Retraction

Retracted: Feasibility Deconstruction on the Establishment of Martial Arts Short Soldier Course Assisted by Multimedia Computer Network

International Transactions on Electrical Energy Systems

Received 13 September 2023; Accepted 13 September 2023; Published 14 September 2023

Copyright © 2023 International Transactions on Electrical Energy Systems. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investigation undertaken by the publisher [1]. This investigation has uncovered evidence of one or more of the following indicators of systematic manipulation of the publication process:

1. Discrepancies in scope
2. Discrepancies in the description of the research reported
3. Discrepancies between the availability of data and the research described
4. Inappropriate citations
5. Incoherent, meaningless and/or irrelevant content included in the article
6. Peer-review manipulation

The presence of these indicators undermines our confidence in the integrity of the article’s content and we cannot, therefore, vouch for its reliability. Please note that this notice is intended solely to alert readers that the content of this article is unreliable. We have not investigated whether authors were aware of or involved in the systematic manipulation of the publication process.

In addition, our investigation has also shown that one or more of the following human-subject reporting requirements has not been met in this article: ethical approval by an Institutional Review Board (IRB) committee or equivalent, patient/participant consent to participate, and/or agreement to publish patient/participant details (where relevant).

Wiley and Hindawi regrets that the usual quality checks did not identify these issues before publication and have since put additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research Publishing teams and anonymous and named external researchers and research integrity experts for contributing to this investigation.

The corresponding author, as the representative of all authors, has been given the opportunity to register their agreement or disagreement to this retraction. We have kept a record of any response received.

References

Research Article

Feasibility Deconstruction on the Establishment of Martial Arts Short Soldier Course Assisted by Multimedia Computer Network

Fei Meng

Department of Physical Education and Health, Heze University, Heze 274000, Shandong, China

Correspondence should be addressed to Fei Meng; mengfei@hezeu.edu.cn

Received 1 July 2022; Revised 18 July 2022; Accepted 22 July 2022; Published 25 August 2022

Academic Editor: Raghavan Dhanasekaran

Copyright © 2022 Fei Meng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Martial arts short-armed sport is an important item of martial arts. At present, the martial arts short soldier movement in the society cannot be carried out due to various reasons. As a sports academy, it is our responsibility to shoulder this important task. With the popularization of the Internet and the rapid development of multimedia and network technologies, human society has entered an information age. Traditional classroom teaching has been unable to meet the requirements of the times. Due to its characteristics of remote real-time interaction, network education has become a new generation of educational technology that combines network and multimedia technology. Network course is the most important learning content in network teaching, and its design, development, and implementation have received more and more attention. With the rapid development of computer network technology, the status of computer-aided teaching in teaching improvement has also been continuously improved. Computer-assisted instruction (CAI) is a hot topic in today’s classrooms. In physical education, computer-aided teaching makes up for the shortcomings of illustrations, text descriptions, teacher explanations, demonstrations, etc., in textbooks and overcomes the shortcomings of traditional teaching aids. It simplifies complex actions and concretizes non-decomposable actions. Computer-aided teaching can not only help students understand, master knowledge, and develop intelligence, but also help teachers master information and improve teaching quality. This study studies the recognition and application effect of CAI in the short-armed martial arts courses in physical education colleges. The data show that martial arts short-armed sports have outstanding advantages in combat, safety, fitness, and viewing. The experimental group scored around 90 points.

1. Introduction

Martial arts short-armed sport is a short-armed sport with the goal of protecting human safety. Athletes fight with various primitive short-weapon methods, to inherit and develop short-weapon combat techniques. This is an important part of traditional Chinese sports. In China’s traditional sports, it is a very meaningful activity to carry out martial arts short soldiers. In the whole process of education, educational concepts, content, methods, means, and processes will be gradually broken. The educational process will also show a development trend of diversification, socialization, and subjectivity. With the rapid development of China’s economy and science and technology, computers have entered various fields of education for a long time and have made great progress. In today’s changing age structure of teachers, scientific and rational use of this new medium is a quality that teachers must possess. To strengthen the modernization of educational technology and information technology, we must make full use of existing resources, use a variety of audiovisual equipment, carry out various forms of multimedia-assisted teaching, and take effective measures to develop high-quality teaching software. There are more and more types of media elements that constitute increasingly complex media elements, that is, audio, images, numerical values, text, and video animation. Objects are to be processed, transmitted, and stored by digital computers, enabling them to be transmitted, stored, information throughput, freely converted, etc., between analog and digital quantities.

