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In this contribution, the dynamics and chaos control of a permanent magnet reluctance synchronous motor (PMSM) with
constant, sinusoidal, and square load torque taking the reference rotor speed and the stator voltage on d-q-axis are analyzed. *e
analysis shows that under some conditions, varying amplitude of the load torque, PMSM presents period doubling route to chaos
with one and double-scroll attractors and bursting oscillations. We use the self-feedback delay controller to stabilize the output
trajectory by forcing to the periodic solution. Furthermore, an analog circuit is designed and implemented in OrCAD-PSpice
software to verify the numerical results and good agreement is observed with numerical results.

1. Introduction

Many industries use the permanent magnet reluctance
synchronous motor (PMSM) as the most reliable actuator.
PMSM is a type of synchronous reluctance motor which
overcomes problems such as torque pulsation, fault toler-
ance, and acoustic noises [1]. *e PMSM offers high-per-
formance drive when uses torques due the magnets and
reluctance variation; note that the machine has a problem of
high speed [2]. *e dynamics characteristics, speed control,
and oscillations of different types of motor and generator are
studies since references [3–9]. Recently, literature works
have been focused on non-nonlinear phenomena arising in
PMSM electrical machine [10–13]. *e bifurcation and
chaos in PMSM use a simplifier model of the motor by
neglecting/eliminating some parameters, demonstrated that
the system could exhibit different dynamic characteristics,
such as limit circle, steady state, and chaos [14]. *e study of
synchronous motor with load vibration shows that with
constant and sinusoidal load torque, synchronous motor

exhibits chaotic phenomena [15–17]. *e investigation of
dynamical behaviors and the control of chaos in indirect
field-oriented control (IFOC) of 3-phases and imple-
mentation of the self-feedback delay controller are studies
[18, 19]. *e bifurcation and chaos theory are used to study
stability of the PMSM as a nonlinear system [20–22]. Hemati
and Leu in [23, 24] present the permanent-magnet machines
dynamics and investigate the steady-state characteristics of
the machine, driving a constant load torque with the con-
stant input voltages. *ey show that the permanent-magnet
machines under investigation have multiple equilibria which
deeply influence the general stability of machine [25]. *e
authors in [26] chose the estimation error of rotor time
constant as bifurcation parameter in the IFOC, and they
show that chaos and limit cycles arise for some ranges of load
torque with certain PI speed controller setting. *e authors
in [26] show the effect of the estimation error of rotor time
constant taking as a bifurcation parameter in the IFOC, and
they show that the motor exhibits chaos and periodic be-
haviors for some ranges of load torque with certain
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proportional integral speed controller parameter. *e paper
[27] used the numerical study to understand the dynamic
behavior of IFOC of a current-fed inductionmotor, and they
discussed different forms of transition to chaos in the motor
model. By analysing the bifurcation results, the authors
provide important information for modifying both the
motor model and the proportional integral controller set-
tings. In state variable participation in the limit cycle of IM
(induction motor), they showed that the dynamics of a
single-phase capacitor-operated motor can be determined
by the profile of several state variables [28]. *e IFOC of 3-
phase induction motor enters chaotic state by period dou-
bling route phenomena after Hopf bifurcation. In [17], the
dynamical analysis and control of chaos in the permanent
magnet synchronous reluctance motor (SynRM) are shown
with two types of load torque: constant and sinusoidal. In
this work, the authors considered a motor with lord vi-
bration perturbation and the system exhibits, pitchfork
bifurcation, double-scroll chaotic attractor, and multi-
stability. However, during the study, the authors focused
only on the influence of the frequency (parameter of study)
of the load on the dynamics of the SynRM, neglecting the
effects of the variation of the amplitude of each load torque
whereas this parameter is very important to take into
account.

In fact, in industries, the PMSM is aim to drive different
loads during its operation. In this contribution, we high-
lighted the industrial situations where the amplitude of the
load torque is varied in contrast to constant and frequency
variation presented in the literature. In addition, the ap-
proach where the load torque is on and off depending on the
process driven by the PMSM is also studied. We found some
striking dynamics not yet observed here and therefore
highlighted some engineering malfunctioning not yet
explained.

