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&e performance of photovoltaic (PV) systemsmust be predicted through accurate simulation designs before proceeding to a real-
time application to avoid errors. However, predicting the cohesive relationship between current and voltage and estimating the
parameters of a single diode model become a perplexing task due to insufficient data in the datasheet of PV panels. &is research
work presents single-diode solar PV system simulation analysis under different conditions, and the performance is improved by
introducing an optimization-based maximum power point tracking (MPPT) strategy. Before simulation, a mathematical model
for a single diode and optimization approaches are presented in this research work. Particle swarm optimization (PSO), genetic
algorithm (GA), BAT optimization, and grey wolf optimization (GWO) model-based MPPT circuits are designed, and the
performances are comparatively analyzed. &e simulation results identify the nonlinear relationship between current and voltage
and between power and voltage as characteristic curves for different temperature and irradiance values. For maximum power
(Pmax), the maximum peak point tracking power and efficiency are analyzed to verify the optimization-based MPPT system. &e
simulation results demonstrate that the GWO model obtains a maximum tracking efficiency (TE) of 98%, which is much better
than that of other optimization techniques.

1. Introduction

Among all renewable energy sources, solar-based power
generation gains more attention due to its inexhaustible and
clean energy characteristics. &e conversion of energy, i.e.,
sunlight to electricity, can be obtained directly using PV cells
or a combination of concentrated solar power systems. Solar
power generation prominently helps to minimize the
emissions from fossil fuel-based power generation [1]. Wind
energy-based power generation systems also contribute
better energy and reduce fossil fuel requirements. Wind
energy is seasonally dependent, and it can produce more

energy at a particular time [2]. But the abundant availability
and seasonal-independent characteristics of solar energy-
based systems make them perform better than wind energy-
based systems [3]. High-quality ac output with reduced
lower order harmonics and total harmonic distortion can be
synthesized from the PV modules using multilevel inverters
[4–7]. &e power generated by solar PV systems can be
transferred through grids, which is equal to the power
generated through thermal power plants [8, 9]. &ough the
power generation of solar power systems is better, their
implementation cost is quite high. So, it is essential to
measure the reliability and power generation accuracy of the
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solar power systems before installation. Simulation envi-
ronments are used to measure the performance so that
errors can be avoided and performance can be improved
upon implementing in real time.

In the design procedure of solar PV cells, a thin wafer of
semiconductors and a p-n junction diode are used. Electricity
has been generated by converting solar radiation by fabricating
the diode into the cell wafers [10]. Characteristics of semi-
conductors are the key feature of the PV process. &e photons
from sunlight have higher energy than the semiconductor band
gap energy. Due to this, electron-hole pairs are created in the
cell. &e pair generation is directly proportional to solar ir-
radiance, and it is isolated by the p-n junction internal electric
field. Due to this process, photocurrent is generated and solar
radiation acts as the most important part of the energy gen-
eration process. &e dc power generated from solar panels is
converted into ac power as load using novel control strategies
[11, 12].&e characteristics of PV cells such as I-V and P-V are
nonlinear due to cell temperature, solar radiation, and other
parameters. Typically, solar cells are assembled using silicon,
and due to low conversion efficiency, the generated power will
be inadequate [13, 14]. So, it is essential to analyze and improve
the conversion efficiency of the PV systems through efficient
cell modeling.

Cell modeling is directly related to accuracy, which
represents the PV system characteristics [15]. To obtain a
desired current and voltage from a solar panel, a series or
parallel combination of cells is generally used. However, the
performance can be affected by temperature, solar radiation,
etc.; due to this, simulation of solar panels becomes crucial.
Generally, a comprehensive investigation is followed to
measure the performance of solar PV models [16, 17].
Different parametric models are presented by researchers
such as the single-diode model and two-diode model [18].
Among all, the single-diode model is widely preferred as the
performance matches the real-time solar cell performance
[19–21]. &e single-diode model is alternatively called the
five-parameter model, and its design includes a parallel
connection of ideal diode and current source with bypassed
shunt resistance. Single-diode model solar cell parameters
can be efficiently analyzed to improve the performance of PV
systems. &e single-diode model has more benefits in terms
of parameters such as minimum error I-V and P-V curves,
and a simple and easy implementation provides better re-
sults similar to manufacturer’s results [22].

&e major contributions of this research work are as
follows:

(i) A single-diode model is developed for solar PV
systems under different environmental conditions

(ii) For the achieved single-diode solar PV model,
different optimization techniques are presented for
MPPT

(iii) Comparative analysis of different optimization
models is performed to find an appropriate tech-
nique for MPPT

&is research work is structured as follows. In Section 2,
a review of existing research works is presented. In Section 3,

detailed mathematical formulations are presented for the
proposed solar PV model and MPPT. In Section 4, exper-
imental results and their observations are presented. Finally,
in Section 5, the conclusion and future scope are presented.

2. Related Works

A vast survey of existing research works on solar PV systems
and their feature merits, demerits, and applications is dis-
cussed in detail in this section. Researchers pay more at-
tention to analyze the performance of single-diode solar PV
models in various research works. &e parameters are es-
timated through characteristic equations, and extracting
relevant optimal parameters from the manufacturer’s
datasheet is quite complex [23]. Also, it is difficult to obtain
the parameters of a PV model from the current-voltage
characteristics due to its implicit nature. &e power-law
system characterizes the PV module’s I-V properties. Dif-
ferent operating incidences are considered to predict the
electrical characteristics, which do not require any iterative
or nonelementary functions. Reduced computational
complexity and cost are the major features of the power-law
model [24]. &e parameters such as irradiance and tem-
perature are considered, and the parameters of the single-
diode, double-diode, and triple-diode PV systems are
evaluated for different conditions [25–27]. Combining the
analytical equations and pattern search algorithm, the I-V
characteristics are analyzed with maximum accuracy, which
is the feature merit of research work. However, the com-
putational complexity is quite high due to the long training
process.

