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'is paper presents a flexible-reliable operation strategy for clean microgrids (MGs) consisting of power sources, energy storage
systems (ESSs), and responsive loads. 'e proposed strategy attempts to provide the minimum expected operating cost for the
MG, power sources, predicted pollutant emission, and expected energy not-supplied (EENS) because of an N− 1 event con-
sidering different applications. 'e objective function of the problem is subject to several constraints including AC optimal power
flow equations, flexibility and reliability boundaries, and model of power sources and active loads. 'e Pareto optimization based
on the weighted sum method is then incorporated to obtain a single-objective model. Probabilistic programming is also used to
model the uncertainties of load, renewable energy, electrical energy price, and MG equipment accessibility. 'e ant-lion and crow
search algorithms are merged to solve the problem and find a reliable optimal solution. A standard MG is employed to test the
proposed strategy and indicate its capability in enhancing technical and economic indicators of the MG while ensuring that the
MG is clean.

1. Introduction

With the developments in the application of green energy
produced by distributed generation (DG), renewable dis-
tributed generation (RDG), energy storage systems (ESSs),
and demand response programs (DRPs), local resources are
a promising solution to supply most of the demand locally
[1–5]. Such green resources will also help enhance technical
and economic indicators by proper adoption of energy
management systems (EMSs) [6–10] and considering the
coordination between these power sources and distribution
system operator (DSO) [11]. EMS can optimally manage the
demand-side DGs and ALs, thus reducing the power loss
and significant voltage variations on network buses, and
resulting in enhanced operation of the network [12]. To
reach higher-level flexibility for the network, flexibility re-
sources like nonrenewable RDGs (NRDGs) and ALs can be
utilized besides RDGs [13]. 'e adoption of local resources

will also help reduce the rate of outages for customers in the
case of internal faults in the equipment or external faults
occurring due to natural disasters. Hence, proper EMS using
DGs and ALs enhances the reliability of the network during
an N− 1 event [14, 15].

Energy management and optimal operation of dis-
tribution networks and MGs have widely been discussed
in the literature. 'e stochastic programming and oper-
ation of a reconfigurable distribution network containing
NRDGs was modeled and a network resilient against
natural disasters was obtained [16]. 'e model included
an objective function to minimize the resiliency cost
(including repair and outage cost) and the planning cost
(including capital cost of the network equipment and
network operating cost). 'e aim was to enhance effi-
ciency and profitability of the network. 'e same ap-
proach of Ref. [6] but using a stochastic-robust hybrid
programming model was adopted in Ref. [17]. 'e results
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reported by Refs. [16, 17] show that the outstanding ef-
ficiency of 100% can be achieved by optimal allocation of
sources and elements besides benefiting from an EMS for
optimal reconfiguration of the distribution network. EMS
implementation in a distribution network helps to provide
flexibility by employing RGS such as batteries and electric
vehicle (EV) parking lot [18] as these sources enjoy
negligible time constant. 'ey also provide a flexibility of
100%. DGs’ and EVs’ ability to manage electrical energy
for the sake of enhancing the operation of a hybrid
network was presented in Ref. [19], where DGs and EVs
are used as energy hubs (EHs). By meeting the local
demand, these sources help reduce power loss of and
provide smoother profiles for voltage, pressure, and
temperature [20]. Energy management is commonly
modeled as nonlinear programming (NLP) or mixed-
integer NLP (MINLP). A linear programming (LP) or
mixed-integer LP (MILP) model was derived from the
linear approximation method (LAM) [6–10] to find the
optimal solution within the shortest possible time.
However, as per Refs. [16–20], the computational error
associated with calculating voltage, power, and loss var-
iables is roughly 0.5%, 2.5%, and 10%, respectively. As a
result, the LAM leads to high computational error, despite
providing a rapid response. Operation and flexibility
indicators in an MG consisting of RDGs, batteries, and
electric springs were modeled in a power management
problem [21]. 'e battery together with the system and
electric spring managed to control reactive power and
adjust the voltage of sensitive load buses while providing
flexibility and helping in energy management.

An efficient power management strategy was applied
to a distribution network containing EVs parking lot [22]
so that operation and power quality indicators were en-
hanced. Mathematical techniques like CONOPT and
IPOPT [23] have also been used to solve the nonlinear
energy/power management problem. 'e optimal solu-
tions obtained in each solver are not the same because of
the nonlinear and nonconvex nature of AC power flow
(AC-PF) equations [21, 22]. An NLP model using non-
hybrid evolutionary algorithms (NHEA) such as Antlion
Optimizer (ALO), Differential Equations (DE), and Ge-
netic Algorithm (GA) was discussed in Refs. [24–26]. 'e
mentioned algorithms require many convergence itera-
tions to find the optimal solution, so the computational
time is considerable. Also, referring to statistical studies,
such algorithms suffer from high standard deviation in the
response; hence, the difference in the final solution of
iterations is not negligible. Table 1 lists a summary of
research works carried out so far. 'e authors in Ref. [27]
present a model to preprocess simulation of large-scale
converters in a DC microgrid. A current and voltage
conditioning method based on distributed adaptive dy-
namic programming is used in Ref. [28] for a PV-wind
system. Ref. [29] discusses a generative adversarial net-
work based on trinetworks form (tnGAN). 'e network
helps address the issues with leak detection caused by
incomplete data of the sensors. Another leak detection

