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Due to the growing use of Plug-in Electric vehicles (PEVs) in transportation networks, the charge/discharge scheduling of PEVs in
Electric Vehicles Parking Lots (EVPLs) can be effective on the distribution network’s (DN) resiliency.&is paper presents a bilevel
optimization model to improve the resiliency of the DN taking into account the interaction between the DN islanding problem
and the charge/discharge scheduling of PEVs in the energized EVPLs. In the Upper-Level (UL) problem, regarding the electrical
loads andmanaging the charge/discharge of PEVs, the islands’ boundaries are determined with the aim of maximizing the amount
of restored load. Knowing the islands’ boundaries and the energized EVPLs from the UL problem, the changes in travels
characteristic including destination EVPLs are determined in the Lower-Level (LL) problem to identify the nearest energized
EVPL to the out-of-service destination EVPL. &e number of PEV drivers that change their deenergized destination depends on
the distance between the nearest energized EVPL to the destination. A combination of mathematical programming and evo-
lutionary algorithm is applied to reach the final solution. &e proposed model is implemented by applying several concurrent
faults to the 118-bus active DN, which is coupled with a 25-node traffic network.&e results confirm the efficiency of the proposed
model for improving the resiliency of DNs with managing the charge/discharge of PEVs in the restored EVPLs.

1. Introduction

Recently, environmental concerns, the security of oil supply,
and the increasing penetration of intermittent renewable
energy resources in the electrical network are increasing the
utilization of PEVs in the transportation sector. On the other
hand, the charging pattern of PEVs may affect the resiliency
of the DN, which is the ability to withstand the low-prob-
ability high-impact events, ensuring the minimum load
shedding (LS) and enabling a fast recovery to the normal
operation state [1]. Some indicators have been presented in
several articles to evaluate the power system resiliency.
Reference [2] has introduced some indices to assess the
resiliency of the power system using the hierarchical analysis
and percolation theory. In [3, 4], by proposing a quantitative

framework, the resilience of a MicroGrid (MG) against
windstorms has been evaluated using the interrupted load
recovery index. A comprehensive review has been presented
in [5] concerning the resources for resilience enhancement,
the mathematical model of operation and planning algo-
rithms, mathematical formulation, and solution algorithm.

Islanding and reconfiguration of the DN are the most
important plans for improving the resiliency of the DN. A
comprehensive literature review including the methods for
improving the power system resiliency during severe events
has been conducted in [6]. A bilevel model has been pro-
posed in [7] during a high wind event solved by the bilevel
genetic algorithm to improve the distribution network re-
siliency using an operational network reconfiguration
strategy. A three-stage self-healing algorithm has been
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proposed in [8] to enhance distribution network resiliency
by maximizing the restored EVPLs via network reconfigu-
ration without intentional islanding with multiple line faults.
An efficient technique for optimum scheduling of MGs with
multiperiod islanding restrictions has been proposed in [9]
utilizing the Cuttle Fish Algorithm (CFA) and Crow Search
Algorithm (CSA) to minimize the MG operation cost, the
dispatch-able units operation cost, and the power trans-
mission cost. In [10], chance-constrained stochastic pro-
gramming has been used to model the resiliency-oriented
islanding plan for critical load restoration. &e proposed
model assumes that the critical loads are provided by only
one island, while in practice, it is possible to recover the
desired loads by more than one island. A hierarchical outage
management structure has been introduced in [11] to
ameliorate the resiliency of a DN consisting of several MGs.
However, the power system topology and its operational
constraints have not been considered. Reference [12] has
improved the DN resiliency considering the possibility of
several DGs on each island; each of them can control the
frequency and voltage. &e dynamic islanding plan and
optimal management of different smart grid technologies
have been investigated in [13] to restore the prioritized loads
proposing a mixed-integer linear programming (MILP)
multiobjective model. However, the PEVs have been
neglected in [13]. A hierarchical and stochastic MILP model
has been proposed in [14] for simultaneous modeling of an
MG scheduling and virtual power plant (VPP) energy
management problems to determine the optimal islands’
boundaries for improving the load restoration and reducing
the load supply costs in each MG. However, none of the
aforementioned articles has investigated the impact of
charging/discharging of PEVs in EVPLs on the DN
resiliency.

Optimal charging/discharging management of PEVs in
EVPLs can offer benefits for the DN. Technically, PEVs can
operate in two modes: (1) charging or grid-to-vehicle (G2V)
mode as a load, and (2) discharging or vehicle-to-grid (V2G)
mode as an energy storage unit [15, 16]. A comprehensive
review of control structures of PEVs in charging stations,
objectives of EV management in power systems, and opti-
mization methods have been presented in [17]. A detailed
comparison between different charging/discharging strate-
gies in terms of complexity, economics, power losses, ability
to provide ancillary services for integrity of the power grid,
and operation aspects has been done in [18]. Reference [1]
has proposed a bilevel model to investigate the impact of
charging demand of fast charging stations (FCSs) on DN
resiliency. EVPLs are reasonable sites for implementing the
V2G because PEVs spend many hours of the day in EVPLs
[16]. A multiobjective management model for charging/
discharging of PEVs in a smart DN to minimize the total
operating costs and emissions has been presented in [19], but
the traffic network and the characteristics of the PEV trips
have not been considered. Reference [20] has investigated
the coordinated charging/discharging strategies of PEVs to
smooth load and renewable power fluctuations while en-
suring the quality of logistics services. In [21], a stochastic
charging/discharging management approach has been

proposed for lots of EVs parked in an intelligent EVPL,
where intelligent EVPLs have been presented as aggregators
allowing PEVs to interact with the electric utilities; however,
the traffic network has been neglected in this article. In [22],
an optimization-based problem has been proposed to op-
timally manage the charge/discharge of PEVs in EVPLs for
minimizing the operation costs of the DN including the PEV
charging cost in EVPLs. Reference [23] has presented a
stochastic programming framework for optimal energy
management of EVPLs considering demand response plans
and uncertain behavior of PEVs. In [24], the traffic and grid-
based EVPL, allocation and charging scheduling of PEV
fleets have been studied in the planning and operation plans
considering the driving pattern of PEV drivers. A two-stage
model is presented in [25] for optimal energy management
in EVPLs. In the first step, a new scheduling method is
proposed for the charge and discharge of PEVs. In the
second step, an innovative approach is presented governing
EVPL and implementing the encouragement and punish-
ment policies. An energy management model for the EVPL
community is presented in [26] for the operational sched-
uling of several EVPLs, which trade energy with each other
besides energy exchange with the power distribution grid. To
the best of the authors’ knowledge, none of the above articles
has examined the effect of charging/discharging manage-
ment of PEVs in EVPLs on the resilience of the DN.

