
Research Article
A Novel Short-Term Power Load Forecasting Method
Based on TSNE-EEMD-LSTM

Mingkun Jiang,1,2 He Jiang ,1,2 Yan Zhao ,1,2 Chenjia Hu,1,2 and Jian Xu1,2

1School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China
2Key Laboratory of Regional Multi-energy System Integration and Control of Liaoning Province, Shenyang 110136, China

Correspondence should be addressed to He Jiang; jianghescholar@163.com

Received 29 March 2022; Revised 18 May 2022; Accepted 24 May 2022; Published 6 July 2022

Academic Editor: Qiuye Sun

Copyright © 2022Mingkun Jiang et al.,is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a novel power load forecasting model is proposed to fully extract the periodic characteristics of short-term load at
various time scales and explore the potential correlations between influencing factors and characteristics of load components.
Firstly, the t-distributed stochastic neighbor embedding algorithm is used to map sample points of high-dimensional load
influencing factors to low-dimensional space, and the ensemble empirical mode decomposition algorithm is employed to split the
historical load curve into multiple signal components with different frequencies. ,en, several long short-term memory networks
including nonlinear mapping and time series models are established to mine the relationship between low-dimensional
comprehensive influencing factors and each intrinsic mode function component by utilizing different inputs. Finally, the ef-
fectiveness of the hybrid model is verified via using the short-term load dataset of 3-hour data granularity in a certain region, and
the influence of key parameters of the model on the forecasting effect is discussed.

1. Introduction

Load forecasting in short term is one of the important daily
tasks in the contemporary power system. ,e unit output
plan and economic dispatch strategy based on good fore-
casting results can improve the operation stability and
economy of the system to a certain extent. Because the short-
term load is influenced by succession uncertain factors, the
model can be expressed as the sum of nonlinear mapping
relationships between short-term load and related influ-
encing factors and a series of uncertain random loads.

Up to now, there have been some state-of-the-art works
to explore the ways to enhance the accuracy of load fore-
casting from the aspect of uncertain random loads. Refer-
ence [1] used user behavior to reflect the fluctuation of some
uncertain loads, used smart meters to extract user-level data,
analyzed the similarity of user behavior, and introduced
them into the forecasting model. Reference [2] proposed a
multistep forecasting model containing three channels (load,
time, and user behavior). ,e user behavior type was
identified by combining convolution automatic encoder and

k-means, and it was used as a feature to combine with the
feature information obtained by the other two channels for
the comprehensive forecasting of short-term power load.
Most of the existing user behavior feature extraction starts
from the similarity of user energy consumption curve,
classifies and forecasts users. However, the user’s energy
consumption law itself has strong randomness, and the error
generated by the classification will be transmitted to the final
forecasting results through the forecasting model, resulting
in the instability of the model in practical application.

At present, mainstream load forecasting research still
focuses on how to better and more comprehensively exca-
vate the nonlinear mapping relationship between load and
its influencing factors. ,is kind of research mainly adopts
machine learning modeling methods [3–5]. Reference [6]
used the Bat algorithm and Kalman filtering method to
optimize the support vector machine (SVM) and combined
the fuzzy combination weight and empirical mode de-
composition to forecast the load in short term. Reference [7]
established a combination forecasting model including SVM
and generalized regression model and used the weight
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determination theory to determine the final forecasting
results. In Reference [8], the daily load curve was clustered,
and a step-wise compound forecasting model was con-
structed based on a convolutional neural network (CNN)
and long short-term memory (LSTM) neural network [8].
Reference [9] utilized a CNN to construct a deep learning
model and carried out load forecasting for users with similar
energy consumption. Under the comprehensive influence of
many influencing factors, short-term power load still has
certain periodic characteristics, and the aforementioned
research methods to extract the periodic characteristics of
load by influencing factors inevitably lead to incomplete
feature extraction.

To solve this problem, empirical mode decomposition
(EMD) [10–12] was introduced into load forecasting models.
EMD can decompose the complex load curve into multiple
intrinsic mode functions (IMFs) [10] with various fre-
quencies and amplitudes and sole residual signal. In such
studies, each sub-signal was often used for multiple mod-
eling via the same forecasting model, such as the state-de-
pendent autoregressive model [10] and CNN-LSTM model
[11], ignoring the characteristics of each sub-signal. Ap-
propriate and different ways of load modeling according to
the characteristics of different IMFs can undoubtedly better
and more comprehensively extract the load characteristics.

