
locations x and x:

cov(Z(x), Z(x')) = ?p(x,x") = o exp{ - Z Bj(xj - x]'-)2 ,
i1

(7)

where 02 is the standard deviation and 6j is the roughness
parameter. Reference [55] provides more detail about the
Kriging model.

6.3. Bayesian Optimization. In the Bayesian optimization for
the global optimization, the Kriging model is used to ap-
proximate the unknown objective function f(x). For a trade-
off between exploration and exploitation in the searching
process, an acquisition function is used. In this paper, the
lower confidence bound (LCB) is considered as the acqui-
sition function. The LCB acquisition function can be
expressed as follows:

Sfrep(x) = f(x) —ks(x), (8)

where f(x) is the Kriging model, s(x) represents the square
root of the mean squared error, and k denotes the exploi-
tation-exploration balance. A new sample point generated

by minimizing the LCB acquisition function updates the
Kriging model.

6.4. The Suggested MOBOA. To define the new acquisition
function, the suggested MOBOA modifies two metrics for
the quality of the Pareto set, overall spread (OS) and the
relative hyperarea difference (RHD).

6.4.1. The Modified Metrics. 'The quality of Pareto frontiers is
usually measured by the RHD and OS [56]. In Figure 4, the
diversity and convergence of the obtained Pareto frontier are
represented by the OS and RHD, respectively. The RHD and
OS are the polygon area formed by the Pareto frontier and
the bounding box of the frontier, respectively. If the RHD
value is small, the convergence of the Pareto frontier will be
higher. Moreover, if the OS value is large, the diversity of the
Pareto frontier will be higher.

HA(Pbad’ Pgood) -HA (Pbad’ a, b’ G d)
HA(Pbad’ Pgood)

RHD-= , (9)

HA (extremes (P))
OS =
HA(Pbad’ Pgood)

> (10)
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FiGUre 6: The flowchart of the suggested approach.

TaBLE 1: PV cell specifications.

Description Value
Voltage at Pmax (Vmp) 5V
Current at Pmax (Ipm) 0.8A
Open circuit voltage (VocN) 6V
Short-circuit current (ISC) 09A
Temperature coefficient of voltage (Kv) -6x10-3V/K
Temperature coeflicient of current (Ki) 5.4x10-4 A/K

Surface emissivity (es) 0.8
Surface area 0.2 mm x 0.2 mm

where Py,0q is a good solution, Py,q is a much worse solution
than the frontier, HA(extremes(P)) is the hyperarea bounded
by the two extreme points in the Pareto frontier, and
HA(Pyads Pgooa) is the area of the bounding box formed by
Pbad and Pgood'

The key drawbacks of the OS and RHD are as follows: (1)
Pgooq and Pp,q must be determined before computing the
two metrics and (2) in case of finding a new Pareto between
two existing Pareto solutions, the RHD value of the Pareto
front increases instead of reducing uniformly. To tackle these
drawbacks, the MOBOA uses the modified overall spread

5
TaBLE 2: DC-DC converter specifications.
Description Value
Switching frequency 20KHz
Capacitor 200 uF
Inductor 0.0l mH
400 T T T T T
GMPP at ~ «—GMPP at pattern 1
pattern 3
~ 300 | 4
g
§ 200 GMPP at pattern 2 i
2
>
A 100 i
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FiGURrE 7: The P-V curve of PSC patterns in Case 1.
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FIGURE 8: The PV power in the presence of competitive algorithms
in Case 1.

(MOS) and the modified hyperarea difference (MHD). In
Figures 5(a) and 5(b), the shaded areas indicate the values of
the MOS and the MHD.

6.4.2. The Suggested Acquisition Function. Using the MHD
and MOS, new Pareto solutions in the unsearched space are
obtained from a new acquisition function. LCB functions are
employed to consider the uncertainty related to the objective
surrogates to improve the efficiency of the computational
functions and robustness. The LCB functions are repre-
sented by

frep(x) = [fLCB,l (%) frepa (%) fresm (X)]’ (11)

where
Frep: (x) = fi(x) —k;s;(x), fori=1,..., M, (12)

where M is the number of objective functions approximated
by the Kriging model, f;(x) is the predicted mean, and s; (x)
is the Kriging model standard deviation for the ith objective
function at x.
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TaBLE 3: A comparative study between the competitive algorithms in Case 1.
. Efficiency (%) Quantification of transient Quantification of steady-state Tracking Settling
Algorithm . s . s . . .
(using (19)) oscillations (using Eq. (17)) oscillations (using Eq. (18)) time (s) time (s)
MOBOA 99.58 0.66 0.08 0.13 0.25
PSO 89.75 6.98 2.54 0.34 0.84
WDO 98.38 1.93 1.03 0.23 0.38
GWO 97.33 3.11 1.13 0.27 0.54
P&O 85.32 0.30 6.82 0.14 0.39
BA 94.99 4.27 1.66 0.22 0.55