&e reduced space search approach efficiently estimates
the parameters of the single-diode model [28]. &e no
convex nature of the optimization problem is eliminated
through the space search approach. Due to this, the com-
putational complexity in parameter estimation is reduced
and high-quality solutions are obtained without user in-
tervention. &e performance of parameter estimation of PV
modules is improved by converting no convex optimization
problems into convex optimization problems using a
modified barrier function [29]. &e optimal values are ob-
tained using an adaptive identification technique, which
provide a unique solution to improve the precision of
electrical parameters. &e relationship between operating
conditions and electrical parameters utilizes the thermal
coefficient of power to evaluate the performance of the PV
cell [30]. &e impact of energy production due to changes in
the operating point and the disconnected array is reduced,
which obtains Pmax for the temperature and irradiance.

Shunt resistance was evaluated from a mathematical
model based on the manufacturer’s datasheet information
[31]. &e balance between computation time and accuracy is
demonstrated to validate the shunt PV module. Evaluation
of series resistance for a single-diode PV module presents a
comparative analysis of different techniques [32]. &e sys-
tematic analysis describes the feature merits and demerits of
series resistance parameter estimation techniques in terms of
accuracy and reliability. A voltage-dependent temperature
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coefficient is considered for I-V parameter estimation of a
single-diode model [33]. Series resistance is obtained to get
improved accuracy for different temperature ranges. Ac-
curate estimation of the solar PV parameters for single diode
and double diode models depends on solar irradiance,
temperature, and values from solar PV datasheet. Improved
precision is obtained for different irradiance and tempera-
tures that increase the voltage range as well as Pmax point
extraction.

&e explicit nonlinear model presents a generalized per-
unit-single-diode model for a PV system to extract the I-V
characteristics [34]. &e nonlinear least-square fit technique
utilized in this research work extracts the three parameters,
and it is refined using the per-unit-single-diode model to
extract five parameters. After MATLAB programming is
over and done with, the demonstration is presented to depict
the minimum computational cost. A data-driven model
includes feature extraction techniques to extract essential
information from a large volume of I-V data [35]. &ree
different sources are considered with different data point
densities to generate the single-diode PV module’s I-V
characteristics, which make the approach suitable for time-
series performance evaluation. RStudio is used to demon-
strate the feature extraction process and power degradation
mechanisms in the PV module [36].

Computation of the average cell temperature of PV
modules is reported, which discusses the limitations in the
temperature measurement process [37]. Conventional
computational models ignore the sensor temperatures,
which are from the backside of the PV module. However,
they will establish a temperature gradient that affects the
parameter evaluation performance. Using standard test
conditions and translational formulas, the factors that affect
the performance are identified. Different temperature and
irradiation levels are considered to define the high degree of
accuracy in the evaluation process.

In solar-based power generation, another important
factor that must be considered to improve the conversion
efficiency and power generation is MPPT. MPPT is used to
track solar irradiance, and various MPPT techniques are
introduced by researchers in the recent era [38]. &e liter-
ature analysis presents a detailed analysis of MPPT tech-
niques [39]. &e nonuniform solar irradiance condition is
considered to analyze hybrid techniques, and online, uni-
form irradiance is considered for offline conditions. &e
electrical characteristics of the PV system and MPPT esti-
mation process utilize a series of analytical equations under
partial and uniform shading conditions [40–42]. Research
work accurately evaluates the I-V characteristics and im-
proves the MPPT efficiency. Similarly, the MPPT estimation
model processes the PV current and voltage characteristics
and eliminates oscillations in the power point tracking
process [43]. &e estimation loss is reduced and estimation
speed is increased for the evaluation procedure of the single-
diode model.

&e major factor that needs to be considered for MPPT
models is their tracking accuracy and tracking speed. It is
essential to introduce a better tradeoff between cost and

performance for the MPPT methods. &e perturb and ob-
serve method utilizes the local irradiance data to determine
the offline conditions [44]. &e perturbation step size is
optimized based on the analysis results of the support vector
machine model. &is process improves the system perfor-
mance without any complex control circuits. An adaptive
neurofuzzy inference system and PSO methods are com-
bined as a hybrid MPPT model to obtain maximum PV
power [45]. &e hybrid approach provides maximum TE
with zero oscillations, and it does not require any extra
sensor arrangements to measure the temperature and ir-
radiance parameters. An adaptive fuzzy logic-based MPPT
model improves the adaptive skills of conventional fuzzy
logic-based techniques [46]. &e operating point of existing
methods varies due to temperature and irradiance in real-
time conditions, which introduces slow convergence and
poor accuracy in the results.&e adaptive method eliminates
such practical limitations and improves accuracy with faster
convergence under dynamic conditions.

Recently, various optimization models are introduced
for MPPT. Among all, PSO gains more attention, and nu-
merous research works are evolved to enhance the tracking
performance of PV systems [47]. However, conventional
PSO-based MPPT methods’ efficiency decreases because of
several peaks in the PV curves that occur due to partially
shaded conditions. Modified PSO is used to eliminate this
limitation and to improve efficiency, which increase the
output power under nonuniform irradiation level and partial
shading conditions [48, 49]. &e dynamic PSO model
considers the converter topology and solar panel configu-
rations to select the parameters for the PSO model, which
provides optimal sampling time for MPPT [50].