To solve bilevel models, several methods have been
proposed and studied in various articles. If the LL problem
has no binary variables, converting the bilevel model to a
single-level using the Karush–Kuhn–Tucker (KKT) condi-
tions is themost common approach [27]. But if the LLmodel
includes binary variables, the bilevel models can be solved
through iterative calculations between the two levels using
different solvers [28, 29, 30]. In [28], the optimal section-
alizing problem in the UL is addressed in CPLEX, while
minimizing the outage durations of critical loads in LL is
implemented in PSO. In [29], a two-layer algorithm has been
solved by relying on a combination of GA andmixed-integer
second-order cone programming (calling solver CPLEX).
&e DIgSILENT and MATLAB are linked together for op-
timal placement, sizing, and daily charge/discharge the of
battery energy storage system in [30].

To the best of the authors’ knowledge, an extremely few
articles have been introduced on the issue of distribution
network resilience in the presence of electric vehicles.
However, managing the charge/discharge of PEVs in en-
ergized EVPLs may result in better decisions for the DN
islanding plan and improving the resiliency. Due to the need
for some PEVs to be recharged in EVPLs and to earn the
potential profit by selling the energy stored in batteries, some
PEV drivers tend to park their PEVs in energized EVPLs.
&e number of PEV drivers who change their destination to
the nearest energized EVPL is inversely related to the dis-
tance between the out-of-service destination EVPL and the
nearest energized one, so that the number of PEVs decreases
with increasing the distance. So, reconnecting some EVPLs
to the electrical network can play important role in travel
characteristics, identifying the destination EVPLs, and fi-
nally, the hourly number/features of PEVs in EVPLs.
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&erefore, in this paper, a bilevel model is proposed to
investigate the interaction between the dynamic features of
PEV trips (i.e., the dependency of the trip on the availability
of EVPLs) in transportation networks and the DN islanding
problem (i.e., the optimal islanding formation to maximize
the expected amount of restored load). Briefly, the main
contributions of this paper are as follows:

(i) A newMILPmodel has been proposed to determine
the nearest energized EVPL to the out-of-service
destination EVPLs considering the traffic network.

(ii) &is article examines the effect of dynamic PEV
travel characteristics and charge/discharge man-
agement of PEVs in energized EVPLs on DN
resiliency.

(iii) To investigate the interaction between the distri-
bution and transportation networks, a bilevel op-
timization model is proposed.

&e rest of this paper is organized as follows: the bilevel
model including the DN resiliency problem and identifying
the dynamic trip characteristics is presented in Section 2.
Simulation results and sensitivity analysis are presented in
Section 3, and Section 4 concludes the paper results and
future works.

2. Bilevel Optimization Approach

Islanding and reconfiguration of DNs following the severe
disturbances require the amount of load demands and
potential power supplies to be predicted. By increasing the
penetration rate of PEVs, the charging/discharging power of
PEVs can have a significant impact on the DN islanding and
reconfiguring problem. Because most of the PEVs’ daily
mileages are less than the PEVs’ drive range, destination
charging including home and workplace charging is the
main method of energy supply for PEVss [31]. So, managing
the charge/discharge of PEVs in places such as EVPLs is vital
for improving the performance of the DN.

In several studies, the movement of PEVs has been
modeled as some fleets, moving from a defined origin to the

destination and returning from the same path after doing
daily work [32, 33, 34]. PEV fleets in large numbers can be
regarded as considerable stochastic loads or energy storage
units given the electrical grid [16]. To investigate the impact
of charging/discharging management of PEV fleets in
EVPLs on DN resiliency, knowledge of the characteristics of
the fleet (such as the number of PEVs in each fleet) as well as
knowledge of the characteristics of the trip (such as de-
parture time/location and arrival time/location) is essential.
Having these characteristics, it is possible to determine the
hourly features of PEV fleets in restored EVPLs [33].

Given the electrical loads and hourly features of the PEV
fleets in EVPLs, the optimal islanding plan is determined to
maximize the amount of restored load as a resiliency index.
Depending on the DSO’s decision on island formation, some
EVPLs may be reconnected to the electrical network. Due to
the requirement of PEVs to be recharged in destination
EVPLs and also due to the incentives considered by DSO at
critical conditions for connecting the PEVs to the electrical
network, some PEV drivers tend to change their out-of-
service destination EVPL to the nearest in-service one. &e
possible changes in trip destinations may result in changing
the DSO’s decisions for the islanding plan. So, in this paper,
the interaction between the DN islanding problem and
determining the dynamic trip characteristics of PEV fleets is
defined as a bilevel problem. &is flowchart is presented in
Figure 1.

It is worth mentioning that the location of the restored
EVPLs is defined as decision variables in the UL problem,
whereas they are considered in the LL problem as param-
eters. Also, the nearest restored EVPLs to the out-of-service
destinations are defined as decision variables in the LL
problem, but they are fed to the UL problem as parameters.

2.1. Upper-Level Problem. By knowing the hourly number/
features of PEVs in each energized EVPL, the DN islanding
and the reconfiguring problem is modeled as follows:

Obj � max 􏽘
ω∈Ω

􏽘
t∈T

􏽘
i∈I

πω · pri,t · P
load
i,t,w, (1)

0≤P
load
i,t,w ≤ αi,t · Ploadi,t, (2)

P
load
i,t,ω − Ploadi,t − P

LC
i,t,ω􏼐 􏼑≤ 1 − αi,t􏼐 􏼑 · M, (3)

P
load
i,t,ω − Ploadi,t − P

LC
i,t,ω􏼐 􏼑≥ − 1 − αi,t􏼐 􏼑 · M, (4)

0≤Q
load
i,t,ω ≤ αi,t · Qloadi,t, (5)

Q
load
i,t,ω − Qloadi,t − tan φi · P

LC
i,t,ω􏼐 􏼑≤ 1 − αi,t􏼐 􏼑 · M, (6)
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Q
load
i,t,ω − Qloadi,t − tan φi · P

LC
i,t,ω􏼐 􏼑≥ − 1 − αi,t􏼐 􏼑 · M, (7)

0≤P
DG
m,t,ω ≤ αi,t · P

DG,max
m , i � NCDG(m), (8)

αi,t · Q
DG,min
m ≤Q

DG
m,t,ω ≤ αi,t · Q

DG,max
m , i � NCDG(m), (9)

αi,t · V
min
i ≤Vi,t,ω ≤ αi,t · V

max
i , (10)

−αi,t · δmax
i ≤ δi,t,w ≤ αi,t · δmax

i (11)

Vi,t,ω � αi,t · V
set−point
i , i ∈ NCDG, (12)

δi,t,ω � 0, i ∈ NCDG, (13)