method based on data is suggested in Ref. [30], where
parameters of the pipelines, real flow variables, and
previous values of pressure are adopted to present a
pipeline model. To find the place of leak, a dynamic
programming that depends on action and is subject to
limitations of pressure and distance is incorporated. A
robust optimization model of MGs is described in Ref.
[31], where uncertain parameters are also considered to
address the economical and robust operation of the MG.
'e model is structured in two stages and aims at bal-
ancing the economic and robust operation. 'e optimi-
zation helps find robust settable variables of the operation.
'e authors in Ref. [32] present a multi-stage stochastic
programming model of MG operation, while the MG
contains RDGs, storage, and thermal units. 'e model has
two sub-divisions: short-term and long-term. 'e former
adopts the predicted data during every six hours, and the
latter deals with the energy storage value of the prediction
period. Unit commitment of DGs using the PSO has also
been addressed in the literature [33]. In [34], a stochastic
optimization models various uncertain parameters. 'is
model in its upper-level subproblem takes MGs as the
leaders constrained by uncertain accessibility of PV and
wind units and electrical energy price. Chance constraints
help model the accessibility of RESs and thus evaluate the
risk of excessive use of MG. Several scenarios are utilized
to provide a model of electrical energy price. 'e lower-
level subproblem deals with electrical energy dispatching
for individual demand scenario. Still, there are some gaps
in the research on energy management of distribution
networks (or MGs) that should be addressed:

(i) Because of utilizing RDGs in power systems and
considering the uncertainty associated with the
output power of RDGs, the system flexibility be-
comes low. One common definition of flexibility is
“Changing pathways of generation and con-
sumption to react to an external price or activation
signal, aiming to provide a service in the system”
[21]. To realize flexibility, flexibility solutions in-
cluding ALs and NRDGs can be incorporated in
the system. 'is has been presented in many re-
search pieces. However, the mathematical mod-
eling of flexibility has not gained extensive
attention [18, 21]. An index needs its related nu-
merical results to be assessed accurately, which can
be realized using mathematical modeling.

(ii) ESM of distribution networks or MGs, focusing
on few indicators, has widely been discussed in
the literature. Yet, improving mere one indicator
cannot ensure improving other indicator(s). For
instance, resiliency enhancement imposes high
cost [16, 17]. So, several different indicators
should be addressed by ESM at the same time so
that the operation of the whole system is
improved.

(iii) As mentioned, ESM problem is structured in the
form of NLP or MINLP. Some research works like
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Refs. [16–20] adopt LAM to find the optimal so-
lution of the problem, which demands low com-
putational burden and time while leading to drastic
errors. Mathematical approaches like CONOPTand
IPOPT have also been incorporated [21, 22] to solve
the EMS problem, even though the solutions pro-
vided are different. NHEA methods like GA have
also been used to deal with the EMS, but the re-
quired time and the standard deviations in the
responses are the challenges. Hybrid evolutionary
algorithms (HEAs) help to reach the optimal so-
lution with few iterations as several processes are
performed in parallel while optimizing the given
decision variables, leading to a low value of standard
deviation.

'e present study attempts to cover and give solutions to
the abovementioned research gaps by presenting EMS for
MGs influenced by DGs and ALs. To this end, the study
employs a flexible-reliable operation strategy (FROS) and
takes into account technical indicators including operation
status, flexibility, reliability, and economic and emission
indicators. 'e proposed design establishes a three-objective
problem to find the minimum expected operating cost of
MGs and DGs, the estimated emission amount, and EENS
for an N-1 event. By doing this, economic, environmental,
and reliability indicators are modeled appropriately. 'e
constraints are AC-PF equations of the MG, operating
limits, flexibility, and reliability of the MG, and operational
model of DGs and ALs, namely, DRP and battery storage.
'e weighted sum of functions is combined by the Pareto
optimization to formulate the suggested design. Moreover,
uncertainties associated with load, power production of
RDGs, electricity price, and accessibility of MG devices are
taken into account during internal fault occurrence. 'e
uncertainties are modeled using the probabilistic pro-
gramming.'e roulette wheel mechanism (RWM) produces
scenarios to be used in the design. Probability distribution
function (PDF) relevant to the variables is established using
the Gaussian method. An MINLP model is adopted for the
problem and combined with ALO-CSA algorithm find the

optimal solution with a low standard deviation. 'e inno-
vations of the design include:

(i) Energy management of anMG penetrated with DGs
and ALs is modeled to provide clean, reliable, and
flexible energy for the network;

(ii) Optimal operation, flexibility, reliability, economic
and environmental indicators are assessed in the
MG at the same time;

(iii) 'e combined ALO-CSA is used to find the optimal
solution with low standard deviation in the re-
sponse; and

(iv) Probabilistic model of uncertainties is provided and
Gaussian method is used to derive the exact PDF of
variables.

Also, the objectives of this paper are as follows:

(i) Simultaneous access to the optimal state of technical
(operation, reliability, and flexibility), environ-
mental, and economic indicators in the microgrid,

(ii) Deriving optimal power scheduling for sources,
storage, and responsive loads according to the
objectives of multi-criteria microgrids,

(iii) Extracting the almost unique optimal solution (with
low dispersion in the final response) in a short
computing time,

(iv) Determining the probability distribution function
of problem variables.

'e layout of the paper is as follows. Problem formu-
lation is given in Section 2.'e solution process is addressed
in Section 3.'e results are provided in detail in Section 4. In
the end, Section 5 presents the conclusions.