Short-armed sports is an important part of Chinese martial arts and one of the competitive forms of martial arts. It is of great research significance to set up a short-armed martial arts course. Zou analyzed the force characteristics of
martial arts routine athletes’ backhand punches by comparing their punching performance. He collected the images after punching, analyzed the time for the three groups of subjects to complete the action and the time of contacting the project, and evaluated the effect after punching. He explored the surface experimental characteristics and joint performance of regular athletes and Sanda athletes in backhand punching. He has strong pertinence to the conventional strength training of backhand boxers and Sanda athletes, which provides the theoretical basis and technical guidance for the scientific training of martial arts [1]. Huang A analyzed the martial arts self-selected routines of high-level competitive martial arts athletes. He revealed the relationship between martial arts routine arrangement and physical fitness distribution. Through the methods of literature, expert interviews, video observation, mathematical statistics, and logical analysis, he conducted a video analysis of the martial arts optional items in the martial arts routine finals of the National Games in recent years. In addition, he conducted interviews with martial arts experts, scholars, and relevant teachers of sports research methods. He discussed the routine arrangement in the research process. By summarizing the research results, he came to the final conclusion. Reasonable arrangements can reduce physical energy consumption, and the improvement of physical fitness is conducive to improving the development space of routines and increasing the probability of athletes winning [2].

Practice showed that network multimedia teaching is an effective way to avoid problems such as limited course time and irregular movements in traditional martial arts teaching. Simarmata believed that the traditional teaching process, especially the practical materials, is not yet optimal. Therefore, computer-based and multimedia-based learning is needed to assist students. In addition, the computer-aided teaching method can reduce the cost of purchasing practical materials, and students can absorb the knowledge well without having to consider the cost of purchasing practical materials. Computer-aided teaching methods can display learning content through various media such as pictures or videos, which can help the effective learning process and simplify the learning speed of students, because it is combined with multimedia. By doing so, students can practice course material and study anytime, anywhere. Computer learning apps prioritize user interface, user-friendly, which can make students learn with diligence and enthusiasm [4]. Pengkun Y discussed the situational teaching of English assisted by multimedia network. First, he established the basic principles of multimedia-assisted teaching in English situational teaching. By designing game activities using multimedia presentations, he presents backgrounds and lesson plans designed to enhance student learning. Second, he established a multimedia network-based English situational teaching framework. Through the learning efficiency formula, it can be found that with the assistance of multimedia network, students’ learning efficiency has been greatly improved. By constructing English teaching, students can be encouraged to participate, so as to improve students’ learning enthusiasm and initiative, and enhance the atmosphere of English communication. In addition, it can also change the learning efficiency of students and the teaching effect of teachers, but it has not spread widely used [5]. Goode employed a collaborative project model to deliver concurrent multimedia courses at the undergraduate and graduate levels. Applying this model, online master’s students studying technical communication event management remotely manage teams of on-campus undergraduate students studying multimedia production skills. He piloted this collaborative project model in a recent semester. The response of both graduates and undergraduates to this format has been very positive, and the quality of the projects done is very good and well received by their respective clients [6]. Multimedia authored and curated assignments have the potential to engage students in deeper learning. Riordan explored whether doing the same homework in paper and multimedia formats would lead to a different student experience. Introductory psychology students submit traditional essays or multimedia projects to address the same homework prompts, a process repeated seven times across four courses, either at the discretion of the instructor or at the student’s choice. Students were surveyed about the form of assignments, and their performance was analyzed. Overall, students found multimedia assignments to be more engaging, enjoyable, fun, and harder than paper assignments. When assignments were determined by the teacher, students reported higher perceived learning rates for multimedia assignments. There was no significant difference in the grades of assignments in different assignment formats. These results suggest that converting traditional paper assignments to multimedia form is a cost-free way to improve student experience [7]. These studies provide a detailed analysis of martial arts teaching and multimedia computer-aided teaching methods. It is undeniable that these studies have greatly promoted the development of the corresponding fields. We can learn a lot from methodology and data analysis. However, there are relatively few research studies on the teaching of Wushu Short Soldiers and it is not thorough enough, and it is necessary to fully apply these techniques to the research in this field.