P
DG
m,t,ω + P

wind
n,t,ω + 􏽘

e∈Nev(i)

P
EV,disch
e,t,ω � P

load
i,t + 􏽘

e∈Nev(i)

P
EV,ch
e,t,ω + 􏽘

l∈θLi

P
flow
l,t,ω , ∀i, m � NADG(i), N � NWT(i), (14)

Q
DG
m,t,ω − Q

load
i,t � 􏽘

l∈θLi

Q
flow
l,t,ω , m � NADG(i) ,∀l ∈ θLi, (15)

0≤P
wind
n,t,w ≤ αi,t · P

w,prod
n,t,w , i � NWT(n), (16)

P
flow
l,t,w � P

z−flow
l,t,w + F2l × δi,t,w − δj,t,w􏼐 􏼑 + F1l × Vi,t,w − Vj,t,w􏼐 􏼑, (17)

Q
flow
l,t,w � Q

z−flow
l,t,w + F1l × δj,t,w − δi,t,w􏼐 􏼑 + F2l × Vi,t,w − Vj,t,w􏼐 􏼑, (18)

F1l �
rl

r
2
l + x

2
l

, F2l �
xl

r
2
l + x

2
l

, (19)

− 1 − βl,t􏼐 􏼑 · M≤P
z−flow
l,t,w ≤ 1 − βl,t􏼐 􏼑 · M, (20)

− 1 − βl,t􏼐 􏼑 · M≤Q
z−flow
l,t,w ≤ 1 − βl,t􏼐 􏼑 · M, (21)

−βl,t · M≤P
flow
l,t,w ≤ βl,t · M, (22)

−βl,t · M≤Q
flow
l,t,w ≤ βl,t · M, (23)

P
flow
l,t,ω􏼐 􏼑

2
+ Q

flow
l,t,ω􏼐 􏼑

2
≤ S

max
l( 􏼁

2
, (24)

U
ch
e,i,t,w + U

disch
e,i,t,w + U

idle
e,i,t,w � Ue,i,t, (25)

−bigM · S
elec
e,i,t ≤Ue,i,t ≤ bigM · S

elec
e,i,t , (26)

e,i,t
S

bigM
≤Ue,i,t ≤ 1 +

S
elec
e,i,t

bigM
, (27)

S
elec
e,i,t � EV

num elec
e,b,t , (28)

U
ch
e,i,t,ω · P

ch,min
e ≤P

ch
e,i,t,ω ≤U

ch
e,i,t,ω · P

ch,max
e · S

elec
e,i,t , (29)

U
disch
e,i,t,ω · P

disch,min
e ≤P

disch
e,i,t,ω ≤U

disch
e,i,t,ω · P

disch,max
e · S

elec
e,i,t , (30)
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Ce · S
elec
e,i,t · 1 − DODmax

( 􏼁≤ SOCelec
e,i,t,w ≤Ce · S

elec
e,i,t , (31)

SOCe,i,t,w � SOCinitial
e · Ce · EV

num
e , i � Oe,trip1, t � 1, (32)

SOCelec
e,i,t,w �

s
elec
e,t,i

EV
num
e

SOCe,i,t�τexit
e,trip1

− p
con
e × s

elec
e,i,t , t � τentere,trip1, (33)

SOCunelec
e,i,t,w �

s
unelec
ev,t,i

EV
num
e

SOCe,i,t�τexit
ev,trip1

− P
con
e × s

unelec
e,i,t , t � τexitev,trip1 (34)

SOCelec
e,t,i,w � αe,t,i × SOCelec

e,t,i,w + βe,t,i × SOCunelec
e,t,i,w􏼐 􏼑|t�τexit

e,trip2
− P

con
e × S

elec
e,t,i , t � τexite,trip2 (35)

if s
elec
e,t�τenter

e,trip2,i�De,trip2
≥ s

elec
e,t�τexit

ev,trip2 ,i�Oev,trip2
,

then αe,t,i � 1, βe,t,i �
s
elec
e,t�τenter

e,trip2,i�De,trip2
− s

elec
e,t�τexit

e,trip2,i�Oe,trip2

s
unelec
e,t�τexit

e,trip2 ,i�Oe,trip2

,

elec αe,t,i �
s
elec
e,t�τenter

e,trip2,i�De,trip2

s
elec
e,t�τexit

e,trip2 ,i�Oe,trip2

, βe,t,i � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

SOCelec
e,i,t+1,w � SOCelec

e,i,t,w + P
ch
e,i,t,w · η −

P
disch
e,i,t,w

η
. (37)

&e objective function of the UL problem is defined in
(1), to maximize the expected amount of the restored active
load in all scenarios, taking into account the priority of loads.
&e amounts of restored active and reactive loads in each bus
are determined by applying load shedding in (2) to (7).
According to (6) and (7), it is assumed that the power factor
is known and constant for all buses. &e active and reactive
power generations of dispatchable DGs are limited in (8) and
(9). &e upper and lower limits of the bus voltage magnitude
and angle are stated in (10) and (11), respectively. According
to (12) and (13), if a bus that has a DG with voltage and
frequency control capability is placed inside an island, the
voltage magnitude of that bus will be equal to a pre-
determined value, and the voltage angle will be zero. &e
balance between active and reactive power production and
consumption in each bus is guaranteed by (14) and (15)
considering the charging/discharging of EVs in corre-
sponding EVPLs. As stated in (16), the generating power of a
wind farm can be delivered to an island if the relevant bus is
located within that island, and also the generating power in
each scenario will be less than the maximum predictable
generating capacity. &e linearized power flow equations are
expressed by (17)–(19) [35]. Equations (20) and (21) state the
limitations of the auxiliary variable utilized in linearized
power flow equations. As stated in (22) and (23), in case of
destruction or opening of a line by disaster and DSO, re-
spectively, the active and reactive power flowing that line will
be zero. &e maximum apparent power flowing each line is
specified by (24). Equations (25)–(36), model the charge/
discharge scheduling of PEV fleets in restored EVPLs.

According to (25), a PEV fleet can be in one of the three
modes (i.e., charging, discharging, or idle) while stopping in
an energized EVPL. &e binary variable U is defined by (26)
to (27), which is equal to 1 when some PEVs in fleet e are
located in a restored EVPL supplied by electrical bus i. In
(28), the number of PEVs in the EVPL located in traffic node
b is the same as the number of PEVs in the electrical bus i
according to the electrical and traffic nodes connected. &e
maximum and minimum charging/discharging power of
each PEV fleet located in an energized EVPL is limited by the
number of PEVs and charger spots according to (29) to (30).
&e minimum allowable SOC of each PEV fleet in an en-
ergized EVPL is limited by the maximum permissible Depth
of Discharge (DoD) for batteries in (31). &e initial SOC of
PEV fleets at the start of the daily trip is specified by (32).&e
SOC of PEVs when entering an energized/deenergized
EVPL at the end of the first trip is determined by (33) and
(34), respectively. &e SOC of PEVs when entering an en-
ergized EVPL at the destination of the second trip is de-
termined by (35), where α and β are the percentages of PEVs
that enter a EVPL from energized/deenergized origin
EVPLs, respectively. Variables α and β are defined in (36). A
graphical explanation of (36) is shown in Figure 2. &e
hourly SOC of PEVs during the stopping time in an en-
ergized EVPL is calculated by (37).