In this paper, a novel hybrid model for load forecasting
in short term is proposed on the basis of previous studies.
First, with the help of the time series memory capacity, the
LSTM [13] model is divided into two categories by different
model inputs, and different IMFs are modeled in an ap-
propriate way to excavate the potential information of
various IMFs. Second, the ensemble empirical mode de-
composition (EEMD) [14] is applied to split the load signal,
so as to overcome the modemixing phenomenon that is easy
to occur in the EMD and avoid its adverse impact on the
forecasting effect. ,e nondestructive dimension reduction
of power load influencing factors is carried out by t-dis-
tributed stochastic neighbor embedding (TSNE) [15], which
reduces the amount of model calculation and the redundant
features extracted from the model. ,ird, several LSTM
models in two types that have different inputs are established
by using the data obtained by TSNE and EEMD. ,is study
introduces the algorithms used in the proposed hybrid
model, and gradually elaborates the structure and con-
struction process of the model. Finally, two key parameters
of the model are discussed through examples and experi-
ments, and the forecasting performance of the model is
verified. As a result, the main contributions and highlights
can be summarized as follows:

(1) ,e EEMD algorithm is employed to decompose the
power load curve into load components with dif-
ferent time-scale characteristics, and the appropriate
modeling is carried out according to the charac-
teristics of different components, which provides a
new application form for the time series decompo-
sition of load.

(2) ,e nondestructive dimension reduction of power
load influencing factors is realized through TSNE,

which solves the problems of long training time of
hybrid model composed of multiple sub-models.

(3) ,is paper provides a new short-term load fore-
casting scheme, which can also be applied to the
forecasting fields of new energy generation and in-
tegrated loads.

2. Data Processing and Basic ForecastingModel

2.1.Decomposition of LoadCurve Based onEEMD. EMD and
EEMD belong to nonlinear signal decomposition algo-
rithms, which decompose a nonstationary time series signal
into several groups of IMFs with frequency from high to low
and a group of residual signals representing the overall trend
of the original signal. For the power load signal, the IMFs
components of different frequencies contain the periodic
characteristics of power load at different time scales. With
the decrease of IMFs component frequency, the low-fre-
quency component represented by the residual signal
contains the load trend of power load for a time.

Due to this phenomenon of missing data and abnormal
data in the acquisition process of power load data, this
phenomenon may lead to the discontinuity of the original
load signal or the existence of signal step-change on the time
scale, which makes such data prone to modal aliasing when
using EMD for signal decomposition. Modal aliasing refers
to the characteristic signal that an IMF component contains
different time scales at the same time [14], which affects the
signal decomposition effect and load modeling. As an im-
proved method of EMD, based on EMD, EEMD adds the
process of adding white noise to the signal many times and
calculating the mean value of each sub-signal, which can
avoid the occurrence of modal aliasing.

,e steps of EEMD signal splitting are as follows:

(1) Set the number of adding white noise: M.
(2) Add normal distribution white noise to the historical

load curve to constitute the signal fi,j, i ∈ [1, M] and
j ∈ [1, N], N denotes the number of sub-signals
obtained by decomposition after step (5).

(3) Find out all the local maximum andminimum values
contained in the signal, and fit the envelope curves
with the maximum and minimum points,
respectively.

(4) ,e mean curve gi,j constructed by two envelope
curves is obtained, and the difference hi,j between the
signal fi,j and the curve gi,j is obtained. ,e mean
curve gi,j will participate in the next iteration, and
fi,j+1 � gi,j.

(5) Repeat steps (3) and (4) until the difference between
signal fi,j and curve gi,j is small enough, that is, the
signal fi,j cannot be decomposed again. At this time,
the quantity of hi,j obtained by decomposition is N.