2. Formulation of the Proposed Scheme

'is section describes the model of energy management
problem for anMGwith DGs and ALs to improve economic,
environmental pollution, reliability, operation, and flexi-
bility conditions of the system based on the Pareto

Table 1: A summary of the literature.

Ref.
Indices

Solver Flexibility model
Economic Operation Environmental emission Reliability Flexibility

[16, 17] Yes Yes No No No LAM No
[18] Yes Yes No No Yes LAM Yes
[19] No Yes No No No LAM No
[20] Yes Yes No No No LAM No
[21] No Yes No No Yes MA Yes
[22] No Yes No No No MA No
[24–26] No Yes No No No NHEA No
[27–30] No Yes No No No MA No
[31] Yes Yes No No No LAM No
[32] No Yes No No No MA No
[33] Yes Yes No No No NHEA No
[34] No Yes No No No MA No
PM Yes Yes Yes Yes Yes HEA Yes
PM: Proposed model.
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optimization technique. It is an optimization problem. 'e
optimization model includes objective function and con-
straints [35–39]. 'e objective function minimizes the sum
of the weighted functions of the expected operating cost of
MGs and NRDGs, the expected pollution level, and the

EENS resulting from the N -1 contingency. 'e scheme is
also constrained to the AC optimal power flow (AC-OPF)
equations, MG flexibility and reliability constraints, and the
operation model of DGs and ALs. 'us, the problem will be
formulated as follows:
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'e objective function of the proposed problem is
given in equation (1), which is based on the Pareto op-
timization technique based on the weighted functions sum
method [40]. 'e first term in this equation expresses the
minimization of the total expected operating cost of the
MG and NRDGs, where the operating cost of the MG is
equal to the cost of energy purchasing from the upstream
network based on the energy market price [16]. 'erefore,
if the variable PU has a positive (negative) value, the first
term of the Cost function in equation (1) represents the
energy purchase cost (sales revenue) of the MG. In ad-
dition, since PU depends on the charging and discharging
capacity of ALs, the operating cost of ALs is also estimated
in the Cost function [41]. In the second tern of equation
(1), the minimization of the expected pollution level
resulting from receiving energy from the upstream net-
work and NRDGs is presented. In this regard, the pol-
lution coefficient, c, is equal to the sum of the pollution
coefficients resulting from NOX, SO2, and CO2 pollutants
[42]. Next, the minimization of the EENS resulting from
the N − 1 contingency during an internal failure of MG
equipment is appropriate to the third term of equation (1)
[43]. It is noteworthy that the mentioned objective
functions are modeled as a weighted sum in an objective
function F based on equation (1), in which the sum of
weight coefficients, ωC, ωE, and ωR, should be 1 based on
the constraint (2) [40].

'e AC-OPF constraints for the MG are expressed in
equations (3)–(10) [21, 22]. Equations (3)–(7) represent
the AC-PF equations, which model the active and reactive
power balance in each bus, equations (3)–(4), active and
reactive power flow through the distribution line, and the
voltage phase angle of the slack bus [21]. Constraints
(8)–(10) also introduce operation constraints of the MG,
including the capacity limits of distribution lines and
substations, equations (8) –(9), and the constraint of the
bus voltage, Equation (10) [22]. In these equations, it is
assumed that the MG is connected to the upstream net-
work via a distribution substation connected to the slack
bus, so the PU and QU variables for other buses are zero.
'e flexibility limit of the MG is further stated in con-
straint (11). Note that due to low flexibility in MG in-
cluding RDG arising from forecasting error of RDG power
generation, the resulting of the day-ahead and real-time
scheduling of network is not the same [18]. 'erefore, in a
flexible MG, the distance between the active power of the
distribution substation in scenario w should be small
compared to the scenario corresponding to the deter-
ministic programming (in this case, it is considered equal

to the first scenario) [18]. As a result, the flexibility tol-
erance (εF) for the flexible MG is very low, where for 100%
flexibility, its value will be zero. In the end, the limit of MG
reliability is considered in equation (12), which refers to
the limit of consumption load interrupted in the MG [16].

'e operation model of DGs and ALs is presented in
constraints (13)–(19). Equations (13) –(14) concerns the
performance of DGs in MG, where equation (13) refers to
the capacity limit of these sources. Equation (14) also in-
dicates the amount of power generation of RDGs, where
PDGmax depends on climatic conditions such as solar irra-
diance and wind speed. Also, modeling of two types of ALs
such as DRP and battery is presented in this problem.
Constraints (15) and (16) are commensurate with the per-
formance of the incentive-based DRP [43]. In this type of
DRP, it is assumed that residential, commercial, and in-
dustrial consumers shift part of their energy consumption
from peak load hours (corresponding to high energy prices)
to nonpeak load hours (corresponding to low energy prices).
Hence, it is expected that consumers participating in the
proposed DRP will be able to reduce their energy costs,
which is a good incentive for them. 'us, constraint (15)
indicates the power variation limitation of the DRP, and
equation (16) ensures that the reduced energy consumption
of consumers during peak hours at off-peak hours is pro-
vided by the MG and various sources [43]. Finally, the
formulation of the battery is mentioned in equations
(17)–(19) [14], which indicates the limitations of discharge
rate, charge rate, and energy storage in the battery, re-
spectively. In these equations, the binary variable xB rep-
resents the battery charge and discharge performance, which
prevents simultaneous battery charge/discharge operation
[14]. Finally, it should be noted that the formulation pre-
sented in this section is suitable for AC microgrids of dif-
ferent sizes.