RI � 􏽐
ω∈Ω

􏽐
t∈T

􏽐
i∈I

πω · pri,t · P
load
i,t,w

􏽐
t∈T

􏽐
i∈I

pri,t · Ploadi,t .
(38)
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To evaluate the e�ciency of the proposed bilevel model,
the ratio of the expected amount of recovered active loads to
the total interrupted active loads considering the loads
priority has been introduced as the resilience index (RI) as
follows:

2.1.1. Ensuring the Radiality of DN. In this paper, the graph
theory is used to ensure the radiality of DN [36]. A DN is
radial if successive removal of the ­rst-order nodes (i.e., the
nodes connected only to one branch) results in segregation
of all nodes. �e �owchart of the radiality rule is illustrated
in Figure 3.

2.2. Lower-Level Problem. �e PEV travels are speci­ed by
departure time/location and arrival time/location. Consid-
ering the trips characteristic, the hourly features of PEVs
such as SOC will be determined. Due to the incentives
considered by the DSO, some drivers change their out-of-
service destination EVPL to the nearest energized EVPL.
Knowing the location of the restored EVPLs speci­ed in the
UL problem, the nearest energized EVPLs to the out-of-
service destinations are determined in the LL problem that is
formulated as follows:

Obj � Min ∑
b,b′∈PL

Db,b′ , (39)

PDG,trb,b′,c � P
load,tr
b,b′,c + ∑

s∈Sc

Pflow,tr
b,b′,s , ∀b ∈ PL, ∀b′ ∈ PL, ∀c,

(40)

Pload,tr
b,b′,c � Zb,b′ , ∀b ∈ PL, ∀b′ ∈ PL, c � b′, (41)

PDG,trb,b′,c � 0, ∀b ∈ PL, ∀b′ ∈ PL, ∀c≠ b, (42)

PDG,trb,b′,c ≥ 0, ∀b ∈ PL, ∀b′ ∈ PL, ∀c � b, (43)

∑
b′∈PL

Zb,b′
� 1, ∀b ∈ PL, (44)

Zb,b′ ≤ elecb′,t
, ∀b ∈ PL, ∀b′ ∈ PL, (45)

Pflow,tr
b,b′,s

∣∣∣∣∣
∣∣∣∣∣

M
≤Xb,b′,s

≤M · Pflow,tr
b,b′,s

∣∣∣∣∣
∣∣∣∣∣, ∀b ∈ PL, ∀b′ ∈ PL, ∀s,

(46)

Db,b′
�∑
s∈S
Xb,b′,s

· adjs, ∀b ∈ PL, ∀b′ ∈ PL. (47)

Determining the nearest energized EVPL to the desti-
nation is speci­ed as the objective function of the LL
problem in (39). To ensure the continuity of the path be-
tween two EVPLs, the method of forming an equivalent
electrical network is used in (40)–(43), in which an energy

number and
features of PEVs in

each parking lot

lower level problem

Distribution network Islanding problem
Objective: maximizing load restoration

Dynamic travel characteristic problem
Objective: Finding the nearest energized PL to the

out-of-service destination PL

Upper level problem

Identifying energized
parking lots

Figure 1: �e proposed bilevel approach.
Energized PL

β

α

origindestination

De-energized
PL

De-energized
PL

Energized PL

Figure 2: Graphical description for parameters α and β in 2nd trip.

Construction of
adjacency matrix

Is there a row with the
sum of the elements

equal to 1?

for each row whose sum of its
elements is 1, set the elements of
that row and the relevant column

to zero

the DN is radial

�e initial matrix
Converts to a zero

matrix?

the graph is Not
radial
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Figure 3: �e �owchart of the radiality rule.
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source is placed in the main destination, and an electric load
is placed in the new destination [28, 29]. Performing the load
�ow equations will guarantee the continuity of the route.
Logical constraint (44) refers to the fact that each PEV �eet
can only choose one of the energized EVPLs as its desti-
nation. According to (45), the drivers only choose the EVPLs
as their destinations that have been connected to the elec-
trical network by DSO. It should be noted that the parameter
elecb,t that shows the energizing state of a EVPL is deter-
mined in the UL problem from αi,t considering the islanding
formations and restored electrical buses. According to (46),
arcs whose ­ctitious power �ow is non-zero will place on the
shortest route between each destination and energized
EVPL. �e length of the shortest route between the nearest
in-service EVPL to each destination EVPL is determined in
(47). If the primary destination in tra�c node b is energized
after islanding, no PEV will change its destination, and the
variable Db,b′ will be set to zero for all b′. In this paper, the
formation of the islands is assumed to be constant during the
fault so α, β, and elec variables are time-independent.

2.2.1. Determining the Hourly Number of PEVs in Destina-
tion EVPLs. Because, at the time of occurring the faults,
PEVs are stationed in a EVPL, so even in the case of dee-
nergizing that EVPL, no driver will change the EVPL. �e
hourly number of PEVs in an energized EVPL at the origin
of the ­rst trip is obtained by the following equation:

EVnum−en
e,b,t � EVnum

e × elecb,t. (48)

With identifying the nearest energized EVPL to the out-
of-service destination, some drivers change their out-of-
service destination EVPL to the nearest energized one
considering the minimum distance between EVPLs. �is
assumption is described in Figure 4. �e number of PEVs
that change their destination decreases as the distance in-
creases. If the distance between the out-of-service destina-
tion and the nearest energized EVPL is more than a certain
amount (reference distance), none of the drivers change
their destinations. �e hourly number of PEVs in energized/
deenergized EVPLs at the end of the trips is obtained from
(49)–(51).

EVnum−en
e,b′,t � EVnum

e × Gb,b′
, ∀e, ∀b ∈ PL, ∀b′∈ PL, (49)

EVnum de
e,b,t � EVe

num − ∑
b′∈PL

EVnum en
e,b′,t , ∀e, ∀b ∈ PL.

(50)

Gb,b′
� 1 −

Db,b′ ,

Dref Db,b′ ≤D
ref ,

Gb,b′ � 0Db,b′ ≥D
ref .




