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Aiming at the problems of low prediction accuracy, long time, and poor results in current wind turbine generation power
prediction methods, an offshore wind turbine generation power prediction method based on cascaded deep learning is proposed.
Using deep belief networks, stacked autoencoding networks, and long short-term memory networks, a cascaded deep learning
method is proposed to predict the power generation of offshore wind turbines. Multiple feature extractors are used to extract and
fuse high-level features to form a unified feature with richer information to predict the power generation sequence of offshore
wind turbines. According to the modeling strategy and port design strategy, using the stacked autoencoding networks as the basic
unit, a cascaded deep learning model for generating power prediction of offshore wind turbines is established. ,rough the
selection of input variables, the variables that have a great correlation with wind power are obtained. ,e layer-by-layer greedy
algorithm is used for training from bottom to top, and supervised learning is used to fine-tune the network parameters from top to
bottom to realize the generation power prediction of the offshore wind turbine. ,e experimental results show that the proposed
method is effective in predicting the power generation of offshore wind turbines, which can effectively improve the prediction
accuracy and shorten the prediction time.

1. Introduction

Due to the vigorous exploitation of nonrenewable energy
such as coal mines and oil, today’s society is facing various
environmental problems such as environmental pollution,
the greenhouse effect, and the depletion of nonrenewable
energy [1]. In order to solve a series of problems, a large
number of renewable energies, such as solar energy and wind
energy, will occupy a more and more important position in
the energy field as important strategic energy development
objects. With the gradual depletion of global fossil energy
and the deterioration of Earth’s overall environment, the
development and utilization of renewable energy have be-
come a consensus all over the world. With the characteristics
of fast growth and high technical maturity, the proportion of
wind energy in power supply all over the world has increased
year by year. Wind energy is a pollution-free, renewable, and

relatively mature renewable energy source. ,e cost of power
generation is decreasing day by day, and the world is rich in
reserves. At present, the utilization of wind energy can ef-
fectively alleviate the shortage of fossil fuels [2–4]. At present,
with the continuous growth of wind power installed capacity,
the impact of large-scale wind power access on the power
grid is becoming more and more obvious. Accurate and
effective prediction of wind power can reduce the adverse
impact of wind power access on the power grid and optimize
power grid dispatching [5]. ,erefore, the research on wind
power prediction has important practical significance.

At present, scholars in related fields have studied wind
power prediction and achieved some theoretical results.
Peng et al. [6] proposed a wind power prediction method for
wind farms based on multifeature similarity matching. ,e
multifeature similarity matching method is used to optimize
and analyze the key parameters. ,e influence of each key
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parameter on the prediction error and the applicability of
this method at different regional scales are analyzed.,e new
method and optimization analysis process are verified by the
wind farm group, composed of wind farms.,is method has
been proven to be an effective wind power prediction
method for wind farms and has potential industrial appli-
cation prospects. Sun et al. [7] proposed an artificial neural
network wind turbine power modeling and optimization
method based on wind farm experimental data. ,e power
prediction model is constructed and the yaw angle is op-
timized to minimize the impact on the overall wake of the
wind turbine. ,e artificial neural network considering the
wake effect is used to estimate the total power generation of a
wind turbine under a given wind speed, wind direction, and
yaw angle. ,e model is trained and evaluated using the
experimental data of five wind turbines operating on a wind
farm. It can effectively improve the total power of wind
turbines in all directions. However, the above methods still
have the problems of low prediction accuracy, long waiting
times, and poor effect.

To solve the above problems, a power generation pre-
diction method of offshore wind turbines based on cascade
deep learning is proposed. A cascade deep learning method
is used to predict the power generation of offshore wind
turbines [8–10]. Multiple feature extractors are used to
extract and fuse high-order features to predict the generation
power sequence of offshore wind turbines. According to the
modeling strategy and port design strategy, the stacked
autoencoding network is used as the basic unit to build a
cascaded deep learning model for offshore wind turbine
generation power prediction. ,rough the selection of input
variables, variables that have a greater correlation with wind
power are obtained, and the power generation prediction of
offshore wind turbines is realized. ,e forecasting effect of
the offshore wind turbine generating power of this method is
good, which can effectively improve the forecasting accuracy
and shorten the forecasting time.