This study studies the necessity and feasibility of the multimedia computer network-assisted training of short-troop martial arts courses in sports colleges. It was found that more than 90% of the students were very interested in learning about martial arts, and 80% of the students liked martial arts. It shows that the vast majority of students have a
strong interest in martial arts short soldiers. Compared with the traditional teaching methods, the short-handed martial arts courses are assisted by multimedia computer network. The experimental group got a score of about 90 points, and the control group got a stable score of about 80 points, but it was also found that 18% of them could not meet the daily physical education teaching. The average index value of students' positive response to the course in the experimental group increased after the experiment, and the average index value of "great gain" increased by 0.56.

2. Method of Multimedia Computer Network-Assisted Short-War Martial Arts Course

Martial arts short-armed sport is a sports activity, which is of great significance for enriching its connotation, promoting its development, expanding its consumer groups, and promoting Chinese martial arts as a national treasure [8]. Martial arts short-armed sports have the characteristics of simple equipment, safe items, diverse techniques, and intelligence in confrontation. The characteristics and functions of sprinting determine its application value in society. Relying on the advantages of the school to develop the short-handed movement can make better use of the school's advantages and make better use of the short-handed project, so that it can quickly radiate and spread to the society [9].

Starting from the characteristics of martial arts short soldiers themselves, it can be seen that martial arts short soldiers are a valuable competitive sport. First of all, due to the intensity and safety of its confrontational exercise, practitioners can not only enhance their physical fitness but also cultivate their sentiments and increase the fun of recreational activities [10]. Secondly, because it has the nature of martial arts and mainly combines equipment with martial arts, practitioners can not only improve the coordination of the body but also learn the self-protection ability of weapons. In addition, through this activity, they can not only hone their will, cultivate their sense of competition, but also achieve the effect of making friends by force [11].

The short-handed technical system can be divided into main technical actions and auxiliary technical actions. Its technical movements can be divided into offensive techniques and defensive techniques; auxiliary technical movements include preparation, short step, holding troops, and posture [12]. The main technical actions are offensive and defensive technical actions (Figure 1).

From the above various technical movements, we can see that the short-handed movement is a movement full of confrontational movements. In the process of confrontation, it is necessary to constantly use movements such as advancing, retreating, straddling, and jumping. During the entire exercise process, various joints of the human body are exercised, and one must concentrate and concentrate. After a short training, it can improve the flexibility, explosiveness, flexibility, endurance, and strength of the body. Under the highly concentrated practice, it can improve the sensitivity of the human motor system and nervous system and achieve the effect of strengthening the body. Through short soldier training, students can learn offensive and defensive skills and improve their self-defense awareness and ability [13]. At the same time, in the long-term study and training, the physical pain and psychological timidity can be overcome. It can cultivate the will quality of perseverance, perseverance, never give up, and tenacious struggle [14].

CAI refers to a series of teaching activities using computers for teaching, through discussions with students, arranging the teaching process, and carrying out teaching training. Computer-assisted instruction creates a personalized learning environment for students [15–17]. CAI is based on the computer as the main teaching medium, that is, teaching through computer-assisted teachers. Computers can not only provide simple text, numbers, and other text teaching information but also output animation, video, image, sound, and so on. It can well realize the integration of graphics, text, and sound of teaching information and improve the credibility of educational information [18]. The comprehensive application of multimedia technology, hypertext technology, artificial intelligence technology, network communication technology, and knowledge base technology solves the single and one-sided problem of traditional teaching situation. The application of this system can shorten the teaching time, improve the teaching quality, improve the teaching effect, and achieve the teaching purpose [19].

Under the two-dimensional coordinate system, it is characterized by teacher-oriented and student-centered “individualization-collectivization.” Taking “people-oriented” as the scale, the differences in different educational cultures were analyzed, and the classification system of the CAI teaching mode shown in Figure 2 was obtained [20].

With the high development of multimedia technology, multimedia technology visualization is applied to CAI. A multimedia computer is a technology that can capture, process, edit, store, and display two or more different types of information media at the same time. These information media include text, graphics, images, sounds, animations, images, and like. The distinctive feature of multimedia resources is that the internal information has a strong degree of connection and the internal organization of the file is complex. The traditional calculation result is data flow. This data flow is not easy to understand, nor easy to check for right or wrong [21–23]. Visualization technology generates two-dimensional graphics on the screen through the geometric elements in the data structure and grasps the
operation of the data by means of the operation of the graphics, so that the process is visualized and intuitive. The multimedia computer-aided teaching model is a bilateral relationship between teachers and students, including three factors: teachers, models, and students [24–26]. Its teaching framework is shown in Figure 3.