(51)

whereGb,b′ is obtained by the linear descending function
as stated in the following equation [37]:

Determining the nearest energized EVPL to the desti-
nations in the LL problem will determine the hourly number
and features of PEV �eets in EVPLs. It should be noted that
the features of PEV �eets in each EVPL obtained in the LL
problem appear as parameters in the UL problem.

2.3. Linearization of the Proposed Model. To linearize the
proposed bilevel model, the nonlinear limitation of the
apparent power �owing each line expressed in (24) is
replaced by [38]

sin
2πh
H

( ) − sin
2π(h − 1)

H
( )( )Pflow

l,t,w − cos
2πh
H

( ) − cos
2π(h − 1)

H
( )( )Qflow

l,t,w ≤ sin
2π
H
( )Smax

l{ }. (52)

�e absolute value of the ­ctitious power �owing each
tra�c arc for ensuring the continuity of tra�c route in
(46) is expressed by linear equations as shown by
(53)–(55).

Pflow,tr
b,b′,s � Pflow,tr+

b,b′,s − Pflow,tr−
b,b′,s , ∀b ∈ PL, ∀b′ ∈ PL, ∀s, (53)

Pflow,tr
b,b′,s

∣∣∣∣∣
∣∣∣∣∣ � Pflow,tr+

b,b′′s + Pflow,tr−
b,b′,s , ∀b ∈ PL, ∀b′ ∈ PL, ∀s,

(54)

Pflow,tr+
b,b′,s ≥ 0, P

flow,tr−
b,b′,s ≥ 0, ∀b ∈ PL, ∀b′∈ PL, ∀s. (55)

�e following relations have been used to linearize the (51).

Db,b′
−Dref

bigM
≤ kb,b′
≤ 1 +

Db,b′
−Dref

bigM
, ∀b ∈ PL, ∀b′∈ PL (56)

− bigM · kb,b′
≤Gb,b′

− 1 −
Db,b′
Dref

 ≤ bigM · kb,b′
,

∀b ∈ PL,∀b′∈ PL, ∀s,
(57)

PL

nearest
energized PL

Origin Destination

Gb, b’

1-Gb, b’

Planned destination
De-energized PL

Minimum distance (Db, b’)

Figure 4: Ratio of PEV drivers that change their out-of-service
destination to the nearest energized PL.

International Transactions on Electrical Energy Systems 7



− bigM · 1 − kb,b′
( )≤Gb,b′

≤ bigM · 1 − kb,b′
( ),

∀b ∈ PL,∀b′∈ PL, ∀s.
(58)

2.4. Flowchart for Solving the Proposed Bilevel Model. In the
proposed bilevel model, the lower-level problem includes
binary variables. �erefore, it is not possible to convert the
bilevel model to a single-level mathematical programming
with equilibrium constraints (MPEC) using the Kar-
ush–Kuhn–Tucker (KKT) conditions. Hence, a combination
of Genetic Algorithm (GA) and mathematical programming
has been utilized to solve the proposed bilevel model [29].
�e reason for choosing the GA is the simplicity of use and
the ability to search for a large space with high quality. �e
solving �owchart of the presented bilevel model is illustrated
in Figure 5.

3. Case Studies

�e proposed model is run on 11 kV DN shown in Figure 6.
�is network consists of 3 feeders, 118 buses, 3 breakers, 30
sectionalizers, and 9 tie lines [39]. �e peak active and re-
active loads of the DN are 22.71MW and 17.04 Mvar, re-
spectively. �e priority of all loads is considered equal. �e
details of the DN such as electrical loads and line parameters
are given in [39]. �e required data about the location and
capacity of the DGs are shown in Table 1. �is network
consists of 14 DGs, 7 of which (DG1 to DG7) can control the
voltage and frequency. �e formation of an island depends
on the presence of a DG with the frequency and voltages
control ability. It means that, on each island, there should be
at least one DGwith such ability. So, in this study network, it
is possible to form amaximum of 7 islands with the existence
of DG1 to DG7.�ere are also 10WTs operating at the unity
power factor. �e power generating capacity of each WT is
equal to 500 kW, and their locations are shown in Figure 6.

Lower level
Determine the Number and features

of PEVs in each in-service PL i

LS problem is solved in
mathematical solver CPLEX

Stop criterion
satisfied?

Calculate the objective
function in MATLAB

Optimal islanding
is provided

YES

Is done any LS
in islands

NO

NO

Remove the
island with LS

YES

start

Create the initial population of the
tie switches and sectionalizers

states in MATLAB

Lower level
Determine the Number and features

of PEVs in each in-service PL

LS problem is solved in
mathematical solver CPLEX with
the aim of minimizing LS, Then
LS solutions is feed to MATLAB

Calculate the objective function

Iteration
T = 1

Generate new populations
Selection, Crossover, mutation

Sort, truncate

END

Upper level

T = T+1

Is done any LS
in islands

Remove
the island
with LS

YES

NO

Figure 5: Bilevel optimization �owchart without the possibility of load control.
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&e uncertainty in load predicting is neglected. &e total
amount of active and reactive loads of DN during 24 hours is
436,026 kWh and 327,188 kVARh, respectively. In this pa-
per, it is assumed that the electrical loads cannot be indi-
vidually decreased or removed, but parts of adjacent loads
can be disconnected from DN by opening some sectional-
izers or tie switches. Scenarios corresponding to the un-
certainty of the wind power and the daily load profile are
illustrated in Figures 7 and 8, respectively [12].

&e transportation network consisting of 25 nodes is
represented in Figure 9 [31]. &e number next to each arc
expresses the distance between nodes in miles. Also, the

overlap of the electrical and traffic nodes containing EVPLs
is shown in Table 2. &e model proposed in [32, 33, 34] is
used to model the movement of PEVs between EVPLs on the
transportation network. &ree PEV fleets with three dif-
ferent routes move from a specific origin to the destination,
and again after doing their daily work, they return to the
same origin from the same route. For specifying the arrival/
departure times and arrival/departure EVPLs as shown in
Table 3, it is assumed that fleets 1 and 2 will travel from the
residential area to the industrial area, and fleet 3 will travel
from the residential area to the commercial area. &e traffic
routes of each fleet are shown in Figure 6. Table 4 specifies

Wind turbine

PEV fleet

Master DG

Slave DG

Fault locations

Figure 6: 118 bus distribution network.

