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Accurate wind power prediction is very predominant for genuine and efective power systems with high wind power perception.
Wind power prediction, as well as wind power generation resources, receives the electrical energy by converting wind into
rotational energy of the blades and converting rotational energy into electrical energy by the generator. Wind energy increases
with the cube of wind speed. Tere are numerous common and deep learning methods that have evolved to attain wind power
prediction. Deep learning-based methods are referred to as straightforward, and robust, and have been utilized in the recent few
years for wind power prediction with a certain level of success. However, due to the lack of an appropriate feature selection process
and to minimize the efect of losses used for wind power prediction, a large amount of computation is necessitated when
processing multi-input wind power data, therefore causing a negative infuence on scalability and hence afecting wind power
prediction time. To address these issues, in this work, a method called, Homogenized Point Mutual Information and Deep
Quantum Reinforced (HPMI-QDR) wind power prediction are proposed. Te HPMI-DQR method is split into two sections. In
the frst section, informative and relevant features required for robust wind power prediction using input wind turbine data are
designed using Homogenized Point Mutual (HPM) Feature Selection model. With the relevant features selected, in the second
section, the actual wind power prediction is made using the Deep Quantum Reinforced Learning model. To validate the proposed
method,Wind Turbine SCADADataset is used for constructing and testing. Simulation of proposedmethod attains enhancement
within wind power prediction accuracy as 13%, minimal wind power prediction time as 25%, as well as better wind energy
generation as 20% and true positive rate as 25%, compared using conventional techniques. Moreover, a substantial improvement
was also found in wind power prediction time with minimum error.

1. Introduction

With the certainty that the conventional fossil fuels are
exhausting in an unalterable inclination, an excessive por-
tion of renewable energy incorporation will be one of the
essential features of the subsequent power system. Amidst all
the complicated renewable energies, wind energy has fas-
cinated noteworthy observations owing to the profuse and
the cleanness. Wind energy is one of the strategies used to
mitigate greenhouse gasses from human activities in the
atmosphere. Wind energy capacity installed at the end of
2016 in Brazil was approximately 11GW, with an estimate
for 2020 will have around 18GW of installed wind energy

capacity, which will contribute to the country’s energy se-
curity. EEMD-CSO-LSTMEFG was developed by [1] to
predict the wind power as well as enhance prediction per-
formance. Here, an improved long short-term memory
network-enhanced forget-gate network (LSTMEFG) model,
whose suitable metrics were optimized utilizing the Cuckoo
Search Optimization algorithm (CSO), was utilized in
forecasting the subseries data via Ensemble Empirical Mode
Decomposition (EEMD).

With this, the forecasting accuracy was improved sub-
stantially. Despite improvement found in accuracy due to
the optimization function being applied for wind power
forecasting, however, with EEMD for forecasting subseries
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data, the time consumed in predicting was not focused. To
address this issue, the Homogenized Point Mutual (HPM)
Feature Selection model is used before the learning process
and only with the informative and relevant feature obtained
formed as input to the deep learning processing, therefore
contributing to wind power prediction time. However, this
scope of deep learning is a feld of computer science to
focuses on developing the performance of wind power
prediction.

Wind power plays a signifcant part in secure trans-
formation and power management. Hybrid scheme to short-
term wind power forecasting including VMD, K-means
clustering, as well as Long Short Term Memory (LSTM) was
implemented by [2]. Te Designed method of VMD-K
means-LSTM split the raw wind power series within various
layers involving distinct frequencies via VMD. Moreover,
substantial improvement was found in terms of precision
and reliability, prediction error was not focused on.

Second, K-means was utilized for breaking the data into
an ensemble of features with homogeneous fuctuant levels
of each layer, and fnally, LSTM was applied for encapsu-
lating the unsteady features of each component. With this,
the forecasting reliability and precision were found to be
improved. To address this issue, a Deep Quantum Rein-
forced Wind Power Prediction model is designed that, with
the aid of quantum function, reduces the prediction error
considerably.

In recent years the probable consequences of global
warming across the planet have been analyzed by numerous
researchers, motivating the utilization of renewable energy
resources, to name a few being wind energy. Wind energy is
considered to be one of the techniques utilized to reduce the
greenhouse gasses from human activities in the atmosphere.
For the victorious incorporation of wind energy into the
power grid, precise predictions are required. Terefore, the
tedium of information about the wind in a given location is
paramount for the estimation of the wind power project.

Good method on Holt-Winters, Artifcial Neural Net-
works, as well as Time-series model was presented in [3] for
efciently predicting wind speed to wind power generation.
Te hybrid methodology was utilized to measure the best ft
for predicting wind speed. However, with involvement of
high level dimensional patterns, a precise prediction method
is essential. To overcome these problems, integration of the
decision tree as well as support vector regression was
achieved in [4] for reducing the runtime. Heterogeneous
ensemble prediction was improved with high-dimensional
patterns. However, prediction error was not reduced. Wind
power prediction methods with deep learning were inves-
tigated in [5] for efcient technique of high-dimensional
feature extraction as well as deep neural network. Moreover,
deep neural network was not minimized to choose unrelated
information to predict improved accuracy.

In recent few years, tangible and aggressive evolutions of
the nation-wise wind markets have appeared. With the
enormous fuctuation of weather conditions, measuring
wind energy is still considered to be a major issue. Te
foremost objective in [6] was to design a multi-linear model
estimating the correlation between daily sub-data (DSD)

with the evaluated minimum and maximum power gener-
ation values and also taking into consideration the total
power generation generated daily based on hourly main data
(MWD) was designed. Tis accurate and reliable prediction
was ensured. It is considered a laborious and time-con-
suming process to acquire accurate wind speed forecasting
(WSF) owing to the sporadic and dynamic wind energy
character.

In [7], a multi period-ahead WSF model based on
variance, Stacked Denoising Auto Encoder (SDAE), and
ensemble learning was proposed to although accuracy was
improved. However, error involved was not focused. To
address this issue, Artifcial Neural Network was developed
in [8] to produce acceptable predictions with minimum
error. Te related environmental and climatic conditions
were introduced for discovering the wind power possible in
the area. However, feature selection was not determined. Yet
another method concentrating on prediction error using
Adaptive Transfer Learning in Deep Neural Networks (ATL-
DNN) was proposed in [9]. For straightforward and ef-
fortless power generation from the turbine, exact prediction
of wind power is essential, nevertheless, owing to the os-
cillating wind behavior and unpredictability in the geo-
graphical characteristics and climatic conditions, precise
wind power prediction is a critical task. Wind power was
improved to predict the enhanced accuracy.