2. Cascaded Deep Learning Network

2.1. Deep Belief Network. A deep belief network (DBN) is
formed by stacking several Restricted Boltzmann Machines
(RBM) with powerful unsupervised learning capabilities
[11]. ,e structure of the deep belief network is shown in
Figure 1.

In Figure 1, each RBM contains a visible layer and a
hidden layer, and the last layer is superimposed on the BP
neural network. ,e training of DBN consists of two pro-
cesses: unsupervised pretraining of RBM and supervised
fine-tuning using the BP algorithm. Suppose that the net-
work input is X, the label is Y, the hidden layer of RBM is h

and its corresponding j neuron is hj, the visible layer is v and
its corresponding i neuron is vi. ,e training process is as
follows:

2.1.1. Unsupervised Pretraining. Pretraining is to input the
original data into the lowest RBM visual layer, and then train
RBM1. After training, take the hidden layer of RBM1 as the
visual layer of RBM2, continue to train RbM2, then take the
hidden layer of RBM2 as the visual layer of RBM3, and so on
until the training is completed. RBM is an energy model
based on thermodynamics. Its energy function is defined as
E(v, h), and the joint probability distribution of the hidden
layer and the visible layer is P(v, h), then,

E(v, h) � − 

nv

i�1


nh

j�1
wijvihj − 

nv

i�1
aivi − 

nh

j�1
bjhj. (1)

In Formula (1), wij represents the weight between the i

neuron in the hidden layer and the j neuron in the visible layer,
ai represents the threshold of the i neuron in the visible layer,
and bj represents the hidden layer.,e threshold of j neurons,
nv represents the number of visible layers, and nh represents the
number of hidden layers. From Formula (1), the joint prob-
ability density of P(v, h) can be obtained as follows:

P(v, h) �
1
Z

e
− E(v,h)

. (2)

In Formula (2), Z represents the normalized numerator.
Because the structural feature of RBM is that there is a
connection between layers and there is no connection inside
each layer, if the state value of visual neurons is given,
whether each hidden neuron is activated is conditionally
independent. When the state of the visible layer is known,
then the activation probability of the j neuron in the hidden
layer is given as follows:

P hj � 1|v  � f 

nv

i�1
wijvi + aj

⎛⎝ ⎞⎠. (3)
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Figure 1: Structure diagram of a deep belief network.
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When the state of the hidden layer is known, the acti-
vation probability of the i neuron in the visible layer is given
as follows:

P vi � 1|h(  � f 

nh

j�1
wijhj + bi

⎛⎝ ⎞⎠. (4)

In Formula (4), f(x) is the activation function, and the
training process of RBM is unsupervised. Assuming pa-
rameter θ � (w, b, a), the training process of RBM is to find
the value of the parameter θ. θ can be obtained by maxi-
mizing the log-likelihood function of RBM on the training
set. Let v(t) be the known t input sample, then,

L(θ) � 
T

t�1
ln P v

(t)
, h ,

� 
T

t�1
ln

nh

e
− − E v(t) ,h( )[ ] − ln
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e
[− E(v,h)]⎛⎝ ⎞⎠,

θ � argmax L(θ) � argmax
T

t�1
P v

(t)
, h .

(5)

In order to obtain the optimal solution of θ, the gradient
descent method is used to find the maximum value of L(θ)

[12]. ,en, the gradient of the log-likelihood function with
respect to θ is given as follows:
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⎛⎝ ⎞⎠.

(6)

In Formula (6), ·{ }P represents the mathematical ex-
pectation about the distribution P, and P(h|v(t)) represents
the probability distribution of the hidden layer when the
visible neuron is a known training sample v(t). Considering
that the structure of the RBM model is symmetrical and the
neuron state conditions are independent, the contrast di-
vergence algorithm (CD) is used to solve the problem.

2.1.2. Supervised Fine-Tuning. ,e BP network is super-
imposed on the last layer of DBN, and the output eigen-
vector of RBM is used as its input. Because, after RBM
network training, it can only ensure that the weight in its
own layer is optimal for the feature vector mapping of this
layer and not for the whole DBN network, the BP network is
also used to propagate the error signal from the top to
bottom to each RBM layer to fine-tune the parameters of the
whole DBN network.

,e training of the RBM network can be regarded as the
initialization of the weights of a deep BP network, which
gives DBN the advantage of strong feature learning ability,
but it does not have the disadvantages of the BP network that
it is easy to fall into the local optimum and the training is
slow [13–15].