Table 1: DGs capacity and location data.

unit Bus Pmax (kW) Qmax (kVAr) unit Bus Pmax (kW) Qmax (kVAr)
DG1 17 1000 600 DG8 7 200 150
DG2 24 1000 800 DG9 33 300 200
DG3 51 900 800 DG10 43 300 200
DG4 59 1200 1000 DG11 88 200 100
DG5 67 1000 800 DG12 103 500 300
DG6 76 1100 800 DG13 113 300 150
DG7 107 1500 1200 DG14 117 300 150
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the number of PEVs in each �eet and their features. �e
charge/discharge power of each charger in EVPLs is 7.3/
6.2 kW, respectively. �e maximum battery DOD, PEV
energy consumption, and the charge/discharge e�ciency are
considered equal to 80%, 0.27 kWh/mile, and 85%, re-
spectively. �e reference distance (Dref) is assumed to be 30
miles for both trips.

In this paper, to validate the proposed model, three
di§erent cases are considered as follows.

(i) Case 1: neglecting the PEVs.
(ii) Case 2: considering the PEVs in EVPLs, but PEV

drivers do not tend to change their destinations.
(iii) Case 3: considering the charge/discharge manage-

ment of PEVs in EVPLs, some PEV drivers tend to
change their out-of-service destination EVPL to the
nearest energized one.

Subsequently, a sensitivity analysis is performed to
evaluate the impact of reference distance on PEV drivers’
behaviors and travel characteristics and ­nally on DN
resiliency.

In this paper, the proposed bilevel model is solved
utilizing GAMS and MATLAB simultaneously. For an ap-
propriate setting of the GA parameters, di§erent values have
been examined. In this paper, by choosing the GA pop-
ulation size equal to 50 or even higher, all populations
converge to the same answer, so the value of 50 has been
chosen for the GA population size to reduce the compu-
tation time.�e amount of crossover and mutation rates has
been considered equal to 0.8 and 0.5, respectively. �e
simulation results are analyzed in the following:

3.1. Case 1. In this case, the e§ect of charging/discharging
management of PEV �eets on DN resiliency is not con-
sidered. In this case, the optimal islanding plan along with
specifying the boundaries of the islands is illustrated in
Figure 10. Also, the characteristics of each island including
restored buses, the expected value of restored active/ reactive
loads, and the DGs on each island are listed in Table 5.

As shown in Figure 10, six islands are formed in case 1
where no islands were created in the presence of DG5 due to
the lack of enough generating capacity and a large amount of
loads on the smallest possible island that can be created by
opening the sectionalizers S19 and S20. �e imbalance
between production and consumption active power on this
unformed island is shown in Figure 11 where the peak of
active loads on this island is only 6.2 kW more than the
generation capacity of DG5 at 15 o’clock, so this island is not
formed.
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Table 2: Overlap of tra�c and electrical nodes containing PLs.

PL number 1 2 3 4 5 6 7 8 9 10 11 12
Electrical node 11 15 22 61 33 48 66 42 86 92 101 108
Tra�c node 2 5 7 8 9 13 14 15 17 20 23 25
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Table 3: PEV fleet features.

Fleet SOC at origin (%) Trip length (miles) EV number Capacity (kWh)
1 100 22 350 19
2 90 13 300 27.4
3 80 19 250 27.4

Table 4: Travel characteristics.

Fleet
First trip Second trip

Departure Arrival Departure Arrival
hour Bus hour Bus hour Bus hour Bus

1 6 11 7 42 17 42 18 11
2 7 33 8 92 18 92 19 33
3 15 22 16 101 19 101 20 22
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Figure 10: Optimal islanding plan in case 1.
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By solving the proposed model, the amount of
107,076 kWh of interrupted active loads is restored.
�erefore, according to (38), the resiliency index is 24.5%.
Also, 54,533 kVARh of the reactive loads is restored.

3.2. Case 5. In this case, the impact of charging/ discharging
management of PEVs in EVPLs is considered, but PEV
drivers do not tend to change their destination EVPLs even if
the destination EVPLs have not been connected to the
electrical network and therefore are out of service. �e
boundaries and optimal islanding formation in case 2 are
obtained the same as in case 1. �e reason is that, due to the
movement of PEV �eets between EVPLs, every �eet is
temporarily in one of the EVPLs; therefore, because of the
­xed islanding formation, none of the �eets can serve as a
permanent energy source for restoring more loads. Some
islands may need temporary energy resources at speci­c
hours (for example, island 5 at 15 o’clock), but in this study
network, there is no PEV �eet inside island 5. In this sit-
uation, no more load will be added to the formed islands
relative to case 1, and by restoring the 107,076 kWh of
interrupted loads, only 24.5% of the interrupted loads is
recovered. So, the movement of PEVs between EVPLs and
charge/discharge management of PEVs have no positive
e§ect on improving the DN resiliency in this study network.

3.3. Case 3. In this case, the e§ect of dynamic travel char-
acteristics considering the tendency of PEV drivers to
change their out-of-service destination EVPL to the nearest
energized one is analyzed. �e optimal islanding formation
is shown in Figure 12. Unlike cases 1 and 2, where 6 islands
were obtained for DN islanding, in this case, 7 islands are
designated as the optimal number. Totally, the amount of
126,405 kWh and 63,663 kVARh of active and reactive
disconnected load is restored during 24 hours, respectively.
So, according to (38), the resiliency index will be equal to
29%, which increased by 4.5% compared to cases 1 and 2.
�e proposed model has reached the optimal answer of
126,405 kWh after 20 repetitions. �e convergence rate of
the GA for the proposed model is shown in Figure 13.

Once the optimal islanding is formed by the DSO, the
EVPLs located in the tra�c nodes 2, 5, 7, 8, 13, 14, 15, and 25
are inserted into the formed islands and become energized,
so these EVPLs can provide charging/discharging service to
PEVs. Also, the EVPLs located in the tra�c nodes 9, 17, 20,
and 23 are not restored by DSO and so are out of service. As

mentioned in (50), due to the lack of restoration of some
EVPLs by DSO, some PEV drivers change their out-of-
service destination EVPLs to the nearest in-service EVPL
considering the minimum distance between EVPLs. Table 6
shows the energized/deenergized states of the destination
EVPLs, the nearest energized EVPL to the out-of-service
destination, the distances between EVPLs, and the ratio of
PEVs that change their out-of-service destination. Due to
the changes in some destinations, the characteristics of the
travels will change as shown in Table 7. By comparing
Tables 3 and 7, it is deduced that the destination of the ­rst
trip for �eets 2 and 3 and the destination of the second trip
for �eet 2 are changed. In Table 7, the changed destinations
have been highlighted for easier realization.

Due to the changes in the trip characteristics for �eets 2
and 3, the number of PEVs that are willing to change their
out-of-service destination to the nearest energized EVPL is

Table 5: �e features of six formed islands in case 1.