(6) Repeat steps (2) to (5) until the original signal is
processed M times by white noise and decomposed.
At this time, the mean of all hi,j is obtained by
calculating the M times signal decomposition,
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namely, the signal components obtained by EEMD.
,e calculation formula is given by

Ij �
1

M


M

i�1
hi,j, (1)

where Ij is each component of the original load
signal obtained by EEMD, and each component
satisfies

f � 
N

j�1
Ij, (2)

where f is the original power load signal,
I1, I2, . . . , IN−1 are the IMF components, and IN is
the residual.

2.2. Dimension Reduction of Influencing Factors Based on
TSNE. TSNE algorithm is improved from stochastic
neighbor embedding (SNE). SNE deems that the distance
between corresponding points in original dimension and
converted dimension is also similar, and conditional
probability is used to represent the similarity of this distance
relationship [15].

In SNE algorithm, for the data points Xα and Xβ of the
influencing factors of power load in any high-dimensional
space, the probability of Xβ as the proximity point of Xα is
set to be Pβ|α. After mapping to the low-dimensional space,
the probability of low-dimensional mapping point xβ as the
proximity point of xα is set to be Qβ|α, and the calculation
formulas of Pβ|α and Qβ|α are expressed as

Pβ|α �
exp − 2δ2α 
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Qβ|α �
exp − xα − xβ
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exp − xα − xk
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 ,
(4)

where δα is the standard deviation of Gaussian distribution
with Xα as the center point, Xk and xk are the arbitrary
initial data points in original dimension and mapping points
in converted dimension, respectively.

,e cost function C is constructed and defined as

C � 
α


β

Pβ|αlog
Pβ|α

Qβ|α
. (5)

At this time, the data dimension reduction problem is
transformed into an optimal problem. ,rough iterative
calculation, when the cost function C takes the minimum
value, the optimal solution of the mapping point of original
dimension samples in converted dimension can be obtained.
,e iterative process is given by

x
r

� x
r− 1

+ η
zC

zx
+ ε(r) x

r− 1
− x

r− 2
 , (6)

where xr represents the sample points in lower dimension
obtained in iteration r, r denotes the number of iterations, η
is the learning rate, ε(r) is the learning momentum in it-
eration r, zC/zx is the gradient vector, and the gradient
zC/zxα at point xα is written as

zC

zxα
� 2

β
Pβ|α − Qβ|α + Pα|β − Qα|β  xα − xβ . (7)

In the SNE algorithm, the samples in both the original
dimension and converted dimension use Gaussian distri-
bution to represent the similarity between data, which will
lead to the inconvenience of data congestion in the con-
verted dimension, which is laborious to distinguish [16], and
increase the difficulty of model feature extraction. In ad-
dition, the probability of data points calculated by the SNE
algorithm in original dimension and converted dimension is
asymmetric and the calculation of gradient is complex.

Given these limitations of the aforementioned SNE al-
gorithm, the TSNE algorithm has made the following im-
provements based on SNE:

(1) In the TSNE algorithm, the symmetric SNE method
is applied to calculate the probability of samples in
original dimension and simplify the calculation of
gradient formula. ,e probability of samples Pβ|α
and the joint probability density of data points Pαβ in
original dimension can be expressed as

Pβ|α �
exp − 2δ2α 

− 1
Xα − Xβ
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�����
2
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Xα − Xk
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2

 ,
(8)

Pαβ �
Pα|β + Pβ|α

2n
, (9)

where n is the number of data points of high-di-
mensional space load influencing factors.

(2) In SNE, Gaussian distribution is used to represent
the similarity between sample points in space with
different dimensions, while TSNE improves the
Gaussian distribution in converted dimension to
t-distribution, which reduces the inconvenience of
data crowded and difficulty in distinguishing after
dimension reduction. So far, the joint probability
density of low-dimensional space samples Qαβ can be
defined as

Qαβ �
1 + xα − xβ

�����

�����
2

 
−1


k≠l

1 + xk − xl

����
����
2

 
−1

,
(10)

where xk and xl are the mapping points of any low-
dimensional space samples, respectively.
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TSNE algorithm uses joint probability density to
replace conditional probability in the SNE algorithm.
For any joint probability density between samples,
there are Pαβ � Pβα and Qαβ � Qβα. ,e improved
cost function C and gradient zC/zxα can be written
as

C � 
α


β

Pαβlog
Pαβ

Qαβ
, (11)

zC

zxα
� 4

β
Pαβ − Qαβ  xα − xβ  1 + xα − xβ

�����

�����
2

 
−1

.