2.2. Stacked Self-Encoding Network. Stacked Autoencoder
(SAE) is one of the most commonly used deep learning
methods at present. It is composed of several AEs stacked to
realize the gradual abstraction of information features.
Similar to DBN, it is a generativemodel [16].,e structure of
the stacked self-encoding network is shown in Figure 2.

According to Figure 2, the SAE network is symmetrical
left and right. ,e side where the number of neurons is
reduced layer by layer from the leftmost input layer is called
the coding side, and then these layers form the other side
through a mirror image, which is called the decoding side,
and the middle layer is called the bottleneck of SAE (i.e., the
characteristic direction of data). SAE has been widely used in
image classification, data analysis, audio analysis, and other
fields because of its flexible structure, simple training, and
strong feature extraction ability. Firstly, a brief introduction
to the self-encoder is given.

2.2.1. Self-Encoder. ,e structure and principle of the self-
encoder are shown in Figure 3.

According to Figure 3(a), a simple AE is a three-layer
symmetric MLP in which the number of neurons in the
hidden layer is less than that in the input layer and the
output layer. From the input layer to the hidden layer is
called the encoding process, and from the hidden layer to the
output layer is called the decoding process. ,e purpose of
training AE is to minimize the reconstruction error of input
data. At this time, the output of a hidden layer is another
expression of input data. Its dimension is less than that of
original data, so as to achieve the effect of removing re-
dundancy and extracting the characteristics of original data.
Its function is similar to principal component analysis
(PCA).

According to Figure 3(b), assuming that x is the training
data set, which contains N data vectors, and L(X, Z) is the
reconstruction error, then the encoding process and
decoding process of AE can be expressed as follows:

y(x) � f(Wx + b),

z(x) � g(Vy(x) + c).
(7)

In Formula (7), W represents a coding matrix, V rep-
resents a decoding matrix, b represents a coding threshold
vector, c represents a decoding threshold vector, and f and g

represent an activation function. ,e essence of training AE
is to find the parameter that minimizes L(X, Z) on the data
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Figure 2: Stacked self-encoding network structure diagram.
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set x, and set the optimal parameter to θ∗, which can be
expressed as follows:

θ∗ � argmin
θ

L(X, Z) � argmin
θ

1
2N



N

i�1
x

(i)
− z x

(i)
 

�����

�����
2

.

(8)

2.2.2. Stacked Autoencoding Network Training Process.
,e layer-by-layer training method of stacked autoencoding
is shown in Figure 4.

,e training process of SAE is similar to that of DBN. It
also needs pretraining and fine-tuning. First, reconstruct the
input layer of each AE layer until the whole network is
trained, that is, the pretraining stage is completed, and then
use the BP algorithm to realize supervised fine-tuning and
adjust all network parameters from top to bottom.

2.3. Long Short-TermMemoryNetwork. ,e long short-term
memory network (LSTM) is an improved form of a cyclic
neural network. It has most of the excellent characteristics of
a cyclic neural network model. At the same time, it solves the
problem that the gradient of a cyclic neural network is easy
to disappear in the training process and cannot continue to
improve the accuracy of the model [17–19]. Other neural
networks are composed of independent neuron connections,
and LSTM networks are similar to them, which are formed

by connecting independent LSTM blocks. It contains three
gates: input, forget, and output, as well as a block input, a
block output, a memory cell, an output activation function,
and a peephole connection, where the block output is re-
peatedly connected back to the block input and all the gates.
,e training process of the LSTM network includes the
forward transmission of information and the back propa-
gation of error through time.

2.3.1. Information Forwarding. Suppose the input vector at
time t is xt, the number of LSTM blocks is N, and the number
of inputs is M. ,e weight vectors of an LSTM network layer
are input weight: Wz,Wi,Wf,Wo ∈ RN×N, loop weight:
Rz,Ri,Rf,Ro ∈ RN×N, peepholes connection weight:
Pi,Pf,Po ∈ RN, and threshold: bz, bi, bf, bo ∈ RN, then the
calculation formula for each vector is as follows:

,e block input is given as follows:

z
t

� g Wzx
t

+ Rzy
t− 1

+ bz . (9)

,e input gate is given as follows:

i
t

� σ Wix
t

+ Riy
t− 1

+ piec
t− 1

+ bi . (10)