Motivated by the above shortcomings, the rich results
obtained in the previous work published in good standing
papers and the importance of PMSM in industries appli-
cations, we focused on the key idea of this work that is the
discussion of some results regarding the investigation of the
dynamic behavior of PMSM where some new phenomena
take place from the best of our knowledge under the vari-
ation of the amplitude of different load torque (constant,
sinusoidal, and square). On the above discussions, the main
objective in this work is the analytical studies of the dynamic
of PMSM with

(i) constant load torque
(ii) amplitude of the sinusoidal load torque
(iii) amplitude square load torque

At the end of the paper, the time delay control to
suppress the chaotic behavior in this type of machine is
presented.

*e rest of the paper is organised as follows: Section 2
presents the mathematical model of the PMSM derived
from good standing papers. Section 3 displays the ana-
lytical investigations, and we present the dynamical re-
sults obtained by varying the amplitude of different types

of load torque in Section 4. *e analog circuit verifications
are shown in Section 5. Section 6 shows the control of the
chaos in the system and then follows a conclusion in
Section 7.

2. The Model of the Permanent Magnet
Reluctance Synchronous Motor with Load
Vibration Perturbation

*e electrical dynamical system of PMSM uses in this work
is described by [29] and recall here as in the following
equations:

diq

dt
�

− Riq − nLdωid − nktω + vq 

Lq

, (1a)

did
dt

�
− Rid + nLqωiq + vd 

Ld

. (1b)

j _ω � T(I, θ) − Ti(t). *e equation describing the elec-
tromagnetic torque is given by

T iq, id  � n ktiq + Ld − Lq iqid Ld, (2)

where kt �
������
(3/2)ke


, iq, id are d- and q-axis rotor currents,ω

is the mechanical rotor speed, and vd and vq are the stator
voltage on d-q-axis. Ld and Lq are the d- and q-axis stator
inductor, respectively, the stator winding resistance is R, and
the polar moment of inertia is j. n is the number of pole-pairs
T(I, θ) is the torque generated by the motor, and T1(t)

represents the external torque applied to the motor shaft,
including viscous and friction, given by T1 � bω + TL where
b is the viscous friction coefficient and TL account for ex-
ternal load torque applied on the system. More details on
modeling of PMSM can be found in [30]. After some
transformations in [24], by using the affine transformation
x � λx and the time-scaling transformation t � λt where x �

iq id ω  , x � iq id ω  and τ � Lq/R, we obtain the
system equations of PMSM machine that take the following
form:

diq

dt
� vq − iq − idω + cω, (3a)

did

dt
� vd − id + iqω, (3b)

dω
dt

� σ(iq − ω) + εidiq − TL, (3c)

where c � − (kt/kLq), σ � bτ/J, v q � (1/Rk)vq, vd �

(1/Rk)vd, k � b/nτkt, β � R/Ld, ε � (nbτ2k2(Ld − Lq))/J,
and TL � (τ2/J)TLby introducing the transformation x � iq,
y � id, z � ω, T3 � TL, v � ud, and u � uq (3c).

*e dimensionless form of the mathematical model of
the machine is described as follows:

dx

dt
� u − x − yz + cz, (4a)
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dy

dt
� v − βy + xz, (4b)

dz

dt
� σ(x − z) − T3, (4c)

where z, y, x denote angle speed, quadrature- and direct-axis
current of the motor, respectively. T3 is the load torque. *e
system parameters c, β, σ are determined by the type of
PMSM. We are considering that the reference rotor speed
and the stator voltage on d-q-axis are not equal to zero
(u≠ 0, T3 ≠ 0, v≠ 0). To study the dynamical behavior of the
system of equations 4a–4c under load vibration perturba-
tion, it is good to consider around three cases: (i) a constant
torque load is applied to the PMSM, (ii) a sinusoidal load
torque, and finally (iii) the square load torque is applied to
the PMSM.