Island Restored buses Restored active loads (MWh) Restored reactive loads (MVARh) Energy resources
1 11–16 8,727 4,245 DG1, WT1
2 5–9, 22–27 18,267 8,674 DG2, DG8
3 46–53 16,260 9,509 DG3, WT4
4 41–43, 59–62 14,446 7,247 DG4, WT3, DG10
5 — — — —
6 75–77, 90, 97–99 19,967 8,731 DG6, WT9
7 94–96, 106–109 16,126 16,125 DG7, WT8

Total restored load 107, 076 54,533
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Figure 11: Active power imbalance in island with DG5 in case 1.
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Figure 12: Optimal islanding formation in case 3.
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shown in Figure 14. �e number written next to each line
indicates the number of PEVs moving on the route. Ener-
gized and deenergized EVPLs are marked with circles and
rectangles around the node number, respectively.

PEVs in �eet 2 travel from the electric bus 33 to 92 on
their ­rst trip, where none of the origin/destination EVPLs

are restored by DSO. According to the aforementioned
assumption, none of the PEVs change the origin out-of-
service EVPL connected to electrical bus 33 on the ­rst trip,
but some PEV drivers change their out-of-service destina-
tion EVPL connected to bus 92 to the closest energized
EVPL that is connected to the electrical bus 66. According to
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Figure 13: Convergence rate of the genetic algorithm for the proposed model in case 3.

Table 6: Changing the out-of-service destinations PLs in case 3.

Destination Service state of the PL �e nearest energized PL Minimum distance between PLs (mile) GTra�c (electrical) node Tra�c (electrical) nodes
2 (11) In-service 2 (11) 0 0
7 (22) In-service 7 (22) 0 0
9 (33) Out-of-service 8 (61) 6 0.8
15 (42) In-service 15 (42) 0 0
20 (92) Out-of-service 14 (66) 4 0.87
23 (101) Out-of-service 14 (66) 7 0.77
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the information in Table 6 and considering the distance of 4
miles between these two EVPLs, 87% of the PEVs in �eet 2
(i.e., 260 PEVs) change their destination from electrical bus
92 to 66, but the others do not change their destination. On
the second trip, where destination bus 33 is not connected to
the electrical network, the closest energized EVPL to the
destination is located on bus 61, which is due to the 6-mile
distance between these two EVPLs, and 80% of PEVs (i.e.,
240 PEVs) change their out-of-service destination from bus
33 to 61. Because the number of these PEVs is less than the
number of PEVs that were in energized EVPL at bus 66 at the
origin of the second trip, therefore, 92% of these PEVs
change their destination again to electrical bus 61 (α� 0.92).

PEVs in �eet 3 also move from electrical bus 22 to 101
on the ­rst trip.�e destination of the ­rst trip on bus 101 is
deenergized. According to the information in Table 6, the
nearest energized EVPL to the out-of-service destination
EVPL at the end of the ­rst trip is the EVPL located at bus
66. Considering the distance of 7 miles between these two
EVPLs, 77% of PEVs change their destination from bus 101
to 66 (i.e., 192 PEVs). On the second trip, where destination
EVPL at bus 22 is connected to the electrical network, no
PEV changes its destination. So, all 250 PEVs (58 PEVs
from bus 101 and 192 PEVs from bus 66) go to EVPL
connected to electrical bus 22, so the variables α and β are
equal to 1.

�e SOC of PEV �eets in case 3 is shown in Figures 15 to
17. As shown in Figure 16, �eet 2 has lost part of its SOC at
the ­rst trip destination EVPL connected to bus 66 to supply
the load on island 5 (bus 66–70) in overloading hours. So,
island 5 is formed by managing the charge/discharge of PEV
�eet 2 in the EVPL7 connected to electrical bus 66.

As shown in Figure 11, without considering the PEVs,
the overload of 6.2 kW at hour 15 prevents the formation of
island 5. It means that only a discharging of 6.2 kWh by PEV
�eet 2 in destination EVPL located in electrical bus 66 at

hour 15 was enough to form island 5. �e reason for the
overdischarging of PEV �eet 2 in hours of 15 to 16 is that
operating costs of DGs, WTs, and depletion cost of PEV
batteries are not considered in the objective function of the
proposed bilevel model. �e charge/discharge scheduling of
PEV �eets is shown in Figures 18–20, respectively. It should
be noted that, in Figures 18–20, the negative and positive
values indicate the charging/discharging power of PEV �eets
in electrical buses connected to the corresponding EVPLs,
respectively. To compare the results of three di§erent
simulated cases better, the summary of the obtained results is
given in Table 8.

3.4. Sensitivity Analysis. A sensitivity analysis is performed
concerning the changes in the reference distances on the
PEV drivers’ behavior and DN resiliency, which is shown in
Figure 21.

As is clear from the results, by setting a reference dis-
tance of fewer than 4 miles for PEV drivers to change their
out-of-service destination EVPL, according to (4), no driver
changes their out-of-service destination. �erefore, by not
forming island 5 consisting of electrical buses 66–70, only
107,076 kWh of active loads are recovered by DSO. By
setting the reference distance to 4.02 miles, for PEVs in �eet
2 that the minimum distance between the out-of-service
destinations to the nearest energized EVPL is 4 miles, 0.49%
of PEVs change their deenergized destination to EVPL
connected to electrical bus 66. For PEVs in �eet 3 that the
minimum distance between the out-of-service destination to
the nearest energized EVPL is 7 miles, no driver is willing to
change destinations to the nearest energized EVPL. Due to
the power shortage of 6.2 kW to form island 5, by setting the
reference distance to 4.02miles, the ratio of 0.49% of PEVs in
�eet 2 is su�cient to compensate for this shortage; therefore,
the expected amount of restored load increases to

Table 7: Travel characteristics in case 3.

Fleet
First trip Second trip

Departure Arrival Departure Arrival
hour Electrical bus hour Electrical bus hour Electrical bus hour Electrical bus

1 6 11 7 42 17 42 18 11
2 7 33 8 66 18 66 19 61
3 15 22 16 66 19 66 20 22

Bus 33 Bus 92
Major

characteristic

Bus 61 Bus 66

260

40

40

240

20

α = 0.92

(a)

Bus 101
Major

characteristic

Bus 22

Bus 66

192

58

58

192

α = 1

β = 1

(b)

Figure 14: Travel characteristics considering the restored PLs (a) �eet 2; (b) �eet3.
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Figure 16: SOC of PEV �eet 2 in case 3 (the ­rst scenario).
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Figure 15: SOC of PEV �eet 1 in case 3 (the ­rst scenario).
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Figure 17: SOC of PEV �eet 3 in case 3 (the ­rst scenario).
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Figure 18: Charge/discharge power of PEV �eet 1 in case 3 (the ­rst scenario).
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Figure 19: Charge/discharge power of PEV �eet 2 in case 3 (the ­rst scenario).
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Figure 20: Charge/discharge power of PEV �eet 3 in case 3 (the ­rst scenario).
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126,405 kWh. Further increase in reference distance does
not have much e§ect on objective function because these
PEVs are in a speci­ed EVPL for a short time and cannot
provide the energy for a permanent state.