Deep Belief Network-based Meta-Regression Technique
(DBN-MRT) was proposed in [10] for considering the error
aspect with considerable extent. However, proposed tech-
nique was failed to reducing the time desirable for wind
dataset. An extensive review of the recent forecasting
methods together with their performance measure to ad-
dress certain issues related to forecasting was investigated in
[11]. However, most of the users are long run focused on
forecasts of the generation of electricity rather than wind.
Despite the generation of power depending on several
factors apart from wind circumstances, the magnitude as-
pect is a pertinent yardstick to measure the infuence of wind
variability on production.

In [12], a mechanism for the generation to magnitude
aspect for an extent of turbine classes was proposed. At
present, a simulation method based on a single value is the
favored selection for forecasting numerical wind speed.
However, due to inevitable unpredictability it remains la-
borious in meeting the genuine requirements of both wind
farms and grid systems. A method based on ensemble
simulations of weather research and forecasting was con-
structed in [13] that utilized a Markov stochastic process,
and an ordered weighted average strategy that integrated
gray relationships with an evolutionary algorithm for dy-
namically forecasting numerical wind speed. However, the
accuracy was not enough by using ensemble method.

A double prediction system using a non-linear and
multi-objective evolutionary algorithm focusing on the
accuracy of point prediction was proposed in [14]. A back
propagation neural network was introduced to increase
prediction accuracy. An interval prediction method was
utilized to build dissimilar intervals based on the diverse data
features through fuzzy clustering. But, designed method was
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failed to use a large dataset. Te topic of forecasting short-
term wind speed and wind power by integrating artifcial
neural networks (ANNs) and optimization techniques on
wind speed and wind power data was designed in [15]. With
this, the wind power forecasting accuracy was said to be
improved in a signifcant manner. However, the wind power
prediction time was improved. A comparative analysis of
deep learning methods for predicting wind power was in-
vestigated in [16]. Response surface methodology (RSM) and
artifcial neural network (ANN) were discussed for accurate
wind power prediction. However, the artifcial neural net-
work using prediction accuracy was improved.

Yet another method to enhance the accuracy rate using
an adaptive neuro-fuzzy inference system based on the error
factor for four diferent locations was analyzed in [17]. But,
designed method was provided for better reliability and
computational capability. A case study was tested with three
training algorithms for predicting future wind power and
was elaborated in [8]. However, the convergence factor was
not analyzed. In [18], conjugate gradient descent was applied
to the ANN model to improve prediction accuracy.
Moreover, the wind power prediction was not wrongly
identifed.

A quantum particle swarm optimization (QPSO) was
developed in [19] for handling the economic environ-
mental (EED) issue. But, the accuracy was not improved.
To overcome the issue, A hybrid model was introduced in
[20] that depended on the quantum-behaved particle
swarm optimization. However, the prediction time was
not minimized. Te deep learning neural network model
was introduced in [21] for reducing the computational
cost and time. But, designed technique was not selecting
suitable features. A new neural-network prediction
model named EALSTM-QR was designed in [22] for wind
power prediction. However, designed method failed to
improve the wind-power prediction accuracy by using
novel machine-learning algorithm. Quantum deep re-
inforcement learning (QDRL) was introduced in [23] to
ofer dynamic control strategies online for obtaining
enhanced control performance. But, the wind power
prediction time was higher.

An efcient q-rung orthopedic fuzzy set was intro-
duced in [24] depending on the Full Consistency Method
and combined compromised solution method. But, the
accuracy was not adequate. A novel hybrid approach
combining Interval Rough Numbers (IRNs) into Best-
Worst Method (BWM) and Measurement of Alternatives
and Ranking according to Compromise Solution
(MARCOS) was developed in [25]. Te designed ap-
proach selects the best ofshore wind farm site for precise
analysis. Moreover, the time was enhanced. Type-2
neutrosophic number (T2NN) fuzzy-based multi-criteria
decision-making (MCDM) model was presented in [26]
to ofer formulation fexibility and simple computation.
But, the computation complexity was not reduced. A new
Interval-valued Fuzzy-rough based Delphi Method was
developed in [27] for discovering the signifcance of
diferent criteria. However, the proposed technique failed
to explain the site selection issue.

Short-term wind power prediction model (LCWGAN-
GP) was discussed in [28] with higher prediction accu-
racy. But, the true positive rate was not measured. Ex-
treme learning machine (ELM) algorithm was introduced
in [29] for enhancing the prediction accuracy. Moreover,
the time was not decreased. Two-step process approach
was developed in [30] with historical wind speed data. But,
the wind energy generation was not considered. Linear-
quadratic regulator (LQR) algorithm was introduced in
[31] an optimal control approach, which applies a state-
space form to optimally design and control the system.
But, designed approach was minimized the computational
complexity.

A new smart battery design was introduced in [32] for
space-resolved temperature matrix sensing. Te low-order
joint examination was utilized for measuring the heat cre-
ation rate, and higher capacity with aid of a thermal model-
based approach. But, the accuracy was not enhanced.
Knowledge-based, multi-physics-constrained fast charging
approach was developed in [33] for lithium-ion batteries
(LIB). Deep reinforcement learning was employed for
addressing the LIB fast charging issue. However, the com-
putational complexity was not reduced. Smart battery and
management scheme was analyzed in [34] for sensor plan
and combination. Te designed scheme failed to consider
the high design integrity as well as space limitation.

In this paper, a novel Homogenized Point Mutual Infor-
mation and Deep Quantum Reinforced (HPMI-DQR) wind
power prediction method is developed. Te wind power pre-
diction method is to consider the wind power output as early
and as correctly as achievable. Wind power prediction mini-
mizes the fnancial and technical risk of uncertainty of wind
power production for all electricity market participants. To
mitigate the impacts of time consumed in wind power pre-
diction, the analysis of homogenization is applied to acquire a
computationally efcient, informative and relevant feature se-
lection model. However, Deep Quantum is adopted to perform
deep learning to perform actual wind power prediction and
eliminate the noise data. Finally, the 10 minutes time interval
wind speed series have been employed to evaluate the proposed
method. Te novelty and contributions of this paper are as
follows.