3. Analytical Studies

3.1. Dissipative Property. *e contraction rate of system
(4a–4c) is an easy way to check the possibility to develop the
attractor [31]. By evaluating the contraction rate of system
(4a–4c), it is as follows:

ΔV �
z(dx/dt)

zx
+

z(dy/dt)

zy
+

z(dz/dt)

zz
� − (β + σ + 1). (5)

We choose β + σ ≥ 0; therefore, − (β + σ + 1)< 0 system
(4a–4c) is dissipative and can develop attractors.

3.2. Equilibrium Points and Stability Studies. *e equilib-
rium point is the foundation of the stability behavior of
dynamical systems [32], because their study provides pre-
liminary knowledge on the dynamics of the system. *is is
deduced by setting the derivatives in system (4a–4c) equal to
zero; hence, dx/dt � 0, dy/dt � 0, dz/dt � 0. Obviously,
the origin of the state space is a trivial equilibrium point.*e
other nonzero equilibrium points can be solved by the
following equations, which gives

x0 �
T3

σ
+ z0, (6a)

y0 �
1
β

T3

σ
z0 + z0 + v , (6b)

−
1
β

z0 −
T3

βσ
z
2
0 + z0 c −

v

β
− 1  + u −

T3

σ
� 0. (6c)

After some algebraic manipulations, equation (6c) be-
comes a transcendental equation with the parameters
(β, σ, c). In this situation, it is easy to plot equation (6c) with
the parameter T3 in a discrete interval to raise the equi-
librium points (see Figure 1).

*e Jacobian matrix at any equilibrium point
E(x0, y0, z0) is given as the follows:

M �

− 1 − z0 c − y0

z0 − β x0

σ 0 σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

*e characteristic equation evaluates at any equilibrium
point E(x0, y0, z0) is obtained by solving the equation
Det(M − λI3) � 0, where are the eigenvalues of the system at
the equilibrium point and I3 is the 3× 3 identity matrix. After
solving the above equation, we obtain the characteristic
polynomial as follows:

− λ3 +(− β + σ − 1)λ2 + βσ − β + σ − z
2
0 + cσ − y0σ λ

+ z
2
0σ − y0x0σ + βσ + βσc − y0βσ  � 0.

(8)

Based on the Routh–Hurwitz criterion, the real parts of
all the roots of equation (8) are negative if and only if (− β +

σ − 1)> 0 (βσ − β + σ − z0 + cσ − y0σ)> 0,
(z2

0σ − y0x0σ + βσ + βσc − y0βσ)> 0. *is latter equation
provides the range of parameter for the equilibrium point to
be unstable and generate interesting dynamics.

*e trivial equilibrium point is chosen as E0 0 0 0( ,
the eigenvalues associate in this case are given as λ1 � − β,

λ2 � ((σ − 1) −

�����������������

(σ − 1)2 + 4σ(1 + c)



)/2, and

λ3 � ((σ − 1) +

�����������������

(σ − 1)2 + 4σ(1 + c)



)/2, but we know that
β> 0, ρ> 0 and σ > 1. *e system has three eigenvalues, and
the three values do not have the same sign: one of them (λ3)
is positive and the rest is negative mining that when we
perturbate the system around that equilibrium point, we can
easily use the model to exhibit chaotic phenomena. *ose
three eigenvalues at E0 are given as λ1 � − 0.35, λ2 � − 8.2761,
and λ3 � 9.9261; the rest of system parameters are σ � 2.65,
β � 0.35, and c � 30.

4. Numerical Simulation

*e evolution of the root of equation (6c) is showing in
Figure 1.

In the light of Figure 1, equation 6c can present one, two,
or three roots which correspond to the equilibrium points of
system (4a–4c) with regard to the parameter T3.

We observed that, when the load torque changes, the
values and the number of equilibrium points resulting in
different dynamic of the system also vary. *e last equi-
librium point is negative by increasing the charge
(Figure 1(a)) and positive in Figure 1(b).

In fact, for T3<T3max≈ 2.53698, there are three non-
symmetric equilibrium points. For T3 �T3max, there are two
equilibrium points, while only a single equilibrium point
exists for T3>T3max. *roughout this work, attention is paid
to the interesting situation where the system develops three
equilibria (i.e., when 0<T3< 2.53698). It should be noted
that, for T3 � 0, the system has three symmetric equilibrium
points including the origin.