Information dissemination is a complex process. Source, information, channel, and disseminator are the four basic elements in information dissemination, among which the channel includes various human sense organs. This reveals the important role of various human senses in information reception. The perception and acceptance of information are mainly completed by five sense organs, namely, vision, hearing, touch, smell, and taste. Among them, vision and hearing account for 94% of the total received information. From the perspective of the memory effect of receiving information, psychological research shows that it is shown in Table 1.

Multimedia computer combines various human sense media, so they can be considered as an extension of human senses. The multimedia computer integrates and processes information in a multidimensional way, so that the information obtained by different human senses can complement each other and form a relatively complete information space, which can enhance students’ ability to feel and understand things. The large amount of information in multimedia teaching is not conducive to students’ absorption of information. Multimedia classroom helps to stimulate students’ interest and motivation in learning, and the teaching effect is good, but it is also necessary to play the role of multimedia in a timely and appropriate manner.

Using multimedia technology, it can turn static into dynamic, change from fast to slow, integrate abstraction into image, and enhance the teaching effect. Data communication and digital communication technology are the core contents of basic computer network research. Its essence is the information stored in the computer. It adopts the form of data coding and converts binary data into electromagnetic signals or optical signals through the principle of digital circuits and transmits them in a controlled manner in channels composed of various transmission media by physical means such as electromagnetic waves, broadcasting, microwaves, infrared rays, and satellites. The speed of transmission, the variety of forms, the complexity of physical changes, and the difficulty of control are difficult to reproduce physically through experimental equipment. Using computer multimedia technology, through sound, light, and animation technology, it vividly reproduces the abstract content, complex change process, subtle structure, and complicated control that are difficult to express in teaching and difficult for students to understand through animation simulation, partial enlargement, process demonstration, and

Figure 2: Classification of computer-assisted instruction systems.
other means. It thus has a multiplier effect. The data transmission process in the WAN is shown in Figure 4.

The adaptive network multimedia service presents diversified development, and how to design appropriate indicators to evaluate the service quality becomes particularly important. From the user’s point of view, good service quality means a higher degree of recognition of the service. Due to the adaptive media service method, the bit rate/quality is time-varying, and the received video is distorted relative to the original video. For videos with the same content and encoding method, even if they are transmitted in the same network environment, different transmission adaptive algorithms usually get different video quality. The most intuitive way to evaluate the quality of video service is the quality of the video at the receiving end, that is, comparing each pixel of the original reference video frame and the distorted video frame, so as to obtain the similarity or fidelity between the two. The simplest measures to measure fidelity are mean square error (MSE) and peak signal-to-noise ratio (PSNR).

2.1. Mean Square Error (MSE)

\[\text{MSE} = \frac{\sum_{0 \leq i < M} \sum_{0 \leq j < N} (f_{ij} - f'_{ij})}{M \times N} \]

Among them, \(M \) and \(N \) represent the height and width of the video frame, respectively, and \(f_{ij} \) and \(f'_{ij} \) represent the original reference video frame and the distorted video frame, respectively.

2.2. Peak Signal-to-Noise Ratio (PSNR)

\[\text{PSNR} = 10 \log_{10} \left(\frac{2^n - 1}{\text{MSE}} \right) \]

where \(n \) is the number of bits per sample value. PSNR is essentially the same as MSE, which is the logarithmic representation of MSE. For a video, the average value of PSNR or MSE is usually used to represent the video quality. In general, for the same video content, when using the same encoding method, the higher the bit rate usually means the better the video quality. Therefore, sometimes the average bit rate can also be used to represent the difference in video quality.