(12)

Finally, the TSNE algorithm uses (6) to continuously
iteratively obtain the optimal solution of mapping
points in low-dimensional space.

2.3. LSTMNeurons. LSTM is an improved recurrent neural
network (RNN) published by Hochreiter and Schmidhuber
[13], which overcomes the difficulty of training RNN in
practical applications. LSTM neural network has a strong
storage capacity of time series features and has strong
adaptability in feature extraction of data with such prop-
erties. LSTM unit can be divided into input subunit, output
subunit, forgetting subunit, and alternative cell state, and
their respective states are expressed as

D
t

� tanh WDX
t
lstm + UDH

t−1
lstm + bD , (13)

I
t

� σ WIX
t
lstm + UIH

t−1
lstm + bI , (14)

O
t

� σ WOX
t
lstm + UOH

t−1
lstm + bO , (15)

F
t

� σ WFX
t
lstm + UFH

t−1
lstm + bF  (16)

where Dt is the alternative cell state at t moments, tanh is the
hyperbolic tangent activation function, WD and UD are the
weights assigned to Xt

lstm and Ht−1
lstm in the calculation of the

alternative cell state, Xt
lstm is the input of this unit at t

moments, Ht−1
lstm is the output of this unit at t − 1 moments, t

represents time, bD is a bias term for alternative cell state, It,
Ot and Ft are the gating coefficients of the input subunit,
output subunit, and forgetting subunit, σ is the Sigmoid
function, WI, WO and WF are the weights assigned to Xt

lstm
in the three subunits.UI,UO andUF are the weights assigned
to Ht−1

lstm in the three subunits, and bI, bO and bF are the bias
terms of the three subunits.

,us, the weight value and bias value of each door
control the size of the corresponding gating coefficient. ,e
gating coefficient of the input subunit is applied to control
how much information in the alternative cell state can be
written in the updated cell state, and the gating coefficient of
the forgetting subunit is utilized to restrict how much in-
formation from the previous cell state can be inherited to
updated cell state. ,e state of the cell of this LSTM unit at t

moments can be written as

C
t

� I
t
D

t
+ F

t
C

t−1
, (17)

where Ct and Ct− 1 are the states of this cell at t moments and
t − 1 moments, respectively.

Similarly, the function of the LSTM unit output gating
coefficient is to control how many cells state information
activated by activation function can be output from this unit,
so the output of a single LSTM unit is given by

H
t
lstm � O

t
× tanh C

t
 , (18)

where Ht
lstm is the output data of this unit at t moments.

LSTM network is composed of multiple memory units
and even multi-layer LSTM unit layers. In the training, the
weight value and bias value of all LSTM units are determined
by iteration with the minimum loss function as the goal. At
this time, the input-output mapping relationship of the
whole network can represent the nonlinear connection
between influencing ingredients and power load or the time
series tendency from the historical load.

3. Hybrid Model Based on TSNE-EEMD-LSTM

According to the aforementioned introduction, the TSNE-
EEMD-LSTM model proposed in this paper includes power
load decomposition, influence factor dimension reduction,
and load forecasting combination modeling. ,e proposed
model structure is shown in Figure 1.

In step 1 of Figure 1, the influence factors dimension
reduction based on TSNE algorithm and load signal de-
composition based on EEMD algorithm are described,
respectively.

,ere are six types of power load influencing factors in
the original dataset, including time, temperature, pressure,
humidity, wind speed, and precipitation. ,ese influencing
factors together constitute a high-dimensional sample space,
and these points in the original dimension are reduced to a
lower dimension by TSNE algorithm. It is assumed that the
number of the target dimension is S, and the projection of
sample points in S-dimensional space on each coordinate
system is the value of each comprehensive influencing factor.

When the value of S is 2 or 3, the data after dimension
reduction can be visually represented, which is convenient
for intuitive analysis of the distribution relationship of
points in lower dimension. ,e visualization effect is shown
in Figure 2 and Figure 3. ,e mapping points in the low-
dimensional space still maintain good dispersion after the
dimension reduction of the power load influencing factor
data by the TSNE algorithm.