In this case, parameters such as the active and reactive
load of residential, PRL and QRL; commercial, PCL and QCL;
and industrial consumers, PIL andQIL; energy price, λ; power
generation of RDG sources, PDGmax; and availability of MG
equipment such as lines and distribution substations during
earthquakes are uncertain. 'erefore, in this paper, prob-
abilistic programming is used to model these parameters. To
this end, the RWM produces a certain number of scenarios.
In each scenario, the probabilities of load values and energy
prices are calculated from the normal PDF, and the prob-
ability of the PDGmax value for the wind (photovoltaic)
system is obtained from (Beta) Weibull PDF [1, 44, 45].
Finally, the probability uncertainty of the availability of MG
equipment is based on Bernoulli PDF [43]. 'e Bernoulli
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PDF is based on the forced outage rate (FOR) of equipment
against internal failures, and the normal, Weibull, and Beta
PDFs are used for an uncertainty parameter based on its
mean and standard deviation. 'en, after solving the
problem described by equations (1)–(19), the Gaussian
method (GM) is used to obtain the standard PDF of the
problem variables. In this method, for accurate PDF esti-
mation, the probability function of a variable is equal to the
sum of weighted normal PDFs [46].

3. Solution Process

3.1. Fuzzy Decision-MakingMethod. 'e problem presented
in the previous section follows the Pareto optimization
technique based on the sum of the weighted functions. In
other words, for different values of the weight coefficients
،ωC, ωE, and ωR, different values are obtained for the Cost,
EM, and EENS functions. Depicting the obtained points in
3D coordinates represents the Pareto front of the proposed
scheme. Hence, there is a need to achieve an optimal point in
this situation, which according to Ref. [47] is known as the
best compromise solution.'erefore, in this paper, the fuzzy
decision-making method is used to reach this goal. 'e
implementation steps of this method are provided as follows
[47]:

Step 1.Determining themembership function: For each
of the Cost, EM, and EENS functions, the value of the
linear membership function (f) is determined for
different values of coefficients ωC, ωE, and ωR with the
following equation:

fm �

1fm ≤f
min
m

fm − f
max
m

f
min
m − f

max
m

f
min
m ≤fm ≤f

max
m

0f
max
m ≤fm
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m � Cost, EM, EENS.

(20)

In equation (20), the terms fmin and fmax denote the mini-
mum and maximum values of an objective function, re-
spectively. To calculate these parameters, the problem
described by equations (1)–(19) is solved for the three cases
ωC= 1, ωE= 1, and ωR= 1 [47]. More details will be discussed
in Subsection A in Section 5.1

Step 2. Determining the minimum membership
function: In this step, the minimum value of the set

fCost,
fEM, fEENS  is calculated for different values of

ωC, ωE, and ωR [47]. It is worth mentioning that the
value obtained in this section is considered as the term
fi, where i represents the step of changes in the men-
tioned weight coefficients.
Step 3. Determining the best compromise solutioI: 'e
best compromise solution will be between the Cost,

EM, and EENS functions corresponding to the maxi-
mum value of f [47].

3.2. Hybrid Meta-Heuristic Algorithm. 'e proposed
problem by equations (1)–(19) is an MINLP problem.
'erefore, in this paper, to compensate for the third re-
search gap given in Section 1, the hybrid ALO [24] and
CSA [48] (ALO +CSA) solver is used to achieve the op-
timal solution. Since decision variables in this algorithm
are updated in two general processes, namely, ALO and
CSA phases, it is expected that it can be a reliable optimal
solution with a low standard deviation in the response.
Further details on the capabilities of the algorithm are
discussed in Section 4.2.A.

To solve the proposed problem by evolutionary al-
gorithms, even using the mentioned algorithm, the
problem variables are divided into two general categories.
'e first category refers to the decision variables, which
include variables of the PDG for the set of L - RES, QDG,
PDR, xB, PBdis, PBch, and LNS, the values of which are
determined using the hybrid ALO +CSA algorithm pro-
portional to equations (21)–(27). 'e other category has
dependent variables that include PDG for the set of RES,
PU, QU, PF, QF, V, and φ. 'e value of PDG for the RES set is
calculated based on the constraint (14), and the other
dependent variables are determined by the AC-PF
equations (3)–(7). In this paper, the backward-forward
power flow method is used to solve the AC-PF problem
[49].

P
DG
n,l,t,w ∈ 0, S

DG max
n,l ∀n, l ∈ L − RES, t, w, (21)

Q
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P
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x
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P
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n,t,w ∈ ∀n, t, w, (26)

L
NS
n,t,w ∈ ∀n, t, w. (27)

'e penalty function method is employed in this study
to estimate the limits of operation, flexibility, and reli-
ability of the MG, (8)–(12); capacity limit of the DG, (13);
DRP constraint, (16); and the limit of energy stored in the
battery, (19). In this method, the penalty function for the
constraints a ≤ b and a � b is μ.max (0, a − b) and κ.(a − b),
which are added to the main objective function, i.e., to
equation (1), for the mentioned constraints as given in
equation (28) [25]. μ≥ 0 and κ ∈ (−∞, +∞) represent
Lagrange multipliers. Finally, the function modeled in
equation (28) is known as the fitness function [50].
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minF � ωC × Cost + ωE × EM + ωR × EENS