,e forget door is given as follows:

f
t

� σ Wfx
t

+ Rfy
t− 1

+ pfec
t− 1

+ bf . (11)

,e cell status is given as follows:

c
t

� z
t
ei

t
+ c

t− 1
ef

t
. (12)

,e output gate is given as follows:

o
t

� σ Wox
t

+ Roy
t− 1

+ poec
t

+ bo . (13)

,e block output is given as follows:

y
t

� h c
t

 eo
t
. (14)

2.3.2. 4e Error Propagates Back through Time. ,e incre-
ment δ inside the LSTM block is calculated as follows:
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…
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Figure 3: Autoencoder structure and principle diagram. (a) AE basic structure, (b) AE fundamentals.
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Figure 4: Schematic diagram of the stacked autoencoding layer-by-
layer training method.
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In Formula (15), Δt represents the incremental vector
passed down from the previous layer. If E is a loss function,
then it is generally equal to zE/zyt but it does not include
cyclic dependence. ,e input increment only needs to be
calculated when the next layer needs training. ,e calcu-
lation formula is as follows:

δx
t

� W
T
z δz

t
+ W

T
i δi

t
+ W

T
o δf

t
+ W

T
o δo

t
. (16)

Finally, the gradient calculation of each weight is as
follows:

δW∗ � 
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δ∗t , x

t
 ,
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(17)

In Formula (17), ∗∗ represents any one of z, i, f, o .
Compared with MLP, the biggest difference in training
LSTM is that if you want to predict a value pt at time t, the
previous n samples pt− n, . . . , pt− 1  need to be propagated
through the network, and the number of time steps n is
defined when the network is set up. ,ese memory cells will
store transient information according to their training state
and output a predicted value pt.

3. Prediction Method for Power Generation of
Offshore Wind Turbines

Using a stacked autoencoding network and the long short-
term memory network, aiming at the problem of generating
power prediction of offshore wind turbines with a variety of
heterogeneous data, a cascaded deep learning offshore wind
turbine generating power prediction model is proposed with
the help of multimodal learning and multitask learning

strategies. ,e model is a comprehensive prediction
framework composed of multiple feature extractors, a fea-
ture fusion layer, and a prediction terminal. Each feature
extractor automatically extracts features from each variable
and then sends them to the feature fusion layer for data
fusion, and finally, the prediction terminal gives the pre-
diction result.

3.1. Power Generation Prediction of Multimodal Offshore
Wind Turbines

3.1.1. Problem Description. From the perspective of pattern
recognition, the power generation prediction of offshore
wind turbines can be converted into a mapping process
between multiple objects, namely y � f(x). Specifically, y is
the power generation sequence of the offshore wind turbine
to be predicted, x is the input variable, and f(x) is the
implicit function of the prediction model. At present, most
offshore wind turbine generation power prediction models
are univariate models, that is, only the historical measure-
ment values of the offshore wind turbine generation power
are used for prediction [20]. However, in actual engineering,
a wind farm often records multiple measurements, and these
data may also serve as a forecast for the power generation of
offshore wind turbines. From a physical point of view, the
power generated by offshore wind turbines is a reflection of
large aerodynamic energy, which is directly or indirectly
related to a variety of factors, including wind turbine pa-
rameters, geographic conditions, and meteorological in-
formation. In fact, different quantitative measurements
belong to the typical multisource heterogeneous data. ,ey
come from different sensors and have different physical
meanings and dimensions. ,e machine learning commu-
nity refers to them as multimodal data, and the learning task
for them is called multimodal learning [21, 22]. Essentially,
these quantitative measurements describe the different at-
tributes of air kinetic energy and all contain the knowledge
required for the power generation prediction of offshore
wind turbines. From a philosophical point of view, they are
different aspects of the same thing. ,ey are different from
each other, but they are internally unified.

3.1.2. Mathematical Modeling. ,e multistep prediction of
the power generation of offshore wind turbines is of great
significance to the power system and is widely used in
equipment maintenance, energy storage management, and
power market operations [23–25]. Multistep offshore wind
power generation forecasting mainly includes two methods,
namely direct forecasting and iterative forecasting. In this
paper, direct prediction is used to reduce the cumulative
error more effectively, so as to achieve a more accurate
forecast of the power generation of offshore wind turbines.