&ough PSO-based MPPT techniques are evolved for
efficiency improvement, they face difficulties while
extracting global parameters. Other than PSO, few other
optimization models are introduced such as the flower
pollination algorithm [51], the Lipschitz optimizationMPPT
algorithm [52], artificial bee colony optimization [53], and
the perturb and observe algorithm [54] for MPPT. From the
literature analysis, it could be observed that the single-diode
model is widely used for solar PVmodules.&e performance
of the single-diode model is more reliable and accurate than
that of other models. For MPPT, the PSO model is widely
used. However, it faces issues while extracting global pa-
rameters that affect the accuracy. Considering these ob-
servations, this research work presents an analysis of a
single-diode model under different conditions and an op-
timization model for MPPT. &e performance of the overall
system is verified under different environmental conditions
for better results.

3. Proposed Work

Solar PV cells are made from semiconducting materials.
Different manufacturing processes are followed to design the
PV cells. &e working of PV cells is based on the PV effect
that generates a potential difference in the junction of p-n in
response to radiation or visible light. &e basic structure of
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silicon-based PV cells includes a thin layer of bulk silicon or
a thin film of Si that is connected to electric terminals. Also, a
metallic grid is connected to the semiconductor top surface,
while a thin semiconductor layer is specially treated to
obtain a p-n junction. Depending on the necessity, a series or
parallel combination of PV models is used. When the
module is exposed to light, the charge carriers are generated,
while the semiconductor absorbs the photons from the light.
&e electric field in the p-n junction separates the carriers so
that an electric current will start to flow through the external
circuit. &e working procedure is similar to the p-n junction
diode if the PV effect is removed. Based on this, the current
flow of the PV module is obtained from the diode current
equation, and it is given as

Id � Io e
Vd/nNsVt − 1􏼐 􏼑, (1)

where Vd is the potential difference, Io is the reverse
saturation current, Vt is the thermal voltage, and Ns is the
number of series-connected cells. &e diode ideality
factor is represented as n. &e thermal voltage is obtained
from the Boltzmann constant and electron charge as
Vt � kT/q, where k is the Boltzmann constant and q
represents the electron charge whose values are
1.380650 ×10− 23 J/K and 1.602176 ×10− 19 C, respectively,
and T is the temperature.

&e characteristics of ideal solar PV cells are represented
based on current generation. However, the generated cur-
rent gets diverted from its ideal characteristics due to optical
and electrical losses. &e ideal model does not consider the
effects of resistance, and its output is represented as

I � Ipg − Id, (2)

where Ipg is the current generated by the PV effect and Id is
the diode current. For ideal analysis, the diode current
equation is represented using the Shockley equation, and it is
given as

Id � Is e
Vd/nVt − 1􏼐 􏼑, (3)

where Vd is the potential difference of the diode, Is is the
diode saturation current, and Vt is the thermal voltage,
which is given as Vt � kT/q, and the ideal solar PV final
current is given as

I � Ipg − Is e
qVd/nkT

− 1􏼐 􏼑. (4)

However, ideal models fail to establish a better and
accurate relationship between voltage and current of the
cells.&is happens because the analysis does not consider the
internal resistance effects. &e practical single-diode PV
model consists of series resistance and shunt resistance to get
a better relationship among the cell parameters. Single-diode
models are simple and efficient, but they have constraints for
temperature variations. Figure 1 depicts an illustration of a
single-diode PV circuit.

&e current flow due to metal-semiconductor contact
and resistance due to impurity concentration are observed as
series resistance. &e shunt resistance indicates the leakage
current across the junction that is parallel to the diode.

Mathematically, the above circuit output current is obtained
from equation (2) as

I � Ipg − Id −
Vd

Rsh

, (5)

where the diode voltage (Vd) is obtained from the sum-
mation of actual input voltage (V) and the voltage across the
series resistance as Vd � V + IRs. However, the shunt and
series resistance will introduce an impact on the I-V
characteristics of the PV device. Series resistance has an
impact on the output voltage, and shunt resistance has an
impact on current. So, the above equation is modified to
obtain a single-diode model, and the current is expressed as

I � Ipg − Is e
qVd/nkT

− 1􏼐 􏼑 −
V + IRs

Rsh

. (6)

&e I-V and P-V characteristics of the single-diode
model are depicted in Figures 2(a) and 2(b), respectively.

To calculate the values of series and shunt resistance, the
current Ipg from equation (5) is reformulated as follows:

Ipg � Is

Rs + Rsh

Rsh

􏼠 􏼡. (7)

By substituting the above equation in (6), the shunt
resistance can be obtained as a function of series resistance as
follows:

Rsh �
IsRs − Vm − ImRs

Im + Isat e
Vd/nkT

− 1􏼐 􏼑 − Is

, (8)

where Vm and Im are the voltage and current at the max-
imum power point. From the above equation, the maximum
series resistance value can be obtained by neglecting the
denominator terms, and the series resistance is expressed as

Rs �
nkTln Is − Im( 􏼁/Isat − 1( 􏼁 − Vm

Im

. (9)

In the parameter estimation process, the details of solar
cell I-V characteristics are analyzed under different tem-
peratures and irradiation. &e iterative procedure obtains
the parameters on every iteration. &e proposed model does
not utilize any optimization techniques and other extraction
techniques to obtain the parameters that are the novelty of
this research work. From equation (6), the load current is
obtained as

Il � Ipg − Is e
q V+IlRs( )/nkT

− 1􏼒 􏼓 −
V + IRs

Rsh

. (10)

DIpg R
sh

Rs

I
d

Ish I +

–

V

Figure 1: Single-diode solar cell equivalent circuit.
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Assume the voltage is fixed at the load side and the
derivative of current Il with respect to PV current is given as

zIl

zIpg

� 1 −
qRsIs

nkT
e

q V+IRs( )/nkT
􏼒 􏼓

zIl

zIpg

−
Rs

Rsh

zIl

zIpg

. (11)