+ 
n,j,t,w

μsl
n,j,t,w max 0,

������������������

P
F
n,j,t,w 

2
+ Q

F
n,j,t,w 

2


− S
Fmax
n,j  + 

t,w

μsu
t,w max 0,

����������������

P
U
s,t,w 

2
+ Q

U
s,t,w 

2


− S
Umax
s 

+ 
n,t,w

μv
n,t,w max 0, Vn,t,w − V

max
n  + μv

n,t,w
max 0, V

min
n − Vn,t,w 

+ 
t,w

μpu
t,w max 0, P

U
s,t,w − P

U
s,t,1 − εF  + μpu

t,w
max 0, −εF − P

U
s,t,w + P

U
s,t,1 

+ 
n,l,t,w

μs d
n,l,t,w max 0,

�����������������

P
DG
n,l,t,w 

2
+ Q

DG
n,l,t,w 

2


− S
DG max
n,l  + 

n,t,w

μe

n,t,w
max 0, E

min
n − E

ini
n − 

t

τ�1
ηch

n P
Bch
n,τ,w −

1
ηdi s

n

P
B di s
n,τ,w

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

+ 
n,w

κdr
n,w 

t∈T
P

DR
n,t,w + 

n,t,w

μe
n,t,w max 0, E

ini
n + 

t

τ�1
ηch

n P
Bch
n,τ,w −

1
ηdi s

n

P
B di s
n,τ,w

⎛⎝ ⎞⎠ − E
max
n

⎛⎝ ⎞⎠.

(28)

'e solving process of the hybrid ALO+CSA algorithm
for the proposed scheme is such that, initially, this solver
determinesN random values (N is the population size) based
on constraints (21)–(27) for the decision variables and the
Lagrangian multipliers. 'en, the values of the dependent
variables are calculated from constraint (14) and the
backward-forward power flow method. Next, the fitness
function is determined for N values using the value of de-
cision variables based on equation (28).'is step is known as
the initialization step. In the next steps, the decision vari-
ables are updated using the proposed algorithm based on the
optimal value of the fitness function in the previous step, so
that first the ALO process and then the CSA process are
carried out. In these steps, the calculation of dependent
variables and fitness function is based on the technique used
in the initialization step. Finally, in this paper, it is assumed
that the convergence conditions are obtained after repeating
the updating steps of decision variables to a certain number
called itermax. Finally, Figure 1 shows the flowchart of
solving the proposed problem.

4. Numerical Results

4.1. Case Studies. 'e proposed scheme is implemented on
a 69-bus radial MG as shown in Figure 2 [51]. 'is net-
work has base power and voltage of 1 MVA and 12.66 kV.
'e characteristics of distribution lines and substations in
addition to peak load data are extracted from Ref. [51].
'e allowable voltage range is [0.9, 1.1] p.u [52–56]. In this
paper, it is assumed that the network has three types of
consumers: residential, commercial, and industrial. In-
dustrial consumers are at buses 49, 50, and 61, and
commercial consumers are at buses 11, 12, 21, and 64.
Other buses have residential consumers only. 'e daily
load profile is equal to the product of the peak load and the
daily load factor curve, which is plotted in Figure 3(a) for
the mentioned consumers [57]. Also, the expected daily
curve of energy prices will be as shown in Figure 3(b). In

addition, it is assumed that each of the industrial con-
sumers in buses 49 and 50 has a fuel cell (FC)-type DG
with a capacity of 0.3 MVA. 'e industrial consumer in
bus 61 has two DGs of FC type and microturbine (MT)
with a capacity of 0.8 MVA and 0.7 MVA, respectively.
Every commercial consumer needs a photovoltaic (PV)
DG with a capacity of 0.2 MVA. Finally, two wind system
(WS) DGs with a capacity of 0.3 MVA are located on buses
24 and 63. Note that the daily active power profile of RDG
is equal to the product of its capacity and its daily power
rate curve, which is shown for PV and WS in Figure 3(c)
[58]. Coefficients of cost functions of fuel cost and
emissions for different types of DGs are given in Table 2.

'is study assumes that the participation rate of
commercial and residential consumers in the proposed
DRP is 40%, but industrial loads have a participation rate
of 30%. 'e network also has three batteries placed in
buses 10, 24, and 63 with a capacity of 2.5 MWh and a
charge/discharge efficiency of 95%. 'e battery charge/
discharge rate is 0.5MW and the minimum energy and
initial energy are 0.25 MWh and 0.25 MWh, respectively.
Furthermore, emission coefficients of NOX, SO2, and CO2
gases proportional to the energy received from the up-
stream network for the MG based on Ref. [42] are equal to
2.295 kg/MWh, 921.25 kg/MWh, and 3.583 kg/MWh, re-
spectively. It is assumed that the FOR of the MG
equipment is 1%. Finally, RWM generates 100 scenarios,
in which the standard deviation for uncertainties of the
load, energy cost, and active power of RDGs is set 10%.
Moreover, to achieve high flexibility, εF is considered
0.05 p.u.