Given S types of measurement data, predict the time
series yt � (yt+p, yt+p+1, . . . , yt+q) of the offshore wind
turbine generating power in a certain period of time in the
future at time t. Among them, yt represents the power
generation value of the offshore wind turbine at time t, and p

and q represent the minimum and maximum predicted step
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sizes, respectively. ,e prediction problem is a typical se-
quence-to-sequence prediction problem, which can be
expressed as follows:

yt � f xt|θ(  � f x(1)
t , x(2)

t , . . . , x(S)
t |θ  . (18)

In Formula (18), xt represents the input vector, θ and
f(·) represent the parameter vector, and the implicit
function of the prediction model, respectively, and x(i)

t

represents the subvector corresponding to the measurement
i at time t. Generally, x(i)

t can be defined as follows:

x(i)
t � x(i)

t− ni+1
, x(i)

t− ni+2
, . . . , x(i)

t  ∈ R
ni . (19)

In Formula (19), ni represents the dimension of x(i)
t , and

x(i)
t represents the value of the quantity measurement i at
time t. Naturally, the dimension of xt is 

S
i�1 ni. ,e training

of predictive models is a supervised learning problem. Given
the training set P, which contains N input/output pairs,
namely P � (x1, y1), (x2, y2), . . . , (xN, yN) , then the opti-
mal parameter θ

⌢

of the prediction model can be obtained by
minimizing the loss function, namely,

J �
1
N



N

t�1
yt − y

⌢

t

����
����F

,

y
⌢

t � f x(1)
t , x(2)

t , . . . , x(S)
t |θ

⌢

  .

(20)

In Formula (20), ‖ · ‖F represents the F norm. It is worth
noting that when S � 1, the prediction problem degenerates
into a univariate prediction problem, that is, only the his-
torical sequence of offshore wind power generation is used
for prediction. When p � q, the prediction problem de-
generates into a single-step offshore wind turbine generating
power prediction problem. ,erefore, compared to a single-
step and a univariate offshore wind turbine generation
power prediction, a multistep offshore wind turbine gen-
eration power prediction using multi-modal information is a
more general problem.

3.2. Constructing anOffshoreWindTurbineGeneratingPower
Prediction Model

3.2.1. Modeling Strategy. A variety of heterogeneous data is
used to predict the power generation of offshore wind
turbines, and multiple feature extractors are used to extract
high-level features from various measurements. ,e high-
level features from different measurements are fused to form
a unified feature with richer information. Predict the power
generation sequence of offshore wind turbines based on
unified characteristics. In this way, the power generation
prediction problem for offshore wind turbines can be de-
scribed as follows:

ytN � f xt(  � f x(1)
t , x(2)

t , . . . , x(S)
t  ≈ u ht( ,

� u v r(1)
t , r(2)

t , . . . , r(S)
t  ,

N � u v g1 x(1)
t , g2 x(2)

t , . . . , gS x(S)
t   .

(21)

In Formula (21), ht represents the unified feature, r(i)
t

represents the high-order feature corresponding to the
quantity measurement i, gi(·) represents the implicit
function of the feature extractor corresponding to the
quantity measurement i in the first stage, and v(·) and u(·)

respectively represent the second stage and the implicit
function of the third-stage function. According to this
strategy, a variety of quantitative measurements have been
integrated under the same learning framework, which has
the potential to provide richer information for offshore wind
turbine generation power prediction.

3.2.2. Model Structure. According to the modeling strategy
and port design strategy, a cascaded deep learning model for
offshore wind turbine generation power prediction is pro-
posed. SAE is used as the basic unit to build, and its structure
is shown in Figure 5.

In Figure 5, SAE(i) represents the feature extractor
corresponding to the quantity measurement i, Li represents
the number of layers of SAE(i), L

j
i represents the dimension

of the j layer in SAE(i), and DF and DP represent the di-
mensions of the fusion layer and the prediction terminal
layer, respectively.,emodel consists of S feature extractors,
a feature fusion layer, and a prediction terminal layer.
Among them, the feature extractor is SAE, the feature fusion
layer is an ordinary fully connected network, and the pre-
diction terminal layer is a regression layer.