&e above expression can be expressed finally as

zIl

zIpg

� 1 +
qRsIs

nkT
e

q V+IRs( )/nkT
􏼒 􏼓 +

Rs

Rsh

zIl

zIpg

􏼢 􏼣

− 1

. (12)

&e other parameters are obtained in the same manner,
and they are given in the following equations:

zIl

zIs

� 1 − e
q V+IRs( )/nkT

􏼒 􏼓􏼔 􏼕
zIl

zIpg

, (13)

zIl

zn
� Is

q V + IlRs( 􏼁

n
2
kT

e
q V+IlRs( )/nkT

􏼒 􏼓􏼢 􏼣
zIl

zIpg

, (14)

zIl

zRs

� − Is

q Il( 􏼁

nkT
e

q V+IlRs( )/nkT
􏼒 􏼓 +

Il

Rsh

􏼢 􏼣
zIl

zIpg

. (15)

Similar to the above process, the output voltage pa-
rameters are obtained from equation (7) by assuming the
load current is fixed, and they are expressed as

zVl

zIpg

� Rsh 1 +
qRshIs

nkT
e

q V+IRs( )/nkT
􏼒 􏼓􏼔 􏼕

− 1
, (16)

zVl

zIs

� 1 − e
q V+IRs( )/nkT

􏼒 􏼓􏼔 􏼕
zVl

zIpg

, (17)

zVl

zn
� Is

q V + IlRs( 􏼁

n
2 e

q V+IlRs( )/nkT
􏼒 􏼓􏼢 􏼣

zVl

zIpg

, (18)

zVl

zRsh

�
1

Rsh

Ipg + Is 1 − e
q V+IlRs( )/nkT

􏼒 􏼓 − Il􏼔 􏼕
zIl

zIpg

. (19)

&e current and voltage points in the curve can bemoved
vertically using the approximation process, and the change
in current and voltage points is given as ΔIl(i) and ΔVl(i),
respectively. However, the nonlinear output voltage and
current characteristics are directly proportional to irradi-
ance, load current, and temperature. So, it is essential to
introduce an MPPT system for the solar PV module. From
the I-V and P-V characteristics of a PV system, it can be
observed that maximum current is obtained in the absence
of shunt and series resistance. By short circuiting the re-
sistance, the maximum current is obtained as Isc, whereas the
voltage is zero when the PV module is short circuited. If
there is a break in the circuit, an open-circuit voltage (Voc)
will occur and resistance will become high, which reduces
the current.&e knee point where Pmax is obtained is given as
the Pmax point, and the voltage and current at this point are
given as Vp and Ip. In the proposed work, four optimization
models are introduced for MPPT, and the performances are
compared to obtain a better model. Existing techniques
acquire the maximum power point or obtain the diode
model parameters using optimization techniques or the
mathematical model. In the case of proposed work, the
parameters are extracted without any special optimization
techniques; instead, the optimization model is used to attain
better performances in terms of tracking efficiency, maxi-
mum power, and maximum power point tracking. A short
description of optimization models is presented in the
following section.

3.1. Particle Swarm Optimization. &e PSO is a stochastic
technique that is formulated based on the bird’s flocking
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Figure 2: Characteristics of the PV cell: (a) I-V characteristics; (b) P-V characteristics.
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characteristics when it searches for food. Initially, a random
population is initiated as particles, and each particle carries
some information about the search space, which is ex-
changed with other particles in P. &e best solution is
considered the global best, and other particles are starting to
move towards the best particle solution. &e trajectory of
movement will be based on the best solution, and this
process is repeated until it meets the stopping criteria. &e
current and previous velocity values are held by each particle
so that the next best position can be obtained on every it-
eration.&e velocity and position vectors of each particle are
updated as follows:

x
t+1
ij � x

t
ij + v

t+1
ij , (20)

where xt
ij is the position vector of the ith particle at iteration t

and xt+1
ij is the position vector of the ith particle at iteration

t + 1, while the velocity is given as

v
t+1
ij � ωv

t
ij + c1r1 pbest

t
ij − x

t
ij􏼐 􏼑 + c2r2gbest

t
− x

t
ij􏼐 􏼑, (21)

where vt+1
ij is the velocity vector of the ith particle at iteration

t + 1 and c1 and c2 are the coefficients. &e random numbers
that are distributed uniformly in the range [0,1] are rep-
resented as r1 and r2. &e best fitness values for the particle
are considered pbest, and gbest represents the fitness value
for all the particles. &e position of each particle has been
evaluated based on this fitness function, and it is given as

f � x
t
ij − vmax􏼐 􏼑

2
+ x

t
ij − imax􏼐 􏼑

2
. (22)

To update the pbest and gbest positions, the fitness
function of each particle is compared. If the present position
is comparatively better than the previous position, then the
present position is considered the best value, and the overall
fitness function is also updated based on that. Mathemati-
cally, it is formulated as

pbest
t
ij �

x
t
ij, if f x

t
ij􏼐 􏼑<pbest

t
ij,

pbest
t
ij, otherwise,

⎧⎪⎨

⎪⎩
(23)

gbest
t
ij � min pbest

t
j, pbest

t
j+1, . . . , pbest

t
s􏼐 􏼑. (24)

To update the position and velocity of all the particles,
the above equations are used and the same procedure is
implemented to obtain the MPPT process. &e position of
the panel is adjusted for every iteration, and the best position
is updated so that Pmax can be tracked during the power
generation process. In the proposed work, the values of c1
and c2 are considered 2 and 1.5, respectively. &e weight
factor ω is taken as 1.2, and the values of r1 and r2 are taken
in the range of [0,1].