In the next section, the numerical study of system
(4a–4c) is considered. For this purpose, equation (4a–4c) is
solved by mean of 4th order Runge–Kutta algorithm [33]
with discrete time of 0.005s and the parameter in the range
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obtained in the previous section.*e bifurcation diagrams of
1-D and 2-D, the maximum Lyapunov exponent plots, the
time traces and phase portraits are considered. It should be
note that for the maximum Lyapunov exponent plot, pos-
itive value represents a chaotic behavior, while negative and
zero values represent regular motion of the studied system.

4.1. 2-D Bifurcation Diagram. In this section, the sensitivity
of the PMSM versus 2 twin parameters (β, c) or (σ, c) is
varied simultaneously in the objective to obtain an overall
behavior of the dynamic of the system. We plot the 2-D
bifurcation diagrams as shown in Figure 2 with initial states
(0.01, 0.01, 20).

*e right column of the graphs shows the color indi-
cation of the qualitative behavior of the system in accordance
with the MLE. Negative and zero values are colored in blue
and green; positive values in the other hand are colored in
cyan, yellow to red.*is graph is very important to engineers
specially to indicate the parameter of the PMSM to get a
particular dynamic.

For this paper, we choose c� 30. It is the zone where
various and major phenomena occur, and we draw the 1-D
bifurcation diagram to sense the system towards one
parameter.

4.2. 1-D Bifurcation Diagram: Sensitivity of the System versus
Single Parameter. In this section, the sensitivity of system
(4a–4c) versus the parameter σ and the load torque TL is
tested. We fixed the bifurcation parameter using Figure 2,
the system is solved for a long time, and the transient is
discarded. We record the local maxima of the state variable x
and increase in tiny steps the bifurcation parameter. *ese
steps are operated until the last values of the parameter σ.
For each value of the bifurcation parameter, we computed
the MLE using the well-known Kantz algorithm [34] and
draw the graphs.

4.2.1. Sensitivity towards σ. In the light of Figure 3, one can
see that the PMSM is chaotic from the set of σ ranging from 1
to 1.5 and 2.9 to 3.2. In the rest of the interval of σ, the system
is periodic.

Some phased portraits are drawn for the reader in
Figure 4 to let him discovered the final state attractor
corresponding to the dynamics observed above.

*e reader can notice the well-known period doubling
route to chaos in Figure 4a period-a; (b) period-2; (c) period-
4; and (e) or (f) chaos. *e following time traces deeply
illustrate the chaos and periodic motion of the PMSM when
σ is varied.

4.2.2. Sensitivity towards Constant Lord Torque. In this
section, we use the approach where the load torque is
constant in all the process driving by the PMSM. *e am-
plitude of the load torque highlights some unobserved
streaking dynamical behaviors.We choose σ � 1.5 and c� 30,
with the help of 2-D bifurcation diagram of Figure 2. *e
bifurcation diagram obtained by plotting the local of the
state variable x versus the amplitude of the constant load
torque T3 is shown in Figure 5.

*e chaotic behavior shown in Figure 5 illustrates that
the phase portrait of system (4a–4c) for specific value of
TL is always chaotic with some periodic windows sand-
wiches inside chaotic intervals. *is phenomenon is
named intermittency route to chaos. *is striking dy-
namic was first discovered by [35]. Recently, they are
found in thermoacoustic oscillations [36] in biochemical
systems [37], in electronics jerk oscillators [38], and just
to name a few. *is dynamic that appears in this type of
system constitute a major contribution, therefore, need to
be shared. As we can see in Figure 6, the phase portraits
drawn for some discrete values of the load torque
showing how the attractor is chaotic and then become
periodic suddenly.
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Figure 1: Dynamical behaviors of equations (6a–6c) when the parameters are σ � 1.57; β� 0.03; u� 0.009; c� 30; and v � 0.005.
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4.2.3. Sensitivity towards Amplitude of a Continuous Varying
Lord Torque. In this section, we use the approach case where
the load torque is sinusoidal in all the process driving by the
PMSM. *e amplitude of the load torque highlights some
unobserved streaking dynamical new phenomena. In the
industry, some load applied to the PMSM is nonconstant but
varies continuously [39, 40]. To mimic this type of load, we
introduce here a sinusoidal load as follows.

u�T3 ∗ sin(2∗ π ∗ F∗ t) where T3 is the amplitude of
sinusoidal torque; F is its frequency and t is the time. We
then change it to a squared wave form in the next section.
*e local waveform of the torque is given in Figure 7.