The goal of the suggested acquisition function is to
obtain a solution to maximize the quality of the Pareto
solutions. The diversity or convergence of the Pareto set can
always be improved by Pareto’s new solution. Therefore, the
suggested acquisition function can be expressed as

a(x) = max (I p (%), Ios (%)), (13)
where
L _MHD(D.x)-MHDD)
MHD MH D(D,) i
_|MOS({D,, x}) - MOS(D,)|
Iyos = MOS(D,) ’ (15)

where Dn is n existing sample points, MHD(D,,) is the MHD
based on D, and MOS(D,) is MOS based on D,, and

MHD({D,, x}) and MOS({D,,, x}) are the updated MHD and
MOS in case of adding x into the sample set. By maximizing
Eq. (13), the Kriging models are updated by a new sample
point.

7. Result and Discussion

Now, several scenarios are simulated to justify the effec-
tiveness of the MOBOA in tracking the GMPP. In addition,
the following equation is used to compute the efficiency of
the PV array:

_ Yie1 Paper X T
ZkN=1 Peppp X T
where PMPPT and PGMPPT are the output power of the PV

array and the global maximum power, respectively and Ts is
the sampling time.

n (16)
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In addition, to assess the performance of algorithms, the
following criteria called quantification of transient oscilla-
tions indicating the power loss with respect to the GMPP are
utilized:

tconv
n = [ (G- PN, (17)
where G is the PV power at the GMPP, P is the instantaneous
PV power and tconv is the convergence time of the algo-

rithm at the GMPP. In addition, the following criteria for
quantifying the steady-state error (SSE) are introduced:

Py, = j (G- P(1)dr, (18)

cony

where tg is the time simulation.

Figure 6 shows the flowchart of the suggested approach
to track the GMPP using the MOBOA.

Simultaneous satisfaction of the following conditions
terminates the optimization algorithm:

(1) When the difference between the current and pre-
vious quality criteria is less than a certain value (e.g.,
2% in this study), or the number of iterations reaches
a predetermined maximum value, (in this study,
maximum value is 30).

(2) When at least k solutions are found by the optimi-
zation algorithm so that a sufficient number of the
Pareto solutions give sufficient choices to the deci-
sion maker. Here, k is selected to be 15.

To validate the ability of the suggested approach, the
performance of the suggested method is compared with the
results acquired from PSO, WDO [22], GWO [57], P&O,
and BA.

The parameters used in the simulations are presented in
Tabels 1 and 2.

7.1. Case Study 1: Fast Varying Irradiance Profile. In Case 1, a
fast varying irradiance profile at the constant temperature
shown in Figure 7 is radiated to the PV array to detect the
impact of fast changes in irradiance and the ability of the
different MPPT algorithms to track and retrack the
GMPPs. In Figure 8, from the power analysis, it can be
concluded that the PV system produces a power of 536 W
with an efficiency of 99.97% at the presence of the pro-
posed algorithm, which is the highest power extracted
from the PV array at the time interval of t=0 to t=2s.
Also, the PV system in the presence of PSO, WDO, GWO,
P&O, and BA generates 534.8 W, 535.2W, 535.6 W,
532.8W, and 535.2W at the steady state, respectively.
Figure 9 shows the zoomed-in PV power for the time
interval of t=0.2s to t=1.6 5. In Figure 10, the PV voltage
is plotted for different algorithms. As seen in this figure,
the algorithms of PSO and BA generate large oscillations
at the transient state. In the steady state, the step size of the
P&O generates large oscillations around the GMPP with
an amplitude of nearly 10 W.
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FIGURE 11: The P-V curve of the PV system in Case 2.
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FiGure 13: The PV voltage in the presence of competitive algo-
rithms in Case 2.