3.2. Genetic Algorithm Optimization. &e GA was intro-
duced to solve constrained and unconstrained optimization
issues. Based on natural selection and biological evolution,
the problems are solved in the GA. &e individual solutions
in the GA are modified continuously, and next generations
are produced by selecting a random individual from the

current P. On successive evolution, the optimal solution is
obtained in the GA. Objective functions that are stochastic,
discontinuous, nonlinear, and nondifferentiable can be ef-
ficiently solved by a GA. Genetic algorithm-based MPPT
identifies the optimal parameter based on the survival of
fittest principle. &ree basic operators considered in the GA
are selection, crossover, and mutation. In this, the selection
operator defines the selection of materials from the present
generation that is suitable for the next generation. Generally,
the fitness parameter is used to select the materials. &e
crossover operator produces new materials by combining
two chromosomes, and the mutation operator helps to
maintain the genetic diversity of each generation. To get
better convergence, the first P is reset into the initial con-
dition when there is a variation in irradiance and temper-
ature. &e reinitialization is obtained based on the following
two conditions:

|v(k + 1) − v(k)|<Δv, (25)

ppv(k + 1) − ppv(k)􏼐 􏼑

ppv(k)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
>Δp, (26)

where v is the output voltage and ppv is the power of the PV
system. For each iteration, the initial P and their individuals
are applied, and the initial position of P is given as

P1, P2, P3, P4, P5􏼂 􏼃 � [1.0, 0.8, 0.6, 0.4, 0.2]Voc. (27)

&e generated power ppv(k) at the kth iteration is
considered the fitness function. &e crossover operator
function combines the two chromosomes to obtain a new
child, and it is given as

c(k) � rp(r) − ((1 − r)p(k + 1)), (28)

c(k + 1) � ((r − 1)p(k)) − ((r)p(k + 1)), (29)

where c(k) is the next-generation solution and r is the
random number. To obtain the relationship between the
duty cycle (D) and the output voltage, the ratio of next-
generation solution and open-circuit voltage is considered.
Due to the sequential aspect of chromosomes, the dynamic
response and mutation impact on convergence are con-
sidered in the genetic model. c(k) and the random number r

are selected in the range [0,1], and the position values are
taken in the range [0.2,1.0].

3.3. BAT Optimization. BAT optimization is a nature-in-
spired optimization algorithm that is formulated based on
the echolocation features of bats’ food-searching process.
Using echolocation, the insects are identified by bats so that
the food sources are identified. &e intensity of the return
signal and its direction are the major factors to locate the
prey in the optimization model. &e ultrasonic pulses are
emitted at a certain amplitude and rate, and a bat receives its
own signal as feedback in between the pulse trains to in-
terpret the prey location. Depending on the feedback in-
tensity, the distance is measured. If the intensity is high, the

6 International Transactions on Electrical Energy Systems



prey is near the bat and it moves towards the prey by in-
tensifying the pulse amount to capture the prey. &e flying
characteristics of bats are random with velocity (vi), and its
position and loudness are given as xi and li. &e emission
rate of bats is considered in the range [0,1] depending on the
target proximity. &e velocity and position of the bat at each
step are formulated as

x
t+1
i � x

t
i + v

t+1
i , (30)

v
t+1
ij � v

t
i + x

t
i − x
∗

􏼐 􏼑fi, (31)

where fi is the randomly assigned frequency that is given as

fi � fmin + fmax − fmin( 􏼁φ, (32)

where φ is the random vector for uniform distribution that is
in the range [0,1] and x∗ is the global best position that is
obtained by comparing all the solutions at each iteration. In
the position update process, the pulse emission rate is
considered. If the random vector is greater than the emis-
sion, then the exploitation stage is selected. &e current
position is replaced based on the solution obtained in the
local search process, and it is given as

xn � x
∗

+ l
t
, (33)

where the random number is obtained from Gaussian
distribution or uniform distribution in the range [− 1,1] and
lt is the average loudness at this timestamp. &e fitness
function is further improved if the generated random
number is smaller than loudness. A new solution is obtained
during the exploration process, and the parameters such as
emission rates and loudness are updated. Mathematically,
the parameter update is formulated as

l
t+1
i � ρl

t
i , (34)

r
t+1
i � ri 1 − e

(− αt)
􏼐 􏼑, (35)

where ρ is constant whose range is defined as [0,1] and α is
the positive constant. &e bat’s food-searching behavior is
related to energy tracking to obtain the Pmax point in the
solar PV model.

3.4. Grey Wolf Optimization. GWO is a metaheuristic op-
timization algorithm that is derived based on the hunting
nature of grey wolves. It is a type of swarm intelligence
algorithm that efficiently solves nonlinear optimization is-
sues. &e structure of grey wolves includes an alpha (α) that
is the leader of the group, beta (β) that is the subordinates of
α, and the reaming delta (δ) and omega (ω) that are the
third- and fourth-class supporting wolves. Alpha wolves are
the leaders and provide the best fitness solution for the given
optimization problem. &e hunting steps of grey wolves
include the following: (1) prey search, (2) encircling the prey,
and (3) attacking the prey. GWO has high convergence
speed and provides better accuracy than other optimization
algorithms as it has a better balance between exploitation
and exploration phases. To improve the performance of the

optimization model, the search agents are limited, and the
encircling behavior is formulated as

D
→

� C
→

x
→

p(t) − x
→

sg(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (36)

x
→

sg(t + 1) � x
→

p(t) − A
→

.D
→

, (37)

where A
→

and C
→

are the coefficients that balance the ex-
ploitation and exploration factors and are given as A