From the user’s point of view, not only do they expect higher video quality, i.e., clarity, but also expect smoother video playback. In other words, interruptions and stutters during playback can be minimized. The fluency of the video will seriously affect the user’s willingness to watch, which is directly related to the satisfaction of the video service. Therefore, the multimedia service system must ensure that the video quality is improved under the premise of smooth video. Frame rate is directly related to video fluency. If the frame rate of video compression is 25 frames per second, the actual frame rate of playback is only 20 frames per second. Obviously, there is a lag in playback. Therefore, in practical applications, the average frame rate can be used to characterize the fluency:

\[f_T = \frac{A(T)}{T'}, \]

where \(A(T) \) represents the total number of frames when a video with a length of \(L \) minutes is played, and \(T' \) is the actual playback time. Usually, when the video bit rate is higher than the available bandwidth of the network, the cache starts to be consumed. Playback is interrupted once the number of buffered video frames is less than the minimum decodable value. Therefore, by recording the changes in the playback buffer, the interruption frequency or average interruption time during the playback process can also be counted to represent the smoothness of playback, that is, the interruption frequency:

\[f_s = \frac{S(T)}{T}, \]

where \(S(T) \) represents the total number of interruptions. The average interruption time is as follows:
Among them, $t(n)$ represents the duration of the nth interruption.

The variance is used to characterize the intensity of fluctuations. Similarly, for the smoothness of the video, it can be characterized by the variance of quality/bit rate variation, namely,

$$\sigma^2 = \frac{\sum_{t=1}^{T} (r_t - r_A)^2}{T}. \quad (6)$$

Among them, the video duration is T, r_t is the bit rate at time t, and r_A is the average bit rate.

For layered video, it can also be characterized by the magnitude and frequency of video quality/bit rate changes. Among them, the amplitude can be expressed by the following formula:

$$U = \sum_{t=1}^{T} \left| r_t - r_A \right| \quad (7)$$

The frequencies are as follows:

$$f = \frac{\sum_{t=1}^{T} F_t}{T}. \quad (8)$$

F_t is the indicative function:

$$F_t = \begin{cases} 1, & \text{If a layer switch occurs at time } t, \\ 0, & \text{Otherwise.} \end{cases} \quad (9)$$

Obviously, the larger the amplitude and the higher the frequency, the more obvious the video flicker and the worse the smoothness.

2.2.1. Disk I/O. Assuming that the amount of data transmitted by the disk per second is W_{max}, the seek time of the head in the D time is t, and the time used for data transmission in the D time is $D - nt$, so the n priority nodes can be scheduled as follows:

$$\sum_{i=1}^{n} x_i u_i \leq (D - nt)W_{\text{max}}. \quad (10)$$

The number of data units processed in time D is as follows:

$$x_i = [k_i D]. \quad (11)$$

It can also be expressed as follows:

$$\sum_{i=1}^{n} (x_i u_i + tW_{\text{max}}) \leq DW_{\text{max}} = I. \quad (12)$$

2.2.2. CPU Scheduling. All threads are scheduled periodically. Due to the use of double buffer technology, thread access to media data is nonblocking. The conditions for the CPU to schedule n threads are as follows:

$$\sum_{i=1}^{n} e_i \leq (2^{\ln n} - 1) \equiv C. \quad (13)$$

2.2.3. Multimedia Output Device Scheduling. Multimedia output devices have a maximum output rate limit. When n multimedia streams are output, stream merging may be performed, that is, output at $\sum_{i=1}^{n} r_i$ rate. Assuming that V_{max} supports the maximum allowable rate for the multimedia

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Schematic diagram of data transmission.}
\end{figure}
output device, the conditions under which \(n \) priority sections can be scheduled are as follows:

\[
\sum_{i=1}^{n} r_i \leq V_{\text{max}}. \quad (14)
\]

2.2.4. Network Management. Distributed networks have a maximum bandwidth limit. Assuming that \(B_{\text{max}} \) is the maximum allowable bandwidth of the network, the conditions for scheduling \(n \) priority nodes are as follows:

\[
\sum_{i=1}^{n} r_i \leq B_{\text{max}}. \quad (15)
\]

Combining the output device bandwidth calculation with the network bandwidth calculation, we get the following:

\[
\sum_{i=1}^{n} r_i \leq \min(V_{\text{max}}, B_{\text{max}}). \quad (16)
\]

2.2.5. Buffer Management. Buffer management is responsible for buffer allocation and deallocation for priority sections. Assuming that each priority section has thread \(p_i \) and network processing \(q_i \), then \(n \) priority sections have \(\sum_{i=1}^{n} p_i \) threads and \(\sum_{i=1}^{n} q_i \) network processing; then, the conditions for \(n \) priority sections to be scheduled are as follows:

\[
2 \left(\sum_{i=1}^{n} p_i + \sum_{j=1}^{h+1} x_i m_j \right) \leq M_{\text{max}}, \quad (17)
\]

where \(M_{\text{max}} \) is the maximum available memory space of a computer system.