The average power value of the profile radiated to the PV
array in Case 1 is 356.26. The average power generated by
MOBOA, BA, P&0O, GWO, WDO, and PSO is 352.76,
345.56, 331.44, 345.44, 344.48, and 342.24 W, respectively.
The performance of the MOBOA in tracking and retracking
the GMPP is highly efficient and robust to fast changes in the
irradiance. The P&O algorithm has undesirable oscillations
around the GMPP.
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TABLE 4: A comparative study between the competitive algorithms in Case 2.

Algorithm Efficiency (%)  Quantification of transient — Quantification of steady-state ~ Tracking Settling Algorithm

& (using (19)) oscillations (using Eq. (17)) oscillations (using Eq. (18)) time (s) time (s) complexity
MOBOA 99.87 0.29 0.03 0.21 0.40 Relatively high
PSO 93.32 4.22 1.81 0.43 1.01 Average
WDO 98.84 1.03 0.67 0.35 0.80 Average
GWO 92.45 3.93 1.72 0.32 0.64 Average
BA 91.61 5.88 2.14 0.34 0.54 Relatively high

The performance of competitive techniques is discussed
by two characteristics, settling time and tracking time. Most
optimization algorithms strike a balance between the settling
time and the tracking time which is carried out by separating
the procedure into phases of the exploration and exploita-
tion. Table 3 compares the results obtained from different
algorithms in terms of efficiency, quantification of transient
oscillations, tracking time, and settling time.

7.2. Case Study 2: Complex Partial Shading Conditions. In
Case 2, a PV system having 12 similar series-connected
panels is selected to evaluate the performance of competitive
algorithms under complex partial shading conditions with
the P-V curve shown in Figure 11. Due to the wide dis-
tribution of partial shading, local maximum power points
are created in the form of clusters. The maximum power
point of the cluster is known as the cluster head maximum
(CHM). As seen in Figure 11, there are two distinct clusters
called cluster 1 in the left half of the P-V curve having four
maximum power points and cluster 2 in the right half of the
P-V curve having three maximum power points. The global
maximum power point or the CHM is located in cluster 1
and is close to the local maximum power point of cluster 2.

In cluster 1, the GMPP is located at 666 W and 198V,
and in cluster 2, the CHM lies at 618 W and 324 V. In cluster
1, the mean power is 616.3 W and the mean power of cluster
2is 628.1 W. It means that although the GMPP lies at cluster
1, there is a strong possibility that the particles will move
towards cluster 2 and settle at the CHM located in cluster 2.

Figures 12 and 13 compare the PV power and PV voltage
obtained from different algorithms, respectively. It is clear
from this figure that the PV system generates 665 W in the
presence of the MOBOA. The PV system in the presence of
algorithms of WDO, GWO, PSO, and BA generates 659 W,
622W, 621 W, and 614 W, respectively. It is concluded that
the algorithms of the MOBOA and WDO are able to rec-
ognize the CHM in cluster 1, and the rest of algorithms are
trapped at the local maximum power points. Table 4 compares
the results obtained from the competitive algorithms in Case
2. Although the algorithms of GWO and BA have less
tracking time and settling time than WDO, but these two
algorithms are unable to recognize the true CHM. This fact
can be deduced from the efficiency value. In addition, the
algorithms are compared in terms of algorithm complexity.

7.3. Case Study 3: Fast Changes in Temperature and
Irradiation. Variable environmental conditions due to
nonlinear properties are a challenging issue for the solar

400

350 - i
300 -
250 |
200
150 |

PV power (W)

100

50

P&O
—— MOBOA
—— FOA

FIGURE 14: PV power for step change irradiation.

TABLE 5: A comparative study between the competitive algorithms
in Case 3.