→
�

(2 a
→∗ r

→
1) − (a) and C

→
� 2 r

→
2, in which the factors r

→
1 and

r
→

2 are random numbers whose range is [0,1]. &e range of
coefficient (a) gradually decreased from 2 to 0 for every
iteration, which indicates the wolves approach the prey. &e
position of best search agents is used to update the position
of all agents for every iteration, and it is given as

D
→

α � c
→

1 x
→

α − x
→

sg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (38)

D
→

β � c
→

2 x
→

β − x
→

sg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (39)

x
→

1 � x
→

α − A
→

1 ∗ D
→

α, (40)

x
→

2 � x
→

β − A
→

1 ∗ D
→

β, (41)

x
→

sg(t + 1) �
x
→

1 + x
→

2( 􏼁

2
. (42)

&e hunting process is stopped if the prey has stopped its
movement and the search agents have finished the attacking
process.&e position update and attacking procedure of grey
wolves are depicted in Figure 3.

&e proposed optimization model is used to maximize
the output power of PV array considering its D as the de-
cision variable. In the initialization process, the population is
limited in the range of 0.1 to 0.9 of D, and it is expressed as

di � rand np, 1􏼐 􏼑 dmax − dmin( 􏼁 + dmin, (43)

where di is the D and np is the initial population, which
refers to the number of PV systems.

&e position of the prey is obtained by calculating the
fitness function. In the proposed model, the values dα and dβ
are considered the first- and second-best solutions with the
highest PV power. To update the position of search agents
based on the position of dα and dβ, the population position
and D are updated, and they are given as

D
→

α � c
→

1 d
→

α − d
→

i

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (44)

D
→

β � c
→

2 d
→

β − d
→

i

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (45)

d
→

1 � d
→

α − A
→

1 ∗ D
→

α, (46)

d
→

2 � d
→

β − A
→

1 ∗ D
→

β, (47)

d
→

i(t + 1) �
d
→

1 + d
→

2􏼒 􏼓

2
.

(48)
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&e powers are calculated, and the process needs to be
terminated when Pmax is obtained. &e maximum iteration
and maximum output power are the termination criteria for
the process, and they can be reinitialized if the power is
reduced, and the process is given as

ppv − ppv,l

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

ppv,l

≥ΔP, (49)

where ΔP represents the last operating point and ppv,l

represents the power at the global Pmax point. &e process
flow of GWO-based MPPT is given in Figure 4.

4. Results and Discussion

&e proposed model performance is verified through a
simulation designed in the MATLAB Simulink tool. &e PV
cell specifications are given in Table 1, and Figure 5 depicts
the arrangement of the single-diode solar PV model. &e
performances are measured under different irradiance and
temperature values, and the observations are discussed in
this section.

&e Simulink model for the proposed single-diode
model is given in Figure 6. Initially, the parameters are
extracted, and the performance of the single-diode PV
model is analyzed under different irradiance and temper-
ature conditions.

&e P-V characteristics of the single-diode PVmodel are
analyzed under different irradiance values in the range
[1000, 800, 600, 400, 200] W/m2, and the 25°C reference
temperature is fixed for the analysis shown in Figure 7. It
could be observed from the analysis that Pmax is obtained for
the irradiance value 1000, whereas for others, the power gets
decreased gradually and irradiance of 200W/m2 exhibits the
lowest power among all others.

&e I-V characteristics of the single-diode PV model are
depicted in Figure 8 for different irradiance values in the
range [1000, 800, 600, 400, 200] W/m2 with a reference

temperature of 25°C. &e maximum current is obtained for
1000W/m2, and the lowest current is obtained for 200W/
m2.

In the next analysis, the irradiance is kept constant and
the temperature is varied in the range [10°C, 30°C, 60°C], and
the P-V characteristics are observed and depicted in Fig-
ure 9. When the voltage increases, the power generation
increases linearly, reaches the maximum for minimum
temperature, and exhibits a lower power for a maximum
temperature of 60°C. &is indicates the effect of temperature
on power generation.

&e I-V characteristics depicted in Figure 10 are ob-
served by holding the irradiance at a constant value, and the
temperature is varied in the range [10°C, 30°C, 60°C]. When
the voltage increases, the power generation decreases and
reaches a minimum value. However, the minimum tem-
perature does not introduce much effect on the results,
whereas the maximum temperature of 60°C reduces quickly
than others, which indicates the effect of temperature on
current characteristics.

Furthermore, to analyze and improve the performance
of the PV model, optimization-based MPPT is introduced in
the proposed work. Four optimization models are included
for the analysis, and based on the performance, the best
model is selected. Five PV arrays are connected in series, and
a partial shading condition is considered for the analysis.&e
experimentation is performed under three cases for better
validation, and the cases are given as follows:

Case 1: uniform irradiance of 1000W/m2 is applied in
G3, G4, and G5, and nonuniform irradiance is applied
in remaining panels G1 and G2
Case 2: uniform irradiance of 1000W/m2 is applied in
G4 and G5, and nonuniform irradiance is applied in
remaining panels G1, G2, and G3
Case 3: uniform irradiance of 1000W/m2 is applied in
G5, and nonuniform irradiance is applied in remaining
panels G1, G2, G3, and G4

For each case, five simulation tests are conducted and the
performances are measured in terms of Pmax, MPPT power
(MPPTP), and TE. &e tracking efficiency (TE) is obtained
based on the ratio between maximum power and MPPT
power, and it is formulated as

η �
PMPPT

Pmax
× 100. (50)

&e optimized MPPT model for the proposed work is
depicted in Figure 11. &e Simulink model includes the PSO-
based MPPT model, and the same model is used for all the
optimization by replacing respective optimization units for
GA optimization, BAToptimization, and GWO in the design.
&e rest of the elements are similar for all the optimization
models. &e performance of the PSO-based MPPT model is
analyzed for all three cases and listed in Tables 2–4 for cases
1–3, respectively. It is observed from the analysis the PSO-
based MPPT process obtains an average TE of 96%.