According to relevant conclusions in reference [14],
some essential parameters in EEMD are set as follows:

(1) ,e standard deviation of white noises amplitude
added to the original data is 0.2 times that of them.

(2) ,e number of adding white noise M is set to 200.

,e results of signal decomposition of power load ap-
plication EEMD are shown in Figure 4.

Each IMF component has different frequencies and
characteristics. ,e IMF1 component has the largest
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variation frequency and changes dramatically with the
change of each sample number in the original data, which
contains the load characteristics of the minimum particle
size. ,e period of the IMF2 component is almost the same
as the original signal, and the change of each extreme point
has a similar trend with the peak and valley value of the
original signal, which indicates that the IMF2 component

may contain characteristic information related to the peak
and valley value of daily load. ,e frequency of the IMF3
component to the IMF6 component decreases gradually;
these signals may contain several days, a week, or longer load
periodic characteristics.

In step 2 of Figure 1, N forecasting models based on
LSTM are established. Figure 4 shows that the original load

load forecast value

reconsitution
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result v result Nresult v+1
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Figure 1: TSNE-EEMD-LSTM model.
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signal is decomposed into six IMF components and one
residual signal, so N � 7. ,e established seven models can
be divided into two categories. One is the nonlinear mapping
model based on the influencing factors, which is applied to
explore the nonlinear connection between the influencing
ingredients and corresponding load component data. ,e
other is the time series model to explore the time series trend
of certain load component curves on the basis of itself.

,e nonlinear mapping model takes the comprehensive
influencing factors of power load in low-dimensional space
as the input of the model, and each IMF component or
residual signal as the output of the model. Assuming that the
target dimension of the TSNE algorithm is S, the data of
comprehensive influencing factors in low-dimensional space
is [A1, A2, . . . , AS], and then the output data of LSTM
network participating in model supervised learning at τ

moments is yτ , the corresponding input data of LSTM
network is [Aτ

1, Aτ
2, . . . , Aτ

S]T.
Time series model, the input or output of themodel is the

same IMF component or residual signal sequence. If the
output data of a LSTM network participating in model
supervised learning at τ moments is yτ , the corresponding
input data of the LSTM network is [yτ− 8, yτ− 7, . . . , yτ− 1]T.

When applying to forecast, the execution process is
shown in Figure 5. Trained models include v nonlinear
mapping models and N − v time series models. Firstly,
TSNE is used to reduce the data dimension of the power load
influencing factors needed in the forecasting day, and the
data points of the influencing factors in original dimension
are mapped to the lower dimension. ,en, influencing
mapping factors in converted dimension are input into
trained v nonlinear mapping models, and the historical data
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of IMF components or residual signals corresponding to the
models are input to N − v time series models. Finally, a total
of N model outputs are obtained, and the N model outputs
are reconstructed according to Equation (2) to get the final
forecasting results.

4. Experimental Verification and Discussion

In this section, the essential parameters of the model are
discussed and the forecasting performance of the combined
model is testified by using datasets including the 31-day 3-
hour granular load data of a city and the corresponding time

temperature, pressure, and other six kinds of power load
influencing factors data.

4.1. Discussion on Key Parameters of Model. Selecting ap-
propriate parameters is advantageous to enhance the fore-
casting effect of the proposed model. ,is part will discuss
the influence of low EEMD parameter S and the number v of
nonlinear mapping models based on LSTM on the fore-
casting efficiency of the model.

Different S will affect the calculation and forecasting
speed of the nonlinear mapping model. To verify this
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Raw influencing
factor data

Calculate the joint
probability density of
sample points in high

dimensional space

Calculate the joint
probability density of

mapping points in low
dimensional space

Construct the cost function and
calculate its gradient
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Figure 5: Forecasting process of the hybrid model.
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hypothesis, six IMFs and one residual signal gained via
EEMD are used as the output of supervised learning models
to establish seven nonlinear mapping models, and then the
average total time required to complete the training and
forecasting of these seven models is counted when S takes
different values. In Figure 6, there is a tendency that when
the input dimension of the model decreases, the total time
required to complete the model training and forecasting is
shorter. ,at is, the forecasting speed of the model increases
with the decrease of S.