(i) To improve the wind power prediction accuracy
with minimum time, the proposed HPMI-DQR
method was introduced to utilizes a feature selection
and prediction model

(ii) To achieve computational efciency using homog-
enization function and low-frequency bias features
are eradicated with minimum wind power predic-
tion time by Proposed HPMI-DQR method uses a
novel Homogenized Point Mutual (HPM) Feature
Selection model.

(iii) To perform a feature selection model using a novel
Homogenized Point Mutual (HPM) Feature Se-
lection method. In this model, the innovation of the
Point Mutual Information is obtained for selecting
the computationally efcient informative and sig-
nifcant features.
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(iv) To improve the wind power prediction accuracy by
using proposed Deep Quantum Reinforced Wind
Power Prediction algorithm is determined for ro-
bust wind power prediction.

(v) To fnd the relationship between State Space and
Action Space by mapping which comprises wind
power evaluation network and wind power action
selection strategy by using novelty of Epsilon
Greedy policy. Terefore, wind power prediction
accuracy is developed.

(vi) Finally, experiments were conducted to estimate the
proposed HPMI-DQR method along with con-
ventional methods based on the diferent perfor-
mance metrics. Meanwhile, performance
assessment metrics such as wind power prediction
time, accuracy, and true positive rate are utilized to
explore and measure the execution of the proposed
wind power prediction method.

Te rest of the paper is organized as follows. In this
section, a brief formulation for wind power prediction and
works related to this area is reviewed. Te analysis of the
Homogenized Point Mutual Information and Deep Quan-
tum Reinforced (HPMI-DQR) method is presented in
Section 2. Experimental settings for simulation for per-
forming HPMI-DQR method are briefed in Section 3. Te
numerical results with the aid of a table and graph are shown
in Section 4. A conclusion is drawn in Section 5.

2. Methodology

Te proposed Homogenized Point Mutual Information and
Deep Quantum Reinforced (HPMI-DQR) method applies
feature selection and prediction model to improve the wind
power prediction accuracy using minimal time. HPMI-DQR
method consists of two distinct phases. In the frst phase,
Homogenized Point Mutual (HPM) Feature Selection is
used to select the relevant features. In the second phase, a
Deep Quantum Reinforced (HPMI-DQR) method forecasts
the fnal wind power based on the predictions made by the
Homogenized Point Mutual (HPM) Feature Selection
model. In order to predict robust wind power, Deep
Quantum Reinforced Wind Power Prediction algorithm is
employed for improving the wind power prediction
accuracy.

In the proposed HPMI-DQR method, deep learning is
utilized during the training of Homogenized Point Mutual
(HPM) Feature Selection and Deep Quantum Reinforced
Wind Power Prediction models. Te block diagram of the
proposed HPMI-DQR method in terms of relevant feature
selection and wind power prediction is shown in Figure 1.

As shown in the above Figure 1, the block diagram of the
HPMI-DQR method is split into two sections. In the frst
section, with wind turbine SCADA (Supervisory Control
And Data Acquisition) data provided as input, informative
and relevant features are selected. Next, with the resultant
features selected and provided as input to the deep learning
model, robust wind power prediction is made. Te wind
power prediction is employed for evaluating the expected

production of one or more wind turbines and the proposed
HPMI-DQR method has two existing methods such as
EEMD-CSO-LSTMEFG [1], VMD-K means-LSTM [2],
EALSTM-QR [22], and LCWGAN-GP [28] with the dataset
of 10 minutes interval gap. From other methods and existing
methods, a 10 minutes interval gap is applied. An elaborate
description of the proposed HPMI-DQRmethod is provided
in the forthcoming sections.

2.1. Homogenized Point Mutual (HPM) Feature Selection
Model. Homogenized Point Mutual (HPM) Feature Selec-
tion model forecasts the last wind power based on predic-
tions made by proposed method.Te wind power prediction
using this novelty of HPM feature selection model. Feature
selection technique is developed to choose a compact set of
input features for the wind power prediction model. To
overcome the nonstationarity of wind power series and
improve the prediction accuracy. Proposed HPMI-DQR
method used to dataset contains a group of data for 10
minutes intervals from wind turbines, SCADA Systems that
is working and generating power in Turkey. Te datasets
include information about the measurement of power and
also the meteorological forecast related to components of
wind. Date/time (DT), LV Active Power (LVAP), Wind
Speed (WS), Teoretical Power Curve (TPC), and Wind
Direction (WD) of wind are included as features. Te
forecast is released by the Turkey center once every 10
minutes interval gap. To select a more informative and
relevant feature set among the fve feature sets, Homoge-
nized Point Mutual Information (PMI) is used. Figure 2
shows the block diagram of the Homogenized Point Mutual
(HPM) Feature Selection model.

As shown in the above Figure 2, the feature set of average
PMI value of possible events between the weather forecast
and power are selected (i.e., informative relevant feature set),
while the remaining feature sets are discarded. Te pre-
vailing weather forecasts are hence dependent on succeeding
weather forecasts and power measurements. So, to explore
the dependency of power measurement on the previously
predicted powers and associated feature set, the average of all
possible events along with associated features are provided
as input features to the proposed method. Mathematically
feature set matrix “FS(t) � (DT , LVAP, WS, TPC, W D)”
for wind power forecast is expressed as given below.