*e bifurcation and the local maximum exponent plot of
the PMSM, when the load torque of sinusoidal waveform, is
given in Figure 8.

Figure 8 shows that under certain values of the amplitude
of the load torque, the system is chaotic and periodic for
some others. *e main remarks here are that the diagrams
differ from the ones in Figure 3. To deep inside this result,

the times series and phase portraits plotting in this case in (x;
y) plan are shown as follows for σ � 1.56.

*e system exhibits periodic and chaotic dynamics
under a set of system parameter selected in the caption of
Figure 9. By changing the value of the amplitude of si-
nusoidal load torque, the phase portrait confirms the
behaviors shown by the bifurcation diagram. We also
notice that the attractors are always double-scroll in
contrast to the one in Figure 10, where they are some of
one scroll.

Because the square load torque is a king of nonsinusoidal
wave, we consider that the square torque is the sum of many
waves with many frequencies, we use that form of signal
torque to evaluate the behaviors of the machine under this
condition.

Bursting phenomena are observed in the system when
the load torque is sinusoidal. *e curve describing those
behaviors obtained by changing the amplitude of the signal
is given in Figure 11.
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As announced in this section, we use the approach
case where the load torque is square in all the process
driving by the PMSM. In the presented of the square load
torque in particular the amplitude of the load torque
highlights some unobserved streaking dynamical new
phenomena; therefore, they need to be shared. *e form
of the time series square load torque is given as

u �T3 ∗ square (2 ∗ π ∗ F ∗ t); the local form is given in
Figure 12.

We show that under the condition above, the system
exhibits period one, double-scroll, and chaotic attractor.*e
phase portraits are given in Figure 14.

*e figures confirm the behaviors described by the bi-
furcation diagram: periodic and chaotic attractors.
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Figure 9: Phase portraits plotted for F� 1Hz; the initial conditions are (x0 � 0.01; y0 � 0.01; z0 � 20); the system parameters are c� 30;
u� 0.009; v � 0.005; β� 0.03; σ � 1.56; (a) A� -1.0259, (b) A� − 4.6959, (c) A� 0.02, (d) A� 1, (e) A� − 5, and (f) A� − 8.5.
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Figure 14: Continued.
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5. Circuit Implementation of the PMSM

*e physical feasibility and existence of chaos attractors
in system (1a and 1b) are tested in this section by de-
signing an analog electronic circuit. Many tools have
been used accordingly by researchers including MUL-
TISIM, OrCAD-PSpice, or PSIM just to name a few
[41–44].

Note that OrCAD-PSpice is an advanced analysis
technology combining industry-leading, native analog,
mixed-signal, and analysis engines to deliver a complete
circuit simulation and verification solution. Its technology
provides the best, high-performance circuit simulation to
analyze and refine your circuits, components, and pa-
rameters before committing to layout and fabrication.
*erefore, the hardware implementation of the circuit is
relevant in technological applications including chaos-
based communications, random signal generation, image
encryption, and so on.*e schematic diagram of Figure 15
has been simulated in OrCAD-PSpice software, and it
represents the analog circuitry of system (4a–4c). *is
structure is exclusively based on diodes, resistors, ca-
pacitors analog multiplier, and few operational amplifiers.
*is is the more appropriated way to realize analog
operations.

To applying Kirchhoff’s electric laws on the circuit, the
following set of three coupled first-order nonlinear differ-
ential equations are obtained:

C1
dVx

dτ
�

− Vx

R35
+

Vz

R34
+

− VyVz

R24
+

V9

R39
, (9a)

C2
dVy

dτ
�

− Vy

R36
+

VxVz

R27
+

V10

R38
, (9b)

C3
dVz

dτ
�

− Vz

R37
+

Vx

R21
+

V8

R40
, (9c)

where Vx, Vy, and Vz are the output voltages of the op-
erational amplifiers. In order to recover original system
(4a–4c), the voltages and time can be normalized as follows:

Vx � x.1V,

Vy � y.1V,

Vz � z.1V,
t

RC
� τ.