5. Results

'e proposed scheme along with the solution process is
coded in MATLAB software, then the obtained numerical
results are reported below.
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Call of data

RWM to generate of scenario

Determinate N random values for decision 
variables and Lagrangian multipliers

Calculate dependent variables and fitness function 

Update decision variables and Lagrangian multipliers using ALO
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Figure 1: Flowchart of the solution process.
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Figure 2: �e 69-bus Mg [51].
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5.1. Examining the Feasibility of the Proposed SolutionProcess.
Table 3 provides the results of the Pareto front for the
proposed problem described by equations (1)–(19). In this
table, four values of zero, 0.33, 0.5, and 1 are considered for
each weighting coe�cient ωC, ωE, and ωR. In the second to
fourth rows of this table, the values of the objective functions
Cost, EM, and EENS for the case studies are ωC� 1, ωE� 1,
and ωR� 1, respectively. For ωC� 1, the minimum value of
Cost ($ 873.26) is calculated because in this case, only the
Cost function appears in the objective function (1). �ese
conditions are available for EM and EENS for ωE� 1 and
ωR� 1, respectively, where their minimum values are
47793 kg and 2.33 MWh, respectively. Also, the maximum
values of the mentioned functions can be seen in these lines,
so that the maximum values of Cost, EM, and EENS are $
943.31, 55633 kg, and 8.67 MWh, respectively. Note that
according to this table, it is observed that the direction of
increase and decrease of one function is not in the same

direction of other functions. For instance, the decrease of
EENS is proportional to the increase in EM and Cost. �e
same is true for other functions. Eventually, to reach a
compromise between these functions, this paper employs the
fuzzy decision-making method. To this end, Table 4 reports
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Figure 3: Expected daily curve of (a) load factor [57], (b) energy price, and (c) RES power rate [58].

Table 2: DGs characteristics.

DG Type
Coe�cients of fuel cost function Pollution coe�cients (kg/MWh)

a ($) b ($/MWh) c ($/MWh2) NOx CO2 SO2

1 FC 150 18 0.01 0.0021 0.0003 105.26
2 MT 200 21 0.02 0.1995 0.0036 723.93
3 PV 0 0 0 0 0 0
4 WS 0 0 0 0 0 0

Table 3: �e Prato front results for the proposed scheme.

ωC ωE ωR Cost ($) EM (kg) EENS (MWh)
1 0 0 873.26 55633 7.91
0 1 0 943.31 47793 8.67
0 0 1 937.84 53429 2.33
0.5 0.5 0 890.23 50362 8.06
0.5 0 0.5 882.72 54012 3.78
0 0.5 0.5 928.45 48975 3.49
0.33 0.33 0.33 895.68 50553 3.61
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the results of the best compromise solution obtained from
various Pareto optimization techniques. In other words, to
evaluate the Pareto technique, the results of other methods
such as ε-constraint [47], the sum of normalized functions
[41], and nondominated sorting genetic algorithm (NSGA)
[59] are also given in this table. According to Table 4, the
weighted functions sum method, described in Section 3.1,
succeeds to obtain theminimum value for the three objective
functions, namely, Cost, EM, and EENS. �e ε-constraint
method also provides the best compromise solution close to
the results of the method presented in this paper. However,
the best compromise point obtained from the other two
methods has a signi¡cant di¢erence compared to the
method of weighted functions sum. �e compromise point
obtained in the proposed method is close to the minimum
value of each objective function so that the distance between
Cost at this point compared to its minimum value is ap-
proximately 4.87% ((879.84–873.26)/873.26). �is value for
EM and EENS power is roughly 0.75% and 16.7%,
respectively.

Figure 4 depicts the convergence results of the problem
using the solvers of the DE [25], Teaching-Learning-based
Optimization (TLBO) [60], CSA, ALO, and the suggested
hybrid ALO+CSA. In these algorithms, the population size
and maximum convergence iterations are 50 and 1000,
respectively, and other adjustment parameters related to
each solver are selected from Refs. [24, 25, 48, 60]. In ad-
dition, the problem is solved 20 times by each algorithm to
calculate statistical indices such as standard deviation (SD)
of the response. Finally, based on this ¡gure, it can be seen
that the proposed ALO+CSA algorithm obtains the mini-
mum value for the objective function F, equation (1),
compared to the other mentioned algorithms. �us,
according to Figure 4, it ¡nds the best compromise point in
the fewest number of convergence iterations (CI), which is
608. �is convergence iteration corresponds to the mini-
mum possible computational time (CT), which is 212.3 s.
Other solvers require a CT higher than 225 s to achieve the
best compromise solution in the proposed scheme, equa-
tions (1)–(19). In addition, the hybrid ALO+CSA algorithm
has an SD of 0.97%, but this value for other algorithms is
greater than 1.35%. �is means that the proposed solver has
a low dispersion in the ¡nal response relative to the other
solvers, and has almost a unique response condition. Fig-
ure 5 shows the PDF of the objective functions Cost, EM,
and EENS. In this ¡gure, the PDF of each function is
presented for RWM results, and also, the standard PDF
determinates using the Gaussian method (GM). As can be
seen from this ¡gure, the minimum value of the Cost
function reported in Table 4, which is $ 879.84, has a

probability of about 8%. Also, the PDF of Cost is a non-
normal distribution, while the PDFs of EM and EENS have
approximately normal distributions. Moreover, the mini-
mum values of EM, i.e., 48153 kg, and EENS, i.e., 2.72 MWh,
have a probability of 7% and 9%, respectively, according to
Figure 5.