4. Conclusion and Future Research

�e coordinated interaction of islanding scheme and
charging management of PEV �eets in electric vehicle
parking lots can maximize the amount of restored load and
improve the resiliency of the DN.�e results of the proposed
model veri­ed that it can determine the optimal islanding
plan considering the dynamic travel features. �e e�ciency
of the proposed bilevel model was investigated in di§erent
cases. According to the results, only 24.5% of the DN active
loads are restored, without the presence of PEVs. However, if
PEV drivers change their out-of-service destination EVPL to
the nearest energized EVPL, the resiliency of distribution
network can be improved by 4.5%. In addition, increasing
the reference distance increases the motivation of PEV
owners to change their destination EVPL and improves
network resilience. �erefore, providing incentives for PEV
owners in such conditions can be bene­cial for both dis-
tribution network operator and PEV owners.

In this paper, the objective function contains only the
expected amount of restored load and does not include any
cost term, so it is not possible to decide on the optimal
output power of dispatchable/renewable DGs and the
charging/discharging power of PEVs to supply the loads
during islanding. �erefore, in the future work, the cost of
energy can be added to the objective function of the
islanding problem to determine the optimal share of each of
the energy resources in formed islands.

Nomenclature

Indices and Sets
I: Set of electrical nodes
NADG: Set of buses connected to DGs
NCDG: Set of buses connected to master DGs
θLi: Set of lines connected to node i in power system
Ψl: Set of buses connected to line l in the power

system
Nwt: Set of buses connected to wind turbines
Sc: Set of tra�c arcs connected to tra�c node c
B: Set of tra�c nodes
PL: Set of tra�c nodes containing a parking lot
Ne: Set of PEV �eets
n: Index of wind turbines
m: Index of DGs
i, j: Index of buses in power system
l: Index of lines in power system
k, k: Index of islands in power system
b, b′, c, c′: Index of nodes in tra�c network
s: Index of arcs in tra�c network
h: Index of linearization segments for apparent

power constraint
e: Index of PEV �eets

Parameters
M: A big number
H: Number of linearization segments for

apparent power
Ploadi,t, Qloadi,t: Nominal active/reactive load at bus i at

time t
PDG,max
m : Maximum active power generation of

DG m
QDG,min
m , QDG,max

m : Minimum/maximum reactive power
generation of DG m

Vmax
i , Vmin

i : Maximum/minimum permissible
voltage of bus i

δmax
i : Maximum allowable voltage angle for

bus i
Smax
l : Maximum allowable apparent power

�owing online l
Pw,prodn,t,ω : Maximum power capacity of WT n in

time t and scenario ω
VDG,setm , δDG,setm : Predetermined voltage/angle for master

DG m
pri,t: Priority of load i
πω: Probability of scenario ω
Adjs: Length of tra�c arc s

Table 8: Comparing the results for three di§erent cases.

Charging/discharging
of PEVs

Trips
characteristics

Restored active load
(kWh)

Restored reactive load
(kVARh)

Resiliency index
(%)

Number of formed
islands

Case
1 7 7 107,076 54,533 24.5 6

Case
2 ✓ Static 107,076 54,533 24.5 6

Case
3 ✓ Dynamic 126,405 63,663 29 7

x 105

(4.02, 126, 405)
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Figure 21: Sensitivity analysis of objective function with respect to
di§erent reference distance (Dref ).
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e
C: &e maximum battery capacity of EV

fleet e
Pcon

e : Energy consumption of EV fleet e (kWh/
mile)

DODe: Depth of discharge of EV fleet e
SOCini

e,i,ω: Initial state of charge of EV fleet e in bus
i, time t, and scenario ω

Pch, min, Pch, max: Minimum, and maximum charging/
discharging power of each PEV

EVnum
e : Number of PEVs in fleet e

Selece,i,t : Number of PEVs in fleet e located in
energized EVPL connected to electrical
bus i

Sunelece,i,t : Number of PEVs in fleet e located in
deenergized EVPL connected to
electrical bus i

Dref: the farthest distance that several drivers
are willing to change the destination
EVPL

Variables
αi,t: Binary variable indicating the restoring

state of bus i
βl,t: Binary variable indicating the connection

state of line l
Pload

i,t,ω, Qload
i,t,ω: Amount of restored active/reactive load at

bus i, time t in scenario ω
PLC

i,t,ω: Load shedding amount at bus i, in time t
and scenario ω

PDG
m,t,ω, QDG

m,t,ω: Active/reactive output power of DG m, in
time t and scenario ω

Pwind
n,t,ω : &e output power of WT n, in time t and

scenario ω
Vi,t,ω, δi,t,ω: Voltage magnitude and angle of bus i, in

time t and scenario ω
Pflow

l,t,ω , Qflow
l,t,ω : Active/reactive power transmitted through

the line l in time t and scenario ω
Pz−flow

l,t,ω , Qz−flow
l,t,ω : Slack variables to validate the power balance

in a fictitious network
Pflow,tr

b,b′,s : Active power is transmitted through the
traffic arc s for path b,b′

PDG ,tr

b,b′,c : DG output power in traffic node c on path
b,b′

Pload,tr

b,b′,c : Active load in traffic node c on path b,b′
Uch

e,i,t,ω: &e binary variable indicating the charging
of EV fleet e in bus i at time t

Udisch
e,i,t,ω: &e binary variable indicating the

discharging of EV fleet e in bus i at time t
Uidle

e,i,t,ω: &e binary variable indicating the out-o-
action of EV fleet e in bus i at time t

Ue,i,t: &e binary variable indicating the presence
of EV fleet e in an energized EVPL
connected to electrical bus i

Pch
e,i,t,ω: Charging power of EV fleet e in bus i, time t,

and scenario ω
Pdisch

e,i,t,ω: Discharging power of EV fleet e in bus i,
time t, and scenario ω

SOCe,i,w: Tate of charge of EV fleet e in bus i, time t
and scenario ω

Db,b′: &e minimum distance between EVPLs b
and b′

Xb,b′,s: &e binary variable indicating the state of
traffic arc s on path b,b′

Zb,b′: &e binary variable indicating the change of
destination EVPL b to EVPL b′

EVnum en
e,b,t : Number of PEVs in fleet e located in

energized EVPL connected to traffic node b
at time t

EVnum de
e,b,t : Number of PEVs in fleet e located in

deenergized EVPL connected to traffic node
b at time t

Gb,b′: Ratio of PEVs that change their out-of-
service destination EVPL considering the
distance.
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