As shown in Figure 5, the so-called virtual reality means that the user can watch the virtual world through the computer screen and through the multimedia technology. On this basis, using a variety of different input devices to fully interact with virtual reality is an important method to realize multimedia teaching courseware. VRML (virtual reality modeling language) is a virtual modeling language. It is a platform-independent descriptive language that supports three-dimensional interactive functions. It is widely used in the development of online games, and it has good editability, reusability, extensibility, and scalability. It is one of the main realization tools of virtual reality technology.

Interaction is a necessary function of making multimedia network teaching courseware. VRML is realized through internal sensor triggers and events, routing system, and message capture mechanism. Through these mechanisms, nodes in the scene graph can communicate with each other in the form of messages. Nodes can capture these messages for event triggering, which can cause scene changes. This also solves the simulation problem of data exchange between network nodes in network data transmission. As for the interaction with the courseware user, the realization principle is to attach the sensor node to a shape. It is defined that the sensor uses a specific pointing device such as a mouse to sense the user’s actions, but when different actions such as double click or single click are sensed, different events are triggered and output. This event is transmitted to the relevant nodes through the routing mechanism, causing modeling changes or animation playback, thereby constructing the interaction mechanism between the virtual reality world and the operator.

3. Investigation and Experiment of Multimedia Computer Network-Assisted Short-War Martial Arts Course

Because the B/S (browser/server) structure has good independence, scalability, and security, it is suitable for the interconnection of various databases and also facilitates the management and maintenance of the system. Therefore, the whole system is designed with B/S structure of client, Web server, and database server. The basic structure is shown in Figure 6.

The IIS (Internet Information Services) architecture Web server is used to connect the client and the database server. When the client requests to access the database, the
Web server is responsible for the communication between the database server and the client terminal and embeds the relevant data into the client’s Web page. When the client requests not to access the database, the Web server will directly process these requests and deliver the resulting Web page to the client browser.

In the physical education teaching in colleges and universities, the teaching forms based on ball games, aerobics, gymnastics, martial arts routines, and other items still exist. Programs such as Wushu Short Soldier are not only popular among students but also beneficial to the physical and mental development of college students. They are often unable to be opened due to many factors. This study mainly discusses and analyzes factors such as the actual needs of students’ learning, venues, equipment, and teachers and studies the feasibility of setting up martial arts short soldiers in college sports. To study the necessity and feasibility of offering martial arts short-troop courses assisted by multimedia computer networks for martial arts majors in physical education colleges, a questionnaire was made on the intention and participation of martial arts courses in a physical education college. 535 questionnaires were distributed and 530 were recovered, of which 512 were valid questionnaires. The details are shown in Table 2.

Among the students who specialize in martial arts, a class was selected as the experimental group (50 people), and multimedia computer network-assisted short-handed martial arts teaching was carried out in the teaching. The other class is the control group (50 students), which uses traditional teaching methods to teach martial arts and boxing routines. There was no short-term teaching, and the teaching time was 18 hours. After the teaching, the differences between the two groups of students were compared with the test scores.

This test is approved by the school and the parents of the students, and the students participate voluntarily. Before participating, the students have been informed of the test purpose, time limit, and precautions during the test. The physical test of the 100 students before the experiment is shown in Table 3.

4. Feasibility Data of Opening Martial Arts Short-Armed Courses

In the sports activities of colleges and universities, due to the particularity of the major, there are certain skills or project tendencies, and the establishment of novel courses is often what students yearn for. The courses offered according to the interests generated and developed on the basis of needs will surely receive the active participation of students and produce good teaching effects. Figure 7 shows the statistical results of the attitudes of students learning martial arts short soldiers.

From Figure 7, it can be found that more than 90% of the students are very interested in learning about martial arts, and 80% of the students like martial arts. It can be seen that the vast majority of students have a strong interest in martial arts short combat, which shows the urgency of students to understand the urgency of learning martial arts short combat. 77.8% of the students held the attitude that they liked it very much and indicated that, if they had, they would definitely take this course. No requirement accounted for 15.6%. This is because the students only know about the martial arts short soldier through magazines, newspapers, and the Internet, and some do not even know it, so they do not know enough about the functions of the martial arts short soldier. Students’ interest in learning has laid a good foundation for the teaching and training of martial arts short soldiers. Figure 8 shows the evaluation of the technical characteristics of the two groups by the Wushu coaches.