FS(t) �

DT(t − 1) DT(t − 2) . . . DT(t − 24)

LVAP(t − 1) LVAP(t − 2) . . . LVAP(t − 24)

WS(t − 1) WS(t − 2) . . . WS(t − 24)

TPC(t − 1) TPC(t − 1) . . . TPC(t − 1)

W D(t − 1) W D(t − 2) . . . W D(t − 24)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

From the above equation (1), “DT” represents the
prediction of Date/time (DT), “LVAP” indicates the LV
Active Power, “WS” denotes the Wind Speed, “TPC”
symbolizes the Teoretical Power Curve, and “W D” sig-
nifes the Wind Direction at 10 minutes intervals whereas
“t − 1, t − 2, . . . , t − 24” refers to the wind prediction fore-
cast at the initial time.
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Next, informative and relevant features are selected
using an irrelevancy and redundancy flter that measures the
association between the probability of their co-occurrence
provided with joint and individual distributions exploiting
the concept of Point Mutual Information (PMI). Tis PMI is
mathematically formulated as given below

PMI FSi, FSj􏼐 􏼑 � loglog
Prob FSi, FSj􏼐 􏼑

Prob FSi( 􏼁Prob FSj􏼐 􏼑

� loglog
Prob FSi|FSj􏼐 􏼑

Prob FSi( 􏼁

� loglog
Prob FSj|FSi􏼐 􏼑

Prob FSj􏼐 􏼑
.

(2)

From the above equations (2), a pair of outcomes “FSi”
and “FSj” belonging to discrete random variables “FSi � DT”
and “FSj � LVAP” quantifes the discrepancy between joint
distribution as in (2) individual distribution as in (2). Also to

minimize a known sensitivity for low-frequency features
homogenized PMI is applied. Tis low-frequency feature
homogenization using HPMI is mathematically expressed as
given below.

HPMI FSi, FSj􏼐 􏼑 �
loglogProb FSi, FSj􏼐 􏼑/Prob FSi( 􏼁Prob FSj􏼐 􏼑

−loglog Prob FSi, FSj􏼐 􏼑􏼐 􏼑
.

(3)

From the above equation (3), the wind direction value of
“HPMI” is computed. If two feature sets only occur together
“HPMI(FSi, FSj) � 1,” then, the features are said to be rel-
evant “RF.” If the two feature sets are distributed as expected
under independence “HPMI(FSi, FSj) � 0,” then, the features
are said to be not relevant “NR.” Finally, if two feature sets take
place independently “HPMI(FSi, FSj) � −1,” then, the fea-
tures are said to be less relevant “LR.” With these resultant
values, informative and relevant features are acquired. Te
pseudo-code representation of Homogenized Point Mutual
(HPM) Feature Selection is given below.

As given in the above Homogenized Point Mutual (HPM)
Feature Selection Algorithm 1, the objective remains in

Wind Turbine 
SCADA
Dataset

Wind Turbine 
Data

Homogenized Point 
Mutual (HPM)

Feature Selection

Select relevant features

Deep Quantum 
Reinforced Wind Power 

Prediction

Wind power prediction

Figure 1: Block diagram of HPMI-DQR method.

Wind Turbine 
SCADA Dataset

FS (t)

PMI (FSi, FSj)

HPMI (FSi, FSj)

Informative & relevant feature selection 

Figure 2: Block diagram of homogenized point mutual (HPM) feature selection.
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retrieving the informative and relevant feature in a computa-
tionally efcient manner. To achieve this objective the frst
feature set for wind power prediction is formulated. Next,
relevant and information features are selected using the Point
Mutual function. Finally, computationally efciency is attained
by performing perfect association using the homogenization
function. With this, certain less frequency bias features are
removed, therefore contributing to wind power prediction time.

2.2.DeepQuantumReinforcedWindPower PredictionModel.
In second step remains in designing a robust wind power
predict with minimum error, a novelty of Deep Quantum
Reinforced Wind Power Prediction algorithm is
employed for improving the wind power prediction ac-
curacy. Te wind power prediction is one of paramount
energy growths of country’s economy are purely de-
pendent on wind power due to its clean nature and
pollution-free environment. To improve the profts,
scheduling of the economy in a more robust manner and
dispatching the same considerable demand for wind
power prediction with less error is necessary.

In this work, a Deep Reinforcement Learning model is
designed. In our work, DRL is applied to the problem of
wind power prediction where the LV Active Power (LVAP)
is transferred through an array of quantum dots when the
array is afected by losses that arise from the interaction of
dots with the surrounding environment, therefore resulting
in prediction error. Te existing quantum deep reinforce-
ment learning algorithm was developed in [23] for avoiding
optimization processes. But, the prediction error was not
minimized. To address this issue, Quantum Deep Rein-
forcement Learning (QDRL) model is proposed to minimize
the error during wind power prediction. Te two logical
gates are used. Figure 3 shows the block diagram of the
Quantum Deep Reinforcement Learning model.

As shown in the above Figure 3, state space, environment,
action space, input neurons, hidden layer, and output neurons
form the elements forwind power prediction.Te environment,
state space and action space form as input to the input neurons
and the prediction made forms the output neurons. Finally, in
the hidden layer the actual wind power prediction made using
Quantum Deep Reinforcement Learning is performed.

From the fgure, to start with the Quantum Deep Rein-
forcement Learning (QDRL) environment, “E” is denoted by a
rectilinear order of quantum controlled by two logical gates
represented by “β12(t)” and “β23(t)” at the time “t” respectively.
Tese two logical gates monitor the three features selected (i.e.,
relevant features) and therefore at each timestamp, the QDRL
environment is said to be modeled by a “3∗ 3” density matrix
that is employed as an input state space observation. Te state-
space of the wind from a wind turbine’s SCADA system that is
working and generating power in Turkey is selected from the
Homogenized Point Mutual (HPM) Feature Selection algo-
rithm and this is mathematically expressed as given below.

SS � S|St � WS(t), TPC(t), W D(t)􏼈 􏼉. (4)
From the above equation (4), “SS” represents the state

space, “St” symbolizes the current state at instant “t,” “WS”
denotes the wind speed, “TPC” indicates the theoretical

power curve at the time “t”, and “W D(t)” symbolizes the
wind direction “W D” respectively at the time “t.” It’s
corresponding “3∗ 3” density matrix is shown below.

SS � α(t) �

α11 α12 α13
α21 α22 α23
α31 α32 α33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, β12(t), β23(t)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (5)

From the above equation (5), “(α11, α12, α13)” repre-
sents the wind speed state space, “(α21, α22, α23)” denotes
the theoretical power curve state space, and
“(α31, α32, α33)” represents the wind direction state-space
respectively and “β12(t)” and “β23(t)” is indicated two
logical gates represented at the time “t.” Next, in the wind
power generation, the action space “AS” comprises “n”
discrete quantities of the TVAP generated by the turbine
for that moment and is mathematically expressed as given
below.