5.2. Evaluating the Performance of DGs and ALs in the MG.
�e expected daily curve of active and reactive power of DGs
is presented in Figure 6. Comparing Figures 3(c) and 6(a)
and according to the data of Section 4.1, it is observed that
PVs and WSs in all simulation hours inject active power
equal to their maximum capacity into the MG proportional
to climatic conditions. According to Table 2, their pollution
coe�cients and operating costs are zero; it is expected that
they will inject high active power into the MG to minimize
EM and Cost. Also, the minimization of the EENS is in
proportion to the fact that local sources are responsible for
supplying consumers [23]. �erefore, to minimize the EENS
during N-1 contingency, RDGs need to inject high power
into the MG. Besides, at hours 1:00 to 6:00, as the price of
energy purchased from the upstream network, Figure 3(b), is
lower than the fuel price of FCs and MTs, as shown in
Table 2, NRDGs inject low active power into the MG during
these hours to minimize environmental pollution and
earthquake-induced shutdown. Nevertheless, at other times
when the fuel cost of NRDGs is less than the energy price,
they inject active power equal to their maximum capacity
into the network. �is performance of FCs and MTs from 7:
00 to 24:00 is commensurate with the minimization of Cost,
EM, and EENS functions. In addition, it can be seen from

Table 4: �e best compromise solution of the proposed scheme.

Method Cost ($) EM (kg) EENS (MWh)
Sum of weighted function 87984 48153 2.72
ε-constraint [47] 88072 48208 2.79
Normalized objective function [41] 88824 49033 3.08
Nondominated sorting genetic algorithm [59] 88455 48721 2.93
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Figure 4: Convergence curve of the proposed problem based on
the di¢erent solvers.
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Figure 6(b) that DGs have allocated part of it to inject re-
active power into the MG at times they have free capacity.
FCs and MTs inject about 0.6 and 0.4 p.u. Reactive power
into the MG during 1:00–6:00. At these hours, according to

Figure 7, ALs perform charging operations and receive active
power from the MG. �erefore, it is expected that there will
be a high voltage drop in the MG during these hours. To
compensate for this, NRDGs inject signi¡cant reactive
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Figure 5: PDF of (a) Cost, (b) EM, and (c) EENS.

International Transactions on Electrical Energy Systems 11



power into the network. However, RDGs generally inject
reactive power into the MG during most simulation hours.
�is performance is proportional to compensating for
voltage drop caused by the consumption of ALs and passive
loads in the MG.

Figure 7 illustrates the expected daily performance
curves of ALs such as DRPs and batteries. According to
Figure 7(b), it can be observed that all residential, com-
mercial, and industrial loads that have participated in the
proposed DRP will increase their consumption between 1:
00–7:00 and 23:00–00:00 because the energy price according
to Figure 3(b) has a low value during these hours. Yet, in
peak hours when the energy price according to Figure 3(b)

has a high value of 30 $/MWh, the mentioned consumers
operate in the low-consumption mode. �is demand-side
management approach is proportional to minimizing all
three objective functions of operating costs, environmental
pollution, and MG shutdown due to N– 1 contingency. In
addition, battery performance is similar to that of consumers
that participate in the proposed DRP so that they are charged
during 1:00–6:00 and 23:00–00:00 to receive the energy
needed for discharge during peak hours. Finally, it is
noteworthy that the ©exibility sources, including ALs and
NRDGs, have a certain amount of active power at all
simulation hours to improve network ©exibility. �is is
because these sources must compensate for the prediction
error in the power generation of RDGs to improve system
©exibility. Since RDGs have a certain amount of active power
at all simulation hours according to Figure 6(a), it is ex-
pected that the ©exibility sources in the operation horizon
will always have nonzero active power value.

5.3. Examining the Status of Technical andEconomic Indices of
the MG. In this section, two case studies have been inves-
tigated. �ese case studies refer to the power ©ow results of
the MG (the network without DG and AL) in Case I and the
proposed scheme in Case II. �e results concerning tech-
nical, economic, and environmental indices for the
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Figure 6: Expected daily curve of (a) DGs active power and (b) DGs reactive power.

2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0.5

1

1.5

2

2.5

3

3.5

M
G

 lo
ad

 (p
.u

)

Without DRP
With DRP

(a)

2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

–1

–0.5

0

0.5

A
ct

iv
e p

ow
er

 (p
.u

)

(b)
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Table 5: Technical and economic results.

Case I
II

εF� 0.01 εF� 0.03 εF� 0.05
Cost ($) 1137.35 887.55 883.26 879.84
EM (kg) 68528 48512 48308 48153
EENS (MWh) 27.8 2.93 2.81 2.72
EL (MWh) 5.21 3.86 3.75 3.67
MVD (p.u) 0.092 0.056 0.054 0.053
MOV (p.u) 0 0.012 0.012 0.012
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mentioned case studies are summarized in Table 5. Based on
this table, by increasing network flexibility, which corre-
sponds to a decrease in flexibility tolerance (εF), the values of
Cost, EM, and EENS functions and operation indices such as
energy losses (EL) and maximum voltage drop (MVD)
increase, while the maximum overvoltage (MOV) is almost
constant. In other words, improving the flexibility of the
network is commensurate with the deterioration of the
economic, environmental, reliability, and operation of the
MG. Because the flexibility of the MG depends on the
charging and discharging performance of ALs, it is expected
that the amount of energy consumed by ALs and the
consequent energy consumption of the MG increase in this
situation. 'is is in line with the increased values of func-
tions and operation indices. As another remark, note that the
proposed scheme has been able to improve the economic
conditions of the MG by about 22% ((1137.35–887.55)/
113735) in the conditions of high flexibility (εF � 0.01), i.e.,
the Cost function is reduced by 22%. Also, the environ-
mental status and reliability of the MG in Case II with
εF � 0.01 improves compared to Case I by about 29.2% and
89.5%, respectively, according to Table 5. In terms of op-
eration indices, EL andMVD, in this case, have decreased by
about 26% and 39%, compared to Case (I). However, the
MOV is roughly 0.012 p.u. in the above studies compared to
the power flow studies, the amount of which is less than its
permitted limit, i.e., 0.05 p.u. (1.05−1). 'erefore, on av-
erage, about 33.5% of the operation status of the MG is
improved by the proposed scheme compared to Case I.