&e performance of the GA-based MPPT model is an-
alyzed for all three cases and listed in Tables 5–7,

a
1

C
1

a
2

C
2

a
3

C
3

R

D
alfa

D
beta

D
delta

Move

Figure 3: Position update and hunting of grey wolves.
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respectively. It is observed from the analysis the GA-based
MPPTprocess obtains an average TE of 93%, which is much
less than that of the PSO-based MPPT model.

&e performance of the BAT optimization-based MPPT
model is analyzed for all three cases and listed in Tables 8–10,

respectively. It is observed from the analysis the BAT op-
timization-based MPPT process obtains an average TE of
97%, which is 4% higher than that of the GA-based MPPT
model and 1% higher than that of the PSO-based MPPT
model.

Yes No

No

Yes

No

Yes

Start

Initialize GWO parameters

Initialize D and population

Reached 
Convergence?

All agents 
evaluated?

End

Sense Vpv, Ipv from PV panel

Calculate power, D

Check p (i)>p (i-1)

Dn=Di+δd

Update Pmax, optimal D and GWO parameters

Dn=Di-δd

Figure 4: Process flow of GWO-based MPPT.

Table 1: Solar PV cell specification.

S. no. Parameter Range
1 Input power 260W
2 Short circuit current (Isc) 8.67A
3 Open-circuit voltage (Voc) 37.92V
4 Temperature coefficient of Isc 0.06% per °C
5 Temperature coefficient of Voc − 0.33% per °C
6 Reference temperature 25°C
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&e performance of the GWO-based MPPT model is
analyzed for all three cases and listed in Tables 11–13, re-
spectively. It is observed from the analysis the GWO-based
MPPT process obtains an average TE of 98%, which is 5%
higher than that of the GA-based MPPT model, 2% higher
than that of the PSO-based MPPT model, and 1% greater
than that of the BAT optimization-based MPPT model.

&e TE of all the optimization models is compared and
depicted in Figures 12–14 for cases 1–3, respectively. It could

be observed from the analysis the TE of the GWO model is
higher than that of other optimizationmodels in all the three
cases. &e fast convergence and accuracy of GWO have
obtained maximum TE compared to those of other opti-
mization models. For case 1, for all the five test conditions,
the tracking efficiency obtained by GWO is above 98%,
whereas the tracking efficiency of BAToptimization obtains
an average of 97% and PSO attains 96% tracking efficiency.
&e least performance is attained by the genetic algorithm,
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Table 2: PSO-based MPPT performance for case 1.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 900 950 1000 1000 1000 974.1 936.7 96.16
2 810 860 1000 1000 1000 910.2 879.5 96.63
3 720 770 1000 1000 1000 857.7 826.1 96.32
4 610 680 1000 1000 1000 712.6 689.9 96.81
5 550 580 1000 1000 1000 621.1 596.3 96.01

Table 3: PSO-based MPPT performance for case 2.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 910 940 970 1000 1000 937.3 908.2 96.90
2 800 850 890 1000 1000 876.1 844.6 96.40
3 710 750 780 1000 1000 756.7 731.2 96.63
4 620 660 690 1000 1000 670.6 643.7 95.99
5 500 550 590 1000 1000 579.5 559.3 96.51
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Figure 10: I-V characteristics at various temperatures.
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which attains 93% tracking efficiency. For case 2, the
tracking efficiency of GA, PSO, BAT optimization, and
GWO is 93.3%, 96.486%, 97.576%, and 98.164%, respec-
tively. For case 3, the tracking efficiency of GA, PSO, BAT

optimization, and GWO is 93.374%, 96.034%, 96.974%, and
98.284%, respectively. &e average tracking efficiency con-
sidering all the three cases attained by the optimization
models is 93.3% for GA, 96.3% for PSO, 97.3% for BAT

Table 4: PSO-based MPPT performance for case 3.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 900 930 960 890 1000 934.5 902.3 96.55
2 800 840 870 780 1000 856.7 824.4 96.23
3 700 730 760 670 1000 736.2 704.3 95.67
4 600 670 640 570 1000 646.9 619.8 95.81
5 500 540 580 490 1000 549.7 527.2 95.91

Table 9: BAT optimization-based MPPT performance for case 2.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 910 940 970 1000 1000 937.8 916.7 97.75
2 800 850 890 1000 1000 894.8 873.5 97.62
3 710 750 780 1000 1000 780.9 764.5 97.90
4 620 660 690 1000 1000 678.1 659.8 97.30
5 500 550 590 1000 1000 579.4 563.8 97.31

Table 5: GA-based MPPT performance for case 1.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 900 950 1000 1000 1000 971.3 909.4 93.63
2 810 860 1000 1000 1000 912.4 857.3 93.96
3 720 770 1000 1000 1000 862.1 798.1 92.58
4 610 680 1000 1000 1000 710.8 663.7 93.37
5 550 580 1000 1000 1000 598.8 552.4 92.25

Table 6: GA-based MPPT performance for case 2.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 910 940 970 1000 1000 942.1 876.8 93.07
2 800 850 890 1000 1000 883.7 827.4 93.63
3 710 750 780 1000 1000 763.5 712.3 93.29
4 620 660 690 1000 1000 664.9 623.7 93.80
5 500 550 590 1000 1000 569.3 527.8 92.71

Table 7: GA-based MPPT performance for case 3.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 900 930 960 890 1000 941.8 880.2 93.46
2 800 840 870 780 1000 864.6 812.4 93.96
3 700 730 760 670 1000 743.1 694.7 93.49
4 600 670 640 570 1000 652.7 607.9 93.14
5 500 540 580 490 1000 543.2 504.2 92.82

Table 8: BAT optimization-based MPPT performance for case 1.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 900 950 1000 1000 1000 963.2 937.2 97.30
2 810 860 1000 1000 1000 907.8 883.2 97.29
3 720 770 1000 1000 1000 859.9 837.1 97.35
4 610 680 1000 1000 1000 720.1 702.4 97.54
5 550 580 1000 1000 1000 610.2 591.2 96.89
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optimization, and 98.2% for GWO. It is observed that
maximum performance is attained by the GWO model,
which increases the performance of PV systems.