,e forecasting speed of the model can be improved by
mapping the influencing factors of power load to the low-
dimensional space for model building. However, the data
gained via TSNE have similar distribution relations in dif-
ferent dimensions. When the target dimension is too low,
the projection process of raw data in lower dimension will
become difficult, and even the phenomenon of feature loss
occurs. ,is kind of phenomenon is explained as that when
the low-dimensional space dimension is too low, the data
mapping points cannot carry sufficient feature information.

,erefore, we compare the forecasting accuracy of the
combined model with different S and v. Among them, each
group of composite models is composed of seven models,
namely, nonlinear mappingmodels or time series models. At
this time, the number of nonlinear mapping models is v, and
the number of time series models is 7 − v. Except for dif-
ferent model structures, the parameters of the two models
are all the same. In terms of model structure, the nonlinear
mapping model consists of a layer of LSTM, which has 60
LSTM units, and the time series model consists of three
LSTM layers, each of which has 60 LSTM units. ,e reason
for this distinction is that the input of the time series model
is the load information at the historical time, and the data
itself has the characteristics of time series. ,erefore, it is
necessary to extract the relevant characteristics from more
layers of the LSTM layer. ,e input of the nonlinear
mapping model is the comprehensive influencing factor data
in low-dimensional space, and it does not have a time-series
relationship. ,erefore, only one layer of the LSTM layer is
set to simplify the calculation of the model.

,e experimental results are shown in Figure 7. When
S � 4 and v � 6, the combined model has the highest average
forecasting accuracy.

Laterally, the combination model with the same S will
have the best forecasting performance at v � 6, that is, the
combination model using all IMF components to build
nonlinear mapping model and using residual signal to build
time series model has the best effect, indicating that the
relatively flat residual signal is more suitable for time series
forecasting method. When v � 0, the combined model
consists of seven time series models, that is, all IMF com-
ponents and residual signals are modeled by time series
models. At this time, the average forecasting accuracy of the
combined model is the lowest, indicating that each IMF
component is not suitable for time series forecasting.

Vertically, the models with higher accuracy are con-
centrated in the middle part of Figure 7, indicating that too
large or too small S will influence the efficiency of the
proposed model. Part of the reason is that there is a certain

potential connection between the influencing factors of
high-dimensional space. If all the input forecasting models
are not reduced by data dimension, it will make the model
extract some redundant features, increase the calculation
amount of the model, and even bring negative improvement
to the forecasting accuracy of the combined model. On the
contrary, if the dimension of influencing factors is reduced
to 2 or lower, the data in low-dimensional space cannot carry
all features of the raw data, thus reducing the generalization
ability of the model.

4.2. Model Comparison. To test the performance of the
proposed model in short-term load forecasting, this paper
establishes multiple models for simulation and comparison,
including the time series model based on LSTM (TLSTM),
the nonlinear mapping model based on LSTM (MLSTM),
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Figure 7: Average forecasting accuracy of combined models with
different S and v.
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the back propagation neural network (BP), the model
combining TSNE and MLSTM (TSNE-MLSTM), the model
combining TSNE and BP (TSNE-BP), the model combining
EEMD and MLSTM (EEMD-MLSTM), the model com-
bining EEMD and TLSTM (EEMD-TLSTM), and the model
combining EEMD, MLSTM, and TLSTM (EEMD-BLSTM).
Among them, BP uses three hidden layers, each hidden layer
contains 60 neurons, and LSTMmodel parameters are set as
above.

,e forecasting results of each model are shown in
Figure 8, and the detailed comparison information is
demonstrated in Table 1, including the mean absolute
percentage error (MAPE), the root mean square error
(RMSE), and the mean absolute error (MAE).

In Figure 8, the load forecasting value of each sample
point of the EEMD-TLSTM model deviates from the actual
load value greatly, and the IMF component with high-fre-
quency characteristics has a large error when using the time
series model to forecast. ,e accuracy of TLSTM model is
superior to that of EEMD-TLSTM, but its forecasting ac-
curacy is still not remarkable in the comparison of all
models, mainly due to the strong fluctuation of the original
load signal, the effect of load forecasting directly using the
time series model is not good. On the contrary, if the original
load signal is decomposed by EEMD, the decomposed IMF
component is used to build the MLSTM model, and the

residual signal is used to build the TLSTM model. ,en, the
appropriate models are used to forecast, respectively, such as
EEMD-BLSTM and proposed model, and the forecasting
efficiency will be significantly improved.