(10)

*en, after substitution of equation (10) into equations
(9a–9c), one can obtain the following set of differential
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Figure 14: Phase portraits plotted showing the sensitivity of the system towards squared amplitude of the load torque: F� 1Hz; x0� 0.01;
y0� 0.01; z0� 20; h:0.005; c� 30; u� 0.009; v � 0.005; beta� 0.03; σ � 3.105; (a) T3 � − 0.02, (b) T3 � − 0.012, (c) T3 � 0.001, (d) T3 � 0.05,
(e) T3 � 0.05, and (f) T3 � 0.055.
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Figure 16:*e phase portraits of the chaotic attractor and periodic attractor in planes (Vx, Vy) observed on the OrCAD-PSpice. *e initial
conditions are Vx(0) � Vy(0) � Vz(0) � 0.01V. *e values of the resistors and capacitors are R27 � R21 � 10kΩ, R38 � 150MΩ,
R39 � 60MΩ, R34 � 6kΩ, R21 � R37 � 10.8521kΩ, R36 � 150kΩ, R35 � 100kΩ, R28 � R29 � R18 � R19 � R25 � R30 � 1kΩ,
C1 � C2 � C3 � 10nF, V7 � V8 � V9 � V10 � 15V R40 � RA: (a) period-1 attractor RA � 14.021MΩ, (b) periodic RA � 450kΩ, (c) periodic
RA � 750kΩ, (d) chaotic attractor RA � 41955.22 kΩ, (e) chaotic attractor RA � 4781kΩ, and (f) chaotic attractor RA � 480 kΩ.
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equations governing the dynamics of the dimensionless
variables x, y, and z:

dx

dt
� − x − yz + cz + u, (11a)

dy

dt
� − βy + xz + v, (11b)

dz

dt
� σ(x − z) − T3. (11c)

By comparing system (11a–11c) with system (4a–4c), the
following expressions between the parameters and the cir-
cuit’s components (resistors and capacitors) are obtained:
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Figure 19: Behavior of the electronic circuit describing the motor driving a sinusoidal waveform. *e circuit implement in OrCAD-PSpice
results in the phased portraits in Figure 19 are captured. We obtained all these forms with the following value of parameters:
(a) R40 � 8000kΩ, (b) R40 �15MΩ, (c) R40 �12000kΩ, (d) R40 � 800kΩ, (e) R40 � 350kΩ, and (f) R40 � 275.25 kΩ and (V� 15V; F� 50Hz;
R21 �R37� 6.4102564 kΩ), and the rest of parameters are the same as the ones used to plot Figure 16. We can see that the analytical results
are checked experimentally and a very good agreement is found between numerical and experiments data.

16 International Transactions on Electrical Energy Systems



z

R37

C3

R19

R18

R21

R40

x

-z OP6
-

+

OP5
-

+

R29

R28

R36

R27

R38

X

V10

C1

OP2
-

+
y-y

x

z

OP1
-

+
– +

R24
X

R19

R34

V9

C2

R29

R28

R35

-y

-x x

z

z

OP3
-

+ OP4
-

+– +

Figure 20: Electronic implement of the square load torque in this machine. *e squared load torque is T3.

16.5V

10.0V

–10.0V

–16.5V
649.5ms

Time
649.0ms 650.0ms

0V

V (v12)

Figure 21: *e wave form of square load torque with R� 5.05MΩ.