Quantification of Quantification of

Aleorithm (I;I/ﬂ)ﬁc(llelzli;y transient steady-state
8 EO a 9))g oscillations (using oscillations (using
q Eq. (17)) Eq. (18))
MOBOA 99.87 0.04 0.02
PSO 99.51 0.04 0.08
P&O 87.97 0.01 10.98

photovoltaic system. The problem of drift is an important
problem that arises due to incorrect estimation of the
perturbation to increase radiation. Here, the results of the
MOBOA are compared with the results of the FOA pro-
posed in [24]. Figure 14 shows the PV power and fast
changes in temperature and irradiation. In this case study,
from t=0 to t=1s, temperature is 25°C, irradiation is
400 W/m?, and the maximum power is 121.5 W; from t =1
to t=2s, temperature is 25°C, irradiation is 600 W/m?, and
the maximum power is 198.3W; from t=2s to t=3s,
temperature is 30°C, irradiation is 750 W/m®, and the
maximum power is 262.2W; from t=3s to t=4s, tem-
perature is 35°C, irradiation is 900 W/m?, and the maxi-
mum power is 331.7W. The efficiency of MPPTs is as
follows: P&O 87.97%, MOBOA 99.63%, and PSO 97.61%.
Table 5 compares the results obtained from the competitive
algorithms in Case 3.
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TABLE 6: Performance summary of MPPT algorithms.

. Rise time Retracking time Transient Steady-state No. Of adjustable Ability to handle
Algorithm s -
(ms) (ms) oscillations oscillations parameters PSC
MOBOA 100-200 100-150 Low Zero 10 Yes
WDO 200-300 100-300 Relatively low Zero 5 Yes
BA 200-500 100-400 Relatively high Low 8 Faﬂur:a;fcls some
P&O 50-700 50-100 Very low High 1 No
GWO 230-350 100-400 Relatively low Low 3 Faﬂur:a;’els some
PSO 200-500 100-400 Relatively high Low 3 Failure in some

cases

7.4. Discussion. The proposed MPPT based on the MOBOA
is able to achieve all objectives of designing an MPPT
controller such as accurate MPPT tracking, little steady state,
and transient state oscillations. Despite these successes, the
main drawback of the proposed approach is its relative
complexity.

Table 6 summarizes the ability of the algorithms men-
tioned in this study to track the GMPP. The tracking speed is
selected as the first variable to assess the algorithm per-
formance; the MOBOA seems to be the quickest; consid-
ering the speed between 100 ms and 200 ms. The P&O and
MOBOA have roughly the same speed. This is because the
P&O algorithm only requires a gradual rise from zero to a
maximum point with a fixed step size. As the step size
increases, the convergence speed increases, but fluctuations
around the GMPP occur at the steady state.

In terms of tracking new GMPPs, P&O takes less time to
retrack the new GMPP since its performance is only de-
pendent on the gradient of the P-V curve, so it is easier to
climb the GMPP. On the contrary, the competitive algo-
rithms are based on search space. When a change in climate
occurs, the search-based algorithms scatter their samples all
over the P-V curve. In addition, the speed of the tracking is
strongly dependent on the random numbers generated.
Considering the transient performance, it should be noted
that the MOBOA has the quickest algorithms.

Fluctuations around the GMPP lead to energy loss at the
steady state. The absence of these oscillations in the transient
and steady state can be declared as the key benefit of the
MOBOA.

The step size is the only adjustable parameter of the P&O
method. Implementing this algorithm is easy and simple.

Obviously, P&O is unable to handle PSCs. This may be
critical in a variety of situations, especially for the building of
integrated PV systems in crowded areas. The WDO and
MOBOA can handle the PSC well. The other algorithms may
fail to handle the PSC.

8. Conclusion

This paper suggests a modified bat optimization algorithm to
track the global maximum power point in the PV system
under different conditions such as load variations, sudden
variations of the irradiation level, and partially shaded
condition. This method is utilized to directly generate the

duty cycle of the boost DC-DC converter. This paper for-
mulates the problem of the PSC with minimal steady and
transient oscillations and rapid convergence into a multi-
objective function and solves it with a novel multiobjective
optimization algorithm. To cancel the oscillations around
the MPP in transient and steady states and to remove the
large tracking errors, two objective functions are proposed.
The proposed MOBOA generates the optimal duty cycle to
minimize these two objective functions. The simulation tests
are performed to confirm the performance of the suggested
method. The results confirm that the suggested controller
has a number of benefits: (1) more rapid tracking speed, (2)
no oscillations around the GMPP, (3) finding the GMPP for
any environmental condition, and (4) the simple imple-
mentation of the proposed approach using low-cost
microcontrollers.

Abbreviations:

R,:  Series resistance

Ry,:  Shunt resistance

I, Light induced current
V7 Thermal voltage

N:  Diode ideality factor
K: Boltzmann constant
Q:  Electronic charge
Ve Reference voltage.
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