Ulteriorly, due to the fact that TSNE reduces the di-
mension of the influencing factors of power load in high-
dimensional space, the potential redundant features in the
comprehensive influencing factors in low-dimensional space
are less, so that the forecasting effects of TSNE-MLSTM and
TSNE-BP compared with MLSTM and BP models are im-
proved by 1.9186% and 4.2731%, respectively. ,e proposed
model also improves the accuracy of 1.0235% for the EEMD-
BLSTM model with the EEMD algorithm. ,e forecasting
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Figure 8: ,e performance of forecasting of each model.

Table 1: Error of forecasting results of each model.

Forecasting model MAPE (%) RMSE (kW) MAE (kW)
Proposed model 2.6716 39.3329 31.0916
EEMD-BLSTM 3.6951 50.3015 42.7011
EEMD-MLSTM 3.8699 54.7858 45.1035
TSNE-MLSTM 4.4523 67.2027 52.2686
TSNE-BP 6.0121 77.4130 69.4224
MLSTM 5.7885 84.5392 68.0465
TLSTM 6.3646 108.5245 73.9725
BP 10.2852 147.7220 118.6361
EEMD-TLSTM 13.1761 177.7819 155.0436
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values of each sample point in proposed model are shown in
Figure 9. ,e size of the error bars in Figure 9 indicates the
absolute error. ,e position of the bar end is the actual load
data of each sample point. ,e RMSE of the proposed model
is 39.3329 kW, and the MAE is 31.0916 kW. ,e forecasting
results are close to the actual load value.

5. Conclusions

,is paper establishes a short-term power load forecasting
model based on TSNE-EEMD-LSTM. TSNE is used to map
the data of power load influencing factors in original di-
mension to the lower dimension, which reduces the cal-
culation of redundant features. EEMD is used to split the
power load curve into multiple IMF components with
different frequencies and a flat residual signal. Based on the
characteristics of IMF components and residual signals,
appropriate models based on LSTM are established, in-
cluding the nonlinear mapping model with low-dimensional
space comprehensive influencing factors as model input and
the time series model with historical data of signal com-
ponents as model input. Finally, the important parameters of
the combined model are determined by comparative ex-
periments, and the feasibility of the proposed hybrid model
in short-term load forecasting is verified. Several following
conclusions are drawn:

(1) ,ere are redundant features between the original
power load influencing factors. ,e multiple ex-
tractions of redundant features by the forecasting
model will increase the calculation amount of the
model, decrease the forecasting speed of the model,
and even lead to poor generalization ability of the
model. TSNE algorithm can greatly retain data
structure and reduce redundant feature extraction.
When the original influencing factors are time,
temperature, pressure, humidity, wind speed and

rainfall, it is best to map the influencing factors to the
four-dimensional space.

(2) ,e IMFs signal and residual signal decomposed by
EEMD have different characteristics. Using these
characteristics to build several targeted sub-models
can improve the accuracy of prediction. In this
paper, the LSTM model is divided into nonlinear
mapping model and time sequence model by
changing the model input. All IMFs signals are
suitable for modeling by nonlinear mapping model,
and the residual signal is suitable for modeling by
time series model.

(3) ,e TSNE-EEMD-LSTM model proposed in this
paper can avoid extracting redundant features as
much as possible and fully tap the potential char-
acteristics of influencing factors, which has an ex-
cellent performance in the comparison of multi-
model forecasting performance.

,e shortcomings of this study and follow-up work:
,e models used in this paper are based on LSTM, and

work types are divided by changing the input of the model.
In the subsequent research, more advanced and more ap-
propriate forecasting models will be taken into account to
improve the performance of each sub-model in the hybrid
model. In the future, it is expected that our proposed scheme
can be applied to the forecasting fields of new energy
generation [17,18] and integrated loads [19–21].
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