3.2.3. Input Variable Selection. ,e input variable selection
aims to select a part of the candidate variables for model
building, and it plays a very important role in the perfor-
mance of the model. ,eoretically, introducing more input
variables will provide richer information for wind power
forecasting. However, in practice, this may cause problems
with noise and excessive model scale [26]. ,erefore, in
practical applications, it is necessary to make a purposeful
selection of input variables, so as to achieve the purpose of
controlling the scale of the model, reducing the computa-
tional complexity, and improving the performance of the
model. In the task of wind power forecasting, the variables
that have a greater correlation with wind power are selected
through input variable selection. For the cascaded deep
learning model of offshore wind turbine generation power
prediction, the purpose of input variable selection is to select
K(K≥ S) variables from S candidate variables for wind
power prediction.

Prediction terminal layer

Feature fusion layer

… SAE (i)SAE (2)SAE (1)

Figure 5: Cascade deep learning model for power generation
prediction of offshore wind turbines.
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3.2.4. Training Algorithm. ,e training of the cascaded deep
learning model for power generation prediction of offshore
wind turbines is as follows: the SAE at the bottom is trained
from bottom to top through the layer-by-layer greedy al-
gorithm [27–29]. In order to enhance the feature extraction
capability of SAE, sparsity constraints are added to hidden
layer units. At the same time, in order to reduce over-fitting,
L2 regularization is performed on the network. For each AE,
its loss function is as follows:

L(x, z) �
1
n



n

t�1
xt − zt

����
����
2

+ α
D

j�1
KL ρ|ρ⌢j  + β‖W‖

2
2. (22)

In Formula (22), the second term is KL divergence, and
the third term is the L2 regular term. All SAE top layers and
feature fusion layers are regarded as a new AE, and its input
variable rt is paralleled by the input of the SAE top layer,
namely,

rt � r(1)
t , r(2)

t , . . . , r(S)
t . (23)

After this step, all layers except the top layer are ini-
tialized. Use supervised learning to adjust the parameters of
the network from the top to the bottom [30]. After fine-
tuning the parameters, the entire network has better pre-
diction performance. ,rough the above steps, the power
generation prediction for offshore wind turbines is realized.

4. Experimental Analysis

4.1. Experimental Environment and Dataset. In order to
verify the effectiveness of the generation power prediction
method for offshore wind turbines based on cascade deep
learning, a wind turbine with an offshore installed capacity
of 160MW is used as the research object. ,e ground
clearance of the wind turbine hub is 80m, the average al-
titude is 5.8m, and the annual average wind speed is 7.2m/s.
Observe the power generation-related data of the offshore
wind turbines from January 2021 to December 2021 and
form a wind dataset containing data for more than 126,000
stations. ,e data set is divided into two sub-datasets: the
training set and the confirmation set, including the first 60%
and the last 40% of the whole dataset. ,e training set and
the test set are used for model training and testing, re-
spectively, and the validation set is used for model selection
and overfitting prevention. Predict the generated power of
offshore wind turbines in January 2022 and compare it with
the actually observed generated power data of offshore wind
turbines in January 2022 to determine the prediction per-
formance of this method. In order to ensure that the many-
to-many mapping structure can reach the final convergence,
the learning rate is reduced each time the loss decreases
slowly, and each time it is divided by 2 on the basis of the
previous one. Set the model parameters of the stacked noise
reduction automatic encoder as shown in Table 1.

4.2. Power Prediction Evaluation Index. ,e root mean
square error (RMSE) and themean absolute error (MAE) are
used as evaluation indexes. MAE is the average value of

absolute error. RMSE reflects the dispersion and reliability of
actual value and predicted value. ,e smaller its value is, the
higher the power prediction accuracy is. It is defined as
follows:

εMAE �
1
N



N

i�1
y
⌢

i − yi


,

εRMSE �

��������������

1
N



N

i�1
y
⌢

i − yi 
2
.


 (24)

In Formula (24), yi and y
⌢

i are the actual and predicted
values of wind power, respectively, and N is the number of
predicted data.

4.3. Comparison of Power Generation Prediction Effects of
Offshore Wind Turbines. In order to verify the prediction
effect of the proposed method, the methods of Peng et al. [6]
and Sun et al. [7] are used to compare with the proposed
method, and the comparison results of the power generation
power prediction results of different methods of offshore
wind turbines are shown in Figure 6.