It can be seen from Figure 8 that martial arts short-handed sports have outstanding advantages in combat, safety, fitness, and viewing. The score of the experimental group was around 90, and the evaluation of the control group was stable at around 80. Martial arts short soldier is a fighting sport of two people. It uses equipment to extend the distance of attack and uses body movement and arm movement to attack and defend opponents. As far as equipment is concerned, it is a special weapon, usually wrapped in a layer of sponge leather on rattan or bamboo. This weapon is both soft and elastic, so practitioners do not have to worry about being injured by the equipment.

For physical education, campus hardware facilities and activity area are very important aspects. Figure 9 shows the results of the survey on whether the physical education facilities can meet the daily physical education teaching satisfaction.

It can be seen from Figure 9 that the proportion of students who cannot meet the daily physical education teaching is 18%. It is understood that reasonable use of the school’s airspace to carry out physical education teaching can basically meet the daily physical education needs when the school space is insufficient. Selecting the general proportion is 38%, indicating that the current venue has just met the demand. If martial arts short soldiers enter the campus, it is necessary to build multiple martial arts short soldiers. Solving the problem of venues is one of the important directions for the development of martial arts short soldiers.
Action pleasure refers to the positive emotions of joy and pleasure experienced during movement and activity. The generation of the pleasure of action is related to each person's interest, the expectation of the activity goal, and the increase in positive response. Students have a lot of learning tasks every day, and their psychology is in the developmental stage, which is prone to rebellious psychology. Physical education class can not only exercise the body but also bring a happy mood. This study mainly starts from two aspects: whether the movement pleasure is obtained after practicing martial arts short soldiers and the influence of the movement pleasure on the students’ mental health and mental state. On the one hand, it is to prove the effect of martial arts short soldiers to carry out exercise. On the other hand, it explores the mental and mental health of middle school students according to the pleasure of movement. Figure 10 shows the results of the analysis of the pleasure of the two groups of students before and after the experiment.

It can be seen from Figure 10 that the students in the experimental group think that the average index values of “the course is interesting,” “enjoyed the physical education class,” “involved in the practice,” “the course time passes quickly,” and “great gain” have increased after the experiment. Among them, the average indicator value of “great harvest” rose by 0.56. The increase was larger than that of the control group, while the average indicator value for “the class was boring” decreased. The data show that Wushu Short Soldiers can improve students’ perception of physical education. It increases the love for physical education and improves the teaching effect of physical education. Martial arts short soldiers can bring more pleasure to students. It shows that it is feasible to set up martial arts short soldier courses assisted by multimedia computer network. There is a lot of information in multimedia teaching, and students have different self-learning abilities, so they need to cooperate with traditional teaching methods.
Figure 8: Martial arts coach’s evaluation of the technical characteristics of the two groups.

Figure 9: Whether the physical education facilities can meet the daily physical education teaching satisfaction survey.
5. Conclusion

Through the application of multimedia technology in the teaching of basic theory of interpretation, from static to dynamic, from fast to slow, and from abstract to vivid, this study has made in-depth explorations in strengthening students’ interest in learning, deepening understanding, solving teaching problems, and improving teaching effects. The production and application of interactive animation and other related technologies are studied, and the realization method is given. The investigation shows that the teaching effect of setting up Wushu Short Soldiers assisted by multimedia computer network is relatively good. It is completely feasible to open martial arts short-armed courses based on the existing teachers, students, teaching conditions, and scientific research ability of physical education colleges. However, it should be noted that the multimedia computer-assisted classroom is prone to the characteristics of large amount of information and fast speed, which is not conducive to students’ receiving information. The establishment of martial arts short soldiers is a unique educational form of martial arts courses, and it is also the need to enrich the content of physical education. It also meets the practical needs of students for martial arts skills. Traditional martial arts culture plays an important role in humanistic education. In the study of traditional martial arts, we should break through the limitation of simply viewing it as a sports competition in the past. It is necessary to establish cultural concepts, summarize their thoughts, tap their cultural and educational values, and develop a multilevel martial arts cultural and educational market [27].

Data Availability

The data of this study can be obtained through the email to the authors.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this work.

Authors’ Contributions

Fei Meng was born in Heze City of Shandong Province in China and works in Department of Physical Education and Health, Heze University, with research interests including martial arts and health. Email is mengfei@hezeu.edu.cn.

References