AS � β12(t) a1, a2, . . . , an􏼂 􏼃, β23(t) a1, a2, . . . , an􏼂 􏼃􏼈 􏼉. (6)

From the above action space equation (6), action
space is denoted as the “AS,” and the relationship between
State Space “SS” and Action Space “AS” are mapped that
comprises of the wind power evaluation network and a
wind power action selection strategy utilizing an Epsilon
Greedy policy to select an action based on the Q value.
Tis is formulated as given below.

(A, S) � 1 − ε, A � argmaxQ(S, A)ε, A≠ argmaxQ(S, A)􏼈 􏼉.

(7)

From the above equation (7), the value of “ε” is selected
between “0” and “0.5” so that a proper balance between
exploitation and exploration is obtained during wind power
evaluation and wind power action selection. Followed this
the loss function “L” and reward “R” are measured as given
below.

L �
1
n

􏽘

n

i�1
A(i) − A′(i)􏼂 􏼃

2
. (8)

From the above equation (8), the loss function “L” is
measured according to the measured wind speed “A(i)” and
the predicted wind speed “A′(i)” respectively. Finally, the
reward “R” is measured according to the resultant loss
function as given below.

R �
+1 + α33 Li( 􏼁 − α22 Li+1( 􏼁,when Li+1 < Li􏼂 􏼃

−1 + α33 Li( 􏼁 − α22 Li+1( 􏼁,when Li+1 > Li􏼂 􏼃.
􏼨 (9)

From the above equation (9) the reward “R” is estimated
based on the loss function derived from the previous state
“Li” and current state “Li+1” respectively, “α33(Li)” denotes
the wind direction state-space of loss function derived from
the previous state “Li,” “α22(Li+1)” theoretical power curve
state space of loss function derived from the current state
“Li+1.” Finally, the wind power prediction evaluation
function is estimated as given below.
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Qi+1 SSi, ASi( 􏼁 � Qi SSi, ASi( 􏼁 + LRi R SSi, ASi( 􏼁􏼂 􏼃 + DP Qi SSi+1, ASi+1( 􏼁 − Qi SSi, ASi( 􏼁. (10)

According to the resultant evaluation function as in the
above equation (10) with the aid of learning rate “LR” and
discount parameter, “DP” for each wind power values “i,”
State Space derived from the previous state and current state
“SSi” and “SSi+1,” and Active space derived from the previous
state and current state “ASi,” and “ASi+1,” robust and ac-
curate wind power prediction with minimum error is said to
be ensured. Te pseudo-code representation of Deep
Quantum Reinforced Wind Power Prediction is given
below.

As given in the above Deep Quantum Reinforced
Learning Wind Power Prediction Algorithm 2, the objective
remains in minimizing the wind power prediction error. To
achieve this objective a reward function based on quantum
modifes the wind power state that in turn reduces the
transfer time involved in predicting wind power for various
LV Active Power to reduce the efect of losses and contribute
to the minimization of wind power prediction error.

3. Experimental Setup

In this section, the simulation of the proposed Homogenized
Point Mutual Information and Deep Quantum Reinforced
(HPMI-DQR) wind power prediction method and the three
existing methods namely EEMD-CSO-LSTMEFG [1],
VMD-K means-LSTM [2], EALSTM-QR [22], LCWGAN-
GP [28] has implemented in Java programming language
using 2018 SCADA data of a wind turbine in Turkey taken
from the https://www.kaggle.com/berkerisen/wind-turbine-
scada-dataset [35]. Wind energy is considered to be tech-
nically feasible when its power density is greater than or
equal to 500W/m2, for a height equal to or exceeding 50m
above the ground, which requires a minimum wind speed
between 7-8m/s. Wind energy is measured in kilowatt-
hours (kWh) or megawatt-hours (MWh), plus the period

(e.g. per year and hour). InWind Turbines, SCADA Systems
measure and save data like wind speed, wind direction,
generated power, etc. for 10-minute intervals. Tis fle was
obtained and acquired from a wind turbine SCADA system
that is working and generating power in Turkey. Google is
the quantum computing hardware used in the proposed
HPMI-DQR method. Te implementation is performed
with the hardware and software specifcation of the Win-
dows 10 Operating system, core i3-4130 3.40GHZ Proces-
sor, 4 GB RAM, 1TB (1000GB) Hard disk, ASUSTek
P5G41C-MMotherboard, and Internet Protocol. To conduct
the simulation, the HPMI-DQR method considers several
wind data in the range of 500–5000 from the wind turbine
SCADA dataset. Te data’s in the fle are listed in Table 1.

Te validation is calculated in terms of experimental
evaluation with the wind turbine SCADA dataset. Te
proposed technique applies the holdout method for cross-
validation. In machine learning, cross-validation is an es-
timated model employed for discovering the result of in-
visible data. It is separated into two sets such as the training
set and the validation set. Most data (70%) was used for
training, and the test (20%) was taken for validation. Ten,
the 10-fold cross-validation is utilized for measuring the
results. Also, this validation is to provide better accuracy
performance. With the aid of the data provided above,
performance analysis is made with three diferent param-
eters involving, wind power prediction time, wind power
prediction accuracy, and true positive rate and wind energy
generation with diferent numbers of data.

4. Result and Discussion

In this paper, the performance evaluation of proposed
HPMI-DQR, and existing various algorithms such as
EEMD-CSO-LSTMEFG [1], VMD-K means-LSTM [2],

Robust prediction 
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Figure 3: Block diagram of deep quantum reinforced wind power prediction model.
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EALSTM-QR [22], and LCWGAN-GP [28] are compared.
Tese algorithms in aspects of wind power prediction time,
accuracy, true positive rate, and wind energy generation.
Te tested algorithms were applied to a wind turbine
dataset consisting of numerous wind data. Te perfor-
mance of the wind power prediction is tested based on the
deep learning method, HMPI, and Deep Quantum Rein-
forced model. In our integration, we eliminated the ir-
relevant features, improving accuracy and reducing the

prediction error. Ten, the actual wind power prediction is
performed with lesser prediction error. Te results of four
diferent techniques are discussed with the aid of tables
and graphical representation.