From the analysis, it could be observed that GWO ex-
hibits maximum TE and power in all the cases compared to
other optimization algorithms. &e performance of the

single-diode PV model can be improved with the GWO-
based MPPT strategy. Compared to other optimization
models, GWO has a much better convergence rate and
provides maximum power tracking, which increases the
total power, whereas the convergence rate of PSO is better
than that of GA but less than that of GWO, and in the case of

Table 10: BAT optimization-based MPPT performance for case 3.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 900 930 960 890 1000 936.7 910.4 97.19
2 800 840 870 780 1000 875.2 847.9 96.88
3 700 730 760 670 1000 751.1 725.7 96.62
4 600 670 640 570 1000 674.9 654.9 97.04
5 500 540 580 490 1000 549.8 534.1 97.14

Table 11: GWO-based MPPT performance for case 1.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 900 950 1000 1000 1000 957.8 942.7 98.42
2 810 860 1000 1000 1000 910.7 896.2 98.41
3 720 770 1000 1000 1000 849.3 829.4 97.66
4 610 680 1000 1000 1000 728.8 716.1 98.26
5 550 580 1000 1000 1000 623.4 612.8 98.30

Table 12: GWO-based MPPT performance for case 2.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 910 940 970 1000 1000 920.4 907.8 98.63
2 800 850 890 1000 1000 884.7 867.1 98.01
3 710 750 780 1000 1000 772.9 759.5 98.27
4 620 660 690 1000 1000 684.5 669.9 97.87
5 500 550 590 1000 1000 571.2 560 98.04

Table 13: GWO-based MPPT performance for case 3.

Test G1 G2 G3 G4 G5 Pmax MPPTP TE (%)
1 900 930 960 890 1000 927.9 916.2 98.74
2 800 840 870 780 1000 873.8 857.3 98.11
3 700 730 760 670 1000 763.3 751.7 98.48
4 600 670 640 570 1000 680.1 668.4 98.28
5 500 540 580 490 1000 551.8 539.7 97.81
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Figure 12: TE comparisons for case 1.
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BAToptimization, the convergence rate is better than that of
PSO and GA but less than that of the GWO model. &is
indicates that, with minimum time, the GWOmodel attains
maximum performance so that it can be selected as the best
optimization model among other optimization algorithms.

5. Conclusion

&is research work presents an analysis of a single-diode PV
model and MPPT using optimization techniques to improve
the performance of solar PV systems. &e parameters of the
single-diode model are derived, and the I-V and P-V char-
acteristics are analyzed under different conditions. Irradiance
and temperature are varied to measure the characteristics.
Furthermore, four optimization models such as PSO, GA,
BAToptimization, and GWO are introduced to obtainMPPT
of the proposed system. &e performance is analyzed under
three different cases by varying the irradiance levels. Among
all four optimization techniques, the GWO-based MPPT
model attains approximately 98% TE, which is much better
than that of other optimization techniques. Furthermore, this
research work can be improved by integrating Internet of
things models for fault detection so that the factors that affect
the TE can be identified and replaced immediately.

Symbols

Vd: Potential difference
Io: Reverse saturation current
Vt: &ermal voltage
Ns: Series-connected cells
k: Boltzmann constant (1.380650×10− 23 J/K)
q: Electron charge (1.602176×10− 19 C)
T: Temperature
Ipg: &e current generated by photovoltaic effect
Id: Diode current
Is: Diode saturation current
Rs: Series resistance
Rsh: Shunt resistance
ΔIl(i): Change in current point
ΔVl(i): Change in voltage point
Voc: Open-circuit voltage
Vp: Maximum power point voltage
xt

ij: Position vector of the ith particle at iteration t
xt+1

ij : Position vector of the ith particle at iteration t+ 1
c1 and c2: Coefficients
r
→

1 and
r
→

2:
Random numbers distributed uniformly in the
range [0,1]

Ppv: Power of the photovoltaic system
V: Output voltage
C(k): Next-generation solution
Vi: Random bat’s velocity
Xi: &e position of bats
Li: &e loudness of bats
Fi: Randomly assigned frequency
φ: Random vector for uniform distribution
ρ: Constant
α: Positive constant
A
→

and C
→
: Coefficients in grey wolf optimization

β: Beta-subordinates of α
δ and ω: Delta and omega-third- and fourth-class

supporting wolves
Di: Duty cycle
Np: Initial population
ΔP: Last operating point.

Data Availability

&e reference articles data used to support the findings of
this study are included within this article.

Additional Points

Highlights. (1) A mathematical model for a single-diode PV
system and four optimization approaches for MPPT under
different environmental conditions are presented in this
research work. (2) &e simulation results demonstrate that
the grey wolf optimization model achieves a maximum
power tracking efficiency of 98%, which is better than that of
other competing optimization techniques such as BAT
optimization (97%), PSO (96%), and GA (93%).
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