It can be seen from Figure 6 that under different data
sample collection intervals, the offshore wind turbine gen-
eration power prediction result of the method of Peng et al.
[6] is relatively large, and there is a certain deviation from

Table 1: Model parameters of the stacked noise reduction auto-
matic encoder.

Network type Parameter
Activation function Sigmoid function
Batch size 100
Noise rate 0.2
Number of training iterations layer by layer 50
Layer by layer training learning rate 0.1
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Figure 6: Comparison results for different methods of offshore
wind turbine generating power prediction results.
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the actual value. ,e prediction result of the offshore wind
turbine power generation by the method of Sun et al. [7] is
relatively small, and the deviation from the actual value is the
largest.,e power generation power prediction results of the
proposed method are basically consistent with the actual
power generation fluctuations of the offshore wind turbines.
It can be seen that, compared with the method of Peng et al.
[6] and the method of Sun et al. [7], the proposed method
has a better effect on predicting the power generation of
offshore wind turbines.

4.4. Comparison of Power Generation Forecast Time of Off-
shoreWindTurbines. To further verify the prediction time of
the proposed method, the method of Peng et al. [6], the
method of Sun et al. [7], and the proposed method were used
to compare, and the comparison results of the power
generation power prediction time of offshore wind turbines
were obtained as shown in Figure 7.

It can be seen from Figure 7 that with the increase of data
sample training set data, the generation power prediction
time of offshore wind turbines using different methods
increases accordingly. When the training set is 1000, the
prediction time of offshore wind turbine power by the
method of Peng et al. [6] is 49.9 s, and the prediction time of
offshore wind turbine power by the method of Sun et al. [7]

is 47.5 s. ,e prediction time of offshore wind turbine power
by the proposed method is only 25 s. It can be seen that,
compared with the method of Peng et al. [6] and the method
of Sun et al. [7], the proposed method has a shorter time to
predict the power generation of offshore wind turbines.

4.5. Comparison of Power Generation Prediction Accuracy of
Offshore Wind Turbines. On this basis, the prediction ac-
curacy of the proposed method is further verified, and the
method of Peng et al. [6], the method of Sun et al. [7], and
the proposed method are used to compare, and the com-
parison results of the power generation power prediction
errors of different methods of offshore wind turbines are
obtained in Table 2.

According to the data in Table 2, as the data in the
training set of data samples increases, the prediction error of
the power generation of offshore wind turbines using dif-
ferent methods also increases. When the training set is 1000,
the RMSE and MAE values of the method of Peng et al. [6]
are 31.5% and 31.9%, respectively, and the RMSE and MAE
values of the method of Sun et al. [7] are 17.8% and 29.5%,
respectively. ,e RMSE and MAE values of the proposed
method are 13.3% and 26.9%, respectively. It can be seen
that, compared with the methods of Peng et al. [6] and Sun
et al. [7], the RMSE andMAE values of the proposed method
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Figure 7: Comparison results of different methods of offshore wind turbine generating power prediction time.

Table 2: Comparison results of different methods of offshore wind turbine generating power prediction errors.

Training set
,e proposed method (s) ,e method of Peng et al. [6]

(s) ,e method of Sun et al. [7] (s)

RMSE (%) MAE (%) RMSE (%) MAE (%) RMSE (%) MAE (%)
200 3.34 5.98 8.76 9.89 6.76 7.88
400 5.18 8.87 12.8 15.4 9.24 12.7
600 8.97 15.7 19.6 19.7 13.6 18.2
800 10.2 19.8 26.9 24.6 16.3 22.8
1000 13.3 26.9 31.5 31.9 17.8 29.5
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are smaller, which can effectively reduce the power gener-
ation prediction error of offshore wind turbines and improve
the power generation prediction accuracy of offshore wind
turbines.

5. Conclusion

,e generation power prediction method of offshore wind
turbines based on cascade deep learning proposed in this
paper gives full play to the advantages of deep learning
algorithms. It has high generation power prediction accu-
racy, can effectively shorten the generation power prediction
time of offshore wind turbines, and has a good generation
power prediction effect. However, due to the limitation of
data acquisition channels, the prediction effect of wind farm
groups has not been considered in this study. ,erefore, in
the next research, it is necessary to further broaden the
historical data range of wind turbine power generation to the
wind farm group, in order to realize the wide area of wind
power big data prediction technology.
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,e datasets used and/or analyzed during the current study
are available from the corresponding author upon reason-
able request.
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