4.1. Performance Analysis of Wind Power Prediction Time.
A small portion of time is said to be consumed during the
prediction of wind power. In other words, wind power

Input: dataset “DS,” sample data “D � D1, D2, . . . , Dn,” feature set “FS(t) � FS1, FS2, . . . , FSn”
Output: computationally efcient informative and relevant feature selection “RF”

(1) Initialize “n � 4”
(2) Initialize “n[0] � DT, n[1] � LVAP, n[2] � WS, n[3] � TPC, n[4] � WD”
(3) Begin
(4) For each dataset “DS” and sample data “D”
(5) Formulate the feature set for wind power prediction as in equation (1)
(6) Measure individual distribution association between the probability of co-occurrence as in equation (2)
(7) Measure joint distribution association between the probability of co-occurrence as in equation (2)
(8) Measure homogenized PMI as in equation (3)
(9) If “HPMI(FSi, FSj) � 1” then relevant features “RF”
(10) If “HPMI(FSi, FSj) � 0” then features are not relevant “NR”
(11) If “HPMI(FSi, FSj) � −1” then features are less relevant “LR”
(12) Return (relevant features “RF”)
(13) End for
(14) End

ALGORITHM 1: Homogenized point mutual (HPM) feature selection.

Input: dataset “DS,” sample data “D � D1, D2, . . . , Dn,” feature set “FS(t) � FS1, FS2, . . . , FSn”
Output: Robust wind power prediction with minimum prediction error
Initialize relevant features “RF,” time “t”

(2) Initialize environment variables using the logical function “β12(t)” and “β23(t)”
(3) Begin
(4) For each dataset “DS” with feature set “FS(t)” and sample data “D”
(5) Establish state space as in equations (4) and (5)
(6) Establish action space and action space selection as in equations (6) and (7)
(7) Estimate loss function as in equation (8)
(8) Estimate reward as in equation (9)
(9) Estimate wind power prediction evaluation function as in equation (10)
(10) End for
(11) End

ALGORITHM 2: Deep quantum reinforced learning wind power prediction.

Table 1: Dataset description.

S.
No. Feature Description

1 Date/time (For 10 minutes intervals)
2 LV active power (kW) Te power generated by the turbine for that moment

3 Wind speed (m/s) Te wind speed at the hub height of the turbine (the wind speed that the turbine use for electricity
generation)

4 Teoretical power curve
(KWh)

Te theoretical power values that the turbine generates with that wind speed which is given by the
turbine manufacturer)

5 Wind direction (∘) Te wind direction at the hub height of the turbine (wind turbines turn in this direction
automatically)

8 International Transactions on Electrical Energy Systems



prediction time refers to the time consumed in predicting
the wind power by the turbine. Tis is mathematically
formulated as given below.

WPPtime � 􏽘

n

i�1
Di ∗Time Qi+1 SSi, ASi( 􏼁􏼂 􏼃. (11)

From the above equation (11), wind power prediction
time “WPPtime” is measured, the number of sample data
denoted as “Di” and time consumed in wind power pre-
diction based on the evaluation function represented as
“Time[Qi+1(SSi, ASi)].” It is measured in terms of milli-
seconds (ms). Table 2 shows the wind power prediction time
results for the proposed HPMI-DQR and four state-of-the-
art methods, EEMD-CSO-LSTMEFG [1], VMD-K means-
LSTM [2], EALSTM-QR [22], and LCWGAN-GP [28] on
the test dataset.

Te deterministic results of 10 minutes interval wind
power prediction in each wind farm concerning diferent
numbers of data in the range of 500 to 5000 are shown in
Figure 4. At the prediction interval of 10 minutes ranging
from 500 to 1500, all the four methods have a good per-
formance. Let us consider the 500 wind data collected from
the dataset for conducting the experiments. Te HPMI-DQR
consumes 985.25ms time for predicting wind power.
Whereas, the prediction time of EEMD-CSO-LSTMEFG [1],
VMD-K means-LSTM [2], and EALSTM-QR [22],
LCWGAN-GP [28] are
1085.05ms, 1215.45ms, 1285.85ms, 1355.45ms respectively.
Te remaining nine runs are calculated for each method. Te
obtained overall results indicate that the overall wind power
prediction time of the HPMI-DQRmethod is reduced by 12%
compared to [1], 23% compared to [2], 29% compared to [22],
and 34% compared to [28]. It shows that the additional inputs
of historical data for each method successfully maintained the
wind power prediction time. With the increase of the forecast
horizon or the number of data, the wind power prediction
time also reduces. Te predictive wind power curve of the
proposed HPMI-DQR method acquires the actual wind
power curve in wind turbines’ SCADA systems. In some
moments, with the data ranging between 500 and 5000, the
wind power prediction time changes dramatically, therefore
afecting the prediction rate of all four methods. But on the
whole, the HPMI-DQR has better performance compared
with the existing three state-of-the-art methods [1, 2, 22, 28].
Te reason behind the improvement was due to the appli-
cation of the Homogenized Point Mutual Information model.
By applying this model, homogenized informative and rel-
evant features were selected with the Point Mutual function.
Based on these features, the prediction was made. Te ho-
mogenization function was employed for achieving compu-
tational efciency. By using this function, assured low-
frequency bias features are eliminated for reducing the wind
power prediction time.

4.2.PerformanceAnalysis ofWindPowerPredictionAccuracy.
Te second paramount metric of consideration for wind
power prediction is the accuracy acquired during the

process. In other words, a transparent method to estimate
the quality of the learned method is to see how the pre-
dictions given by the model are accurate. Tis is mathe-
matically given as below.

WPPacc � 􏽘
n

i�1

DAP

Di

∗ 100. (12)

From the above equation (12), “WPPacc” denotes the
wind power prediction accuracy, “Di” indicates the sample
data involved in simulation and “DAP” represents the
number of wind data accurately predicted. It is measured in
terms of percentage (%). Table 3 shows the calculation re-
sults of wind power prediction accuracy on the whole test set
using fve methods.