6. Conclusion

'e study proposed energy management of an MG pene-
trated by DGs and ALs with the help of a flexible-reliable
operation strategy. 'e problem was established with three
objective functions subject to constraints including AC-PF
equations, operating constraints, flexibility and MG reli-
ability, and operation models of DGs and ALs. 'e first
function minimizes the expected operating cost imposed by
MG and NRDGs. 'e second one attempts to find the
minimum level of predicted pollutant emission and, finally,
the third functionminimizes the EENS associated with anN-
1 event. 'e suggested design takes into account the op-
eration and flexibility model of the MG in the problem
constraints. 'e probabilistic programming assists to pro-
vide accurate modeling of uncertainties related to the load,
electricity cost, output power of RDGs, and accessibility of
MG devices. 'e weighted sum of functions-based Pareto
optimization was then applied to formulate the design. 'e
hybrid ALO-CSA algorithm finds the optimal solution of the
problem in minimum convergence iterations and compu-
tational time when compared with NHEAs, so its conver-
gence speed is higher than that of NHEAs. 'e standard
deviation of the response is roughly 0.97%, so a unique
response status is found. 'erefore, the mentioned algo-
rithm is able to extract a more accurate solution with a
higher convergence speed than NHEAs because it has a
more optimal point with a very low standard deviation and a
lower calculation time than NHEAs. Moreover, the Pareto

optimization method based on the weighted sum of func-
tions has been able to obtain a compromise point for the
proposed scheme where the operating cost, EENS, and
environmental pollution are close to their minimum value.
'us, these indices are about 4.9%, 0.75% and 16.7% away
from their minimum values, respectively. Furthermore,
economic, environmental, reliability, and operational indi-
cators are enhanced up to 22%, 29.2%, 89.5%, and 33.5% in
an MG with high flexibility level (εF � 0.01) by applying
energy management and demand-side management using
an incentive-based DRP model in comparison to MG power
flow studies.'erefore, according to the obtained results and
comparing it with the research background, it can be seen
that there are advantages for the proposed scheme, which are
as follows: (1) 'e proposed scheme has been able to si-
multaneously improve the economic, technical, and envi-
ronmental situations in microgrid compared with power
flow studies. Also, in the technical discussion, it simulta-
neously improves several indicators, i.e., operation, reli-
ability, and flexibility of the microgrid. (2) 'e proposed
design based on hybrid algorithm has achieved an almost
unique solution with very low dispersion compared with
nonhybrid algorithms. It also has shorter computing time.
(3)'is scheme obtains the probabilistic model of microgrid
operation, in which the changes of an index or variable are
expressed in terms of probability.

Nomenclature

Indices and Sets
n, j, l, t, w: Indices of the bus, bus, distributed generation

(DG) type, simulation time, and scenario
N, L, T, W,
RES:

Sets of the bus, DG type, simulation time,
scenario, and renewable DG (RDG) types

s: Slack bus

Variables
Cost: Expected operating cost of the MG and DGs ($)
EENS: Expected energy not-supplied (MWh)
EM: Expected pollution emission (kg)
F: Objective function
LNS: Load not-supplied in per unit (p.u.)
PBch,
PBdis:

Active charging and discharging power of battery
(p.u.)

PDG,
QDG:

Active and reactive power of the DG (p.u.)

PDR: Active power of the demand response program
(DRP) in p.u.

PF, QF: Active and reactive power of the distribution line
(p.u.)

PU, QU: Active and reactive power of the upstream
network (p.u.)

V, φ: Magnitude (p.u.) and angle (rad) of the voltage
xB: A binary variable related to the battery charging

and discharging operation

Constants
a, b, c: Coefficients of the fuel cost function in $,

$/MWh, and $/MWh2, respectively
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BL, GL: Susceptance and conductance of the
distribution line (p.u.)

CR, DR: Battery charging and discharging rate (p.u.)
Eini: Initial energy of the battery (p.u.)
Emin, Emax: Minimum andmaximum storable energy in the

battery (p.u.)
I: Incidence matrix of bus and the distribution

line
PCL, PIL,
PRL:

Active power consumed by commercial,
industrial, and residential consumers (p.u.)

PDGmax: Maximum active power generation by the RDG
(p.u.)

QCL, QIL,
QRL:

Reactive power consumed by commercial,
industrial, and residential consumers (p.u.)

SDGmax: Maximum capacity of the DG (p.u.)
SFmax: Maximum capacity of the distribution line

(p.u.)
SUmax: Maximum capacity of the distribution

substation (p.u.)
Vmin, Vmax: Minimum and maximum allowable voltage

magnitude (p.u.)
εF: Flexibility tolerance (p.u.)
c: Emission coefficient
ηch, ηdis: Charging and discharging efficiency of the

battery
λ: Energy price ($/MWh)
ρ: Probability of occurrence of a scenario
ωC, ωE, ωR: Weighted coefficients of the objective function
ξCL, ξIL,
ξRL:

Participation coefficient of commercial,
industrial, and residential consumers in the
DRP.
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