Te wind power prediction accuracy values in Table 3
embody the overall wind power prediction performance. As
the specifed requirement of wind turbines’ SCADA system
that is working and generating power in Turkey for 10-
minute time intervals, the detailed results of wind power
prediction accuracy for four diferent methods are calcu-
lated, as shown in Figure 5. Te number of data is taken in
the horizontal direction and the wind power prediction
accuracy is observed at the vertical axis. As shown in the
graphical chart, there are four various colors of lines such as
blue, brown, green, and violet that denotes the prediction
accuracy of four techniques namely HPMI-DQR, EEMD-
CSO-LSTMEFG [1], VMD-K means-LSTM [2], EALSTM-
QR [22], and LCWGAN-GP [28] respectively. It can be seen
from this fgure that wind power prediction accuracy
according to the HPMI-DQR method is higher than the
others and can satisfy the prediction requirement success-
fully. We should note that the wind power prediction ac-
curacy of [1, 2, 22, 28] is not so competitive for 10-minute
time intervals as the wind power prediction accuracy values
of [1, 2, 22, 28] are a bit smaller. Let us consider 500 wind
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Figure 4: Graphical representation of wind power prediction time.
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data for conducting the experiments in the frst iteration. By
applying the HPMI-DQR, 485 wind data are correctly
predicted and the prediction accuracy is 97% whereas the
prediction accuracy percentage of the existing [1, 2, 22, 28]
are 93%, 90%, 87% and 83% respectively. Followed by,
diferent performance outcomes are observed for all
methods. For every method, ten dissimilar results are ob-
served. Te performance of the proposed HPMI-DQR is
compared to other existingmethods. From the above, we can
conclude that the HPMI-DQR is a better method for de-
terministic wind power prediction compared with the other
two methods in this paper. Te reason behind the im-
provement was due to the identifcation of the relationship
between State Space and Action Space via mapping that
includes both the wind power evaluation network and wind
power action selection strategy utilizing an Epsilon Greedy
policy. With this the accuracy rate using HPMI-DQR is said
to be improved by 5% compared to [1], 10% compared to [2],
15% compared to [22], and 20% compared to [28].

4.3. Performance Analysis of the True Positive Rate. Te true
positive rate is measured in this work.Tis is mathematically
formulated as given below.

TPR � 􏽘
n

i

TP
TP + FN

. (13)

From the above equation (13), the true positive rate TPR′
is estimated based on the true positive rate (i.e., wind power
data accurately predicted) TP′ and the false-negative rate
(i.e., wind power data is incorrectly predicted) FN′ re-
spectively. Table 4 shows the tabulation results of the true
positive rate on the whole test set using fve methods.

Finally, Figure 6 given above shows the true positive
rate for 5000 diferent data acquired at diferent timestamps

for 10 minutes time intervals. Te diferent number of wind
sample data is considered in the range from 500 to 5000 to
conduct the simulation purpose. From the fgure, it is clear
that the true positive rate is decreased for each method,
therefore, increasing the number of wind sample data also.
From these results, the proposed HPMI-DQR method
achieves better performance at a true positive rate when
compared to existing methods. From Figure 6 it is clear that
the true positive rate is improved gradually for the pro-
posed HPMI-DQR when compared to other existing
methods. Tis efcient improvement of the true positive
rate achieved using HPMI-DQR was due to the application
of the Deep Quantum Reinforced Wind Power Prediction
algorithm. By applying this algorithm, the reward function
was measured based on the quantum values, therefore,
modifying the wind power state and hence minimizing the
transfer time involved in predicting wind power and in-
fuences of losses. As a result, the true positive rate is
improved in the proposed HPMI-DQR by 12% when
compared to existing [1], 21% when compared to [2], 30%
when compared to [22], and 37% when compared to [28]
respectively.

4.4. Performance Analysis of the Wind Energy Generation.
Finally, wind energy generation refers to the amount of wind
energy generated at the wind speed (meters/second). Wind
energy generation is mathematically formulated as,

WEG �
amountofwindenergygenerated
windspeed(meters/second)

. (14)

From the above equation (14), the wind energy gener-
ation “WEG” is estimated based on the wind energy and
wind speed is meters/second respectively. Table 5 shows the
tabulation results of wind energy generation on the whole
test set using fve methods.
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Finally, Figure 7 given above shows the wind energy
generation of fve methods on the diferent number of wind
speeds. Te wind energy generation is considered in the
range from 50 to 500 and wind speed 100 to 1000 to conduct
the simulation purpose. From the fgure, it is clear that the

wind energy generation is decreased for each method,
therefore, increasing the wind speed also. From these results,
the proposed HPMI-DQR method achieves better perfor-
mance on wind energy generation when compared to
existing methods. From Figure 7 it is clear that the wind

Table 2: Wind power prediction time analysis using HPMI-DQR, EEMD-CSO-LSTMEFG [1], VMD-K means-LSTM [2], EALSTM-QR
[22], and LCWGAN-GP [28].

Number of data
Wind power prediction time (ms)

HPMI-DQR EEMD-CSO-LSTMEFG VMD-K means-LSTM EALSTM-QR LCWGAN-GP
500 985.25 1085.05 1215.45 1285.85 1355.45
1000 855.25 1000.35 1125.25 1195.55 1275.25
1500 800.05 935.55 1065.05 1110.05 1215.55
2000 775.45 895.45 985.35 1055.25 1135.85
2500 730.55 855.45 935.55 995.45 1065.35
3000 685.15 765.05 855.25 900.05 975.45
3500 610.05 700.55 800.15 865.55 950.75
4000 575.25 670.35 775.25 830.45 885.25
4500 500.45 565.55 685.45 730.45 810.15
5000 400.15 455.25 545.35 630.25 725.35
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Figure 6: Graphical representation of the true positive rate.

Table 3: Wind power prediction accuracy analysis using HPMI-DQR, EEMD-CSO-LSTMEFG [1] and VMD-K means-LSTM [2],
EALSTM-QR [22], and LCWGAN-GP [28].

Number of data
Wind power prediction accuracy (%)

HPMI-DQR EEMD-CSO-LSTMEFG VMD-K means-LSTM EALSTM-QR LCWGAN-GP
500 97 93 90 87 83
1000 95.35 92.35 88.15 85.25 81.45
1500 95 92 87.35 84.15 80.55
2000 94.85 91.55 86.45 83.05 79.25
2500 94.55 91 86 82.55 78.75
3000 94.05 89.35 85.35 82 77
3500 93.85 88 84 81.45 76.55
4000 92.15 87.25 82.15 80 75.45
4500 92 86.33 82 78 74
5000 91.5 85.15 81 77 73
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energy generation is improved gradually for the proposed
HPMI-DQRwhen compared to other existing methods.Tis
efcient improvement of wind energy generation achieved

using HPMI-DQR was due to the application of the Deep
Quantum Reinforced Wind Power Prediction algorithm. By
applying this algorithm, the reward function was measured
based on the quantum values, therefore, modifying the wind
energy and hence minimizing the transfer time involved in
generating wind energy and infuences of losses. As a result,
the wind energy generation is improved in the proposed
HPMI-DQR by 26% when compared to existing [1], 15%
when compared to [2], 6% when compared to [22], and 32%
when compared to [28] respectively.

5. Conclusion

A novel deep-learning model has been proposed for pre-
dicting wind power and wind energy in real-life applications
such as wind turbines. Te HPM Feature Selection model
has been employed for selecting pertinent features. Further,
Quantum Deep Reinforcement Learning is used to perform
wind power prediction. Experiments have been executed to
validate the proposed method.

Te major conclusions are summarized as follows:

(i) Te important and informative features are chosen
with aid of the Point Mutual function. Also, the
homogenization function is employed to achieve
computational efciency. By using this function,
certain minimal frequency bias features are

Table 4: True positive rate analysis using HPMI-DQR, EEMD-CSO-LSTMEFG [1], VMD-K means-LSTM [2], EALSTM-QR [22], and
LCWGAN-GP [28].

Number of data
True positive rate

HPMI-DQR EEMD-CSO-LSTMEFG VMD-K means-LSTM EALSTM-QR LCWGAN-GP
500 0.92 0.9 0.88 0.84 0.8
1000 0.91 0.82 0.77 0.73 0.69
1500 0.89 0.81 0.76 0.7 0.67
2000 0.88 0.8 0.74 0.69 0.656
2500 0.86 0.79 0.73 0.68 0.65
3000 0.85 0.77 0.7 0.65 0.61
3500 0.83 0.75 0.67 0.63 0.59
4000 0.81 0.7 0.64 0.59 0.56
4500 0.8 0.68 0.62 0.57 0.53
5000 0.79 0.66 0.6 0.56 0.52

Table 5: Wind energy generation using HPMI-DQR, EEMD-CSO-LSTMEFG [1], VMD-K means-LSTM [2], EALSTM-QR [22], and
LCWGAN-GP [28].

Wind speed (meters/seconds)
Wind energy generation

HPMI-DQR EEMD-CSO-LSTMEFG VMD-K means-LSTM EALSTM-QR LCWGAN-GP
100 220 170 190 210 160
200 320 240 260 300 230
300 360 290 310 330 280
400 400 360 370 390 350
500 460 400 420 440 390
600 420 360 380 400 340
700 330 270 290 310 260
800 290 220 240 260 210
900 270 200 230 250 190
1000 200 140 170 190 130
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Figure 7: Graphical representation of the wind energy generation.

12 International Transactions on Electrical Energy Systems



eradicated and wind power prediction time is
minimized by 25% compared to state-of-the-art
methods.

(ii) Te relationship between state space and action
space for the corresponding environment value is
provided as input by using Quantum Deep Rein-
forcement Learning. Next, the Epsilon Greedy
policy is applied to predict an action or predict wind
power by Q value. With this, the wind power
prediction accuracy, true positive rate, and wind
energy generation are improved by 13%, 25%, and
20% than the existing methods.

(iii) With the HPMI-DQR method, the wind power
prediction, true positive rate, as well as wind energy
generation are estimated precisely. Te proposed
method validates to outperform the commonly-
used conventional wind power prediction tech-
niques. From the analysis, it is evident that the
proposed HPMI-DQR method provides better re-
sults compared to state-of-the-art methods.

(iv) Only the means of accurate wind power prediction
are considered in this work. But, the proposed
method of accuracy was not sufcient for the proper
planning and operation of power systems with
complicated patterns. Wind power plants have a
comparatively smaller impact on the environment
than conventional power plants concern. In our
future work, a novel deep learning method will be
introduced to accurate and timely relevant feature
selection and prediction of wind power.

Nomenclature

FS(t) � (DT, LVAP, WS, TPC, WD): Feature set matrix
DT: Prediction of date/

time
LVAP: LV active power
WS: Wind speed
WD: Wind direction
TPC: Teoretical power

curve
FSi and FSj: Discrete random

variables
HPMI: Homogenized PMI
DS: Dataset
D � D1, D2, . . . , Dn: Sample data
FS(t) � FS1, FS2, . . . , FSn: Feature set
RF: Relevant feature
NR: Not relevant
LR: Less relevant
E: Rectilinear order of

quantum
β12(t) and β23(t): Two logical gates
t: Time
SS: State-space

(α11, α12, α13): Wind speed state
space

(α21, α22, α23): Teoretical power
curve state space

(α31, α32, α33): Wind direction state
space

AS: Action space
n: Discrete quantities

of the TVAP
L: Loss function
R: Reward
A(i): Wind speed
A′(s): Predicted wind

speed
Li: Loss function

derived from the
previous state

Li+1: Current state
LR: Learning rate
DP: Discount parameter
WPPtime: Wind power

prediction time
Di: Sample data
Time[Qi+1(SSi, ASi)]: Time consumed in

wind power
prediction based on
the evaluation
function

WPPacc: Wind power
prediction accuracy

DAP: Number of wind
data accurately
predicted

WPPerr: Wind power
prediction error

MV: Measured value
PV: Predicted value

Abbreviation

HPMI-
DQR:

Homogenized point mutual information and
deep quantum reinforced

HPMI: Homogenized point mutual information
LSTMEFG: Long short-term memory network-enhanced

forget-gate network
CSO: Cuckoo search optimization algorithm
EEMD: Ensemble empirical mode decomposition
VMD: Variational mode decomposition
LSTM: Long short term memory
SDAE: Stacked denoising auto encoder
ATL-
DNN:

Adaptive transfer learning in deep neural
networks

DBN-
MRT:

Deep belief network based meta-regression
technique

ANNs: Artifcial neural networks
DRL: Deep reinforcement learning
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QDRL: Quantum deep reinforcement learning.
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