V(x)
0V 0.5V 1.0V 1.5V

2.50V

3.75V

1.60V

4.25V

V(y)

(a)

V(x)
0V 0.50V 1.00V 1.45V

2.50V

3.75V

1.50V

4.20V

V(y)

(b)

Figure 22: Continued.
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Figure 22: Phase portraits of system (11a–11c) in (Vx, Vy) plane of the circuit in Figure 21 show the behavior of the system obtained in
OrCAD-PSpice when the load torque in a square signal. (a) R40 � 500kΩ, (b) R40 � 505.254 kΩ, (c) R40 � 380.55k kΩ, (d) R40 � 800kΩ,
(e) R40 � 850.8 kΩ, and (f) R40 � 950.698 kΩ. *e initial values of capacitors voltage are (VX(0), Vy(0), Vz(0))� (0.01V, 0.01V, 0.01V), the
value of some resistance is R21 �R37 � 3.278 kΩ, and other parameters are unchanged.
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σ �
1

R21
,

T3 �
V8

R40
,

β �
1

R36
,

V10

R38
� v,

V9

R39
� u,

1
R34

� c,

R37 � R21.

(12)

To verify the similarity between numerical results and
experimental study, the observations from the OrCAD-
PSpice of the phase portraits of the designed circuit of system
(11a–11c) are shown in Figure 16.

*e phase portraits on Figure 16 resemble the one in
Figure 6; this statement shows that the electronic circuit
produces the periodic and chaotic attractors found in nu-
merical analyses section (see Figure 6).We can conclude that
the circuit describes the dynamic behavior of the machine
when the load changes in the constant values. Another
analytical results confirmed are the behavior of the system
towards sinusoidal load torque. For this purpose, the fol-
lowing OrCAD-PSpice diagram is proposed in Figure 17.

By using the sinusoidal load torque T3 � A sin(ωt), we
obtained in OrCAD-PSpice the form of the signal used in
Figure 18 as follows.

*e attractor form obtained in OrCAD-PSpice is given
in Figure 19.

*e last result to check is system (11a–11c) driving a
squared load torque. In this regards the following diagram in
Figure 20 is proposed in OrCAD-PSpice.

Figure 21 shows the time series of the general form of the
square function plotting in OrCAD-PSpice.

*e phase portraits obtained by variation of the am-
plitude of the square signal are given in Figure 22.

We see that when the load torque is a square function, the
motor exhibits chaotic attractors and conserves the general
form of attractors found in numerical findings. Notice that the
squared load torque represents an “on-off” (load apply-load
not apply) load driven by themachine.*is result represents a
contribution to the understanding of the dynamic of the
PMSM, therefore needs to be shared.

*e bursting phenomena are implemented in OrCAD-
PSpice when the parameter taking some range of value
and the behavior of those phenomena is shown in
Figure 23.

Figure 24 illustrates the comparisons of the numerical
results phased portraits with the experimental ones.

In the light of Figure 24, it is easy to see that good
agreement is met between numerical and experimental
studies.

6. Chaos Control of PMSM Motor Using Single
Self-Feedback Delay Controller

A single self-feedback delay controller is investigated in this
section to stabilize the chaotic behavior found in the PMSM.
*e details of this method can be found in [15] and other
related papers. In order to achieve this goal, the controlleris
added to equation (9a) of system (4a–4c):
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Figure 23: Time series (a), (b), (c), and phase portrait in plant (z, x) (d) of bursting phenomena obtained when the amplitude of the
sinusoidal load torque is R� 35.2154 kΩ, the frequencies is F� 50Hz, and the rest of parameters are unchanged.
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dx

dt
� − x − yz + cz + u, (13a)

dy

dt
� − βy + xz + v + u1, (13b)

dz

dt
� σ(x − z) − T3, (13c)

where the controller is u1 � kf(z(t − to) − z(t)) with kf is
the coupling strength of the controller. *e value of the
control parameters and the form of curve is given in Fig-
ure 25 with to� 0.5 and kf� 0.035.

It is easy to see that the control system is periodic. Firstly,
the behaviors of machine are chaotic with no control
(kf� 0.0); but when the control function parameters are
to� 0.5 and kf ∈ [0.02 − 0.035], the system becomes
periodic.

Numerical Constant Experimental Constant Numerical sinusoidal experimental sinusoidal Numerical square experimental square

Figure 24: Phased portraits of numerical result compared to experimental studies.
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7. Conclusion

In this paper, the dynamical and control of the PMSM are
studied by varying the amplitude of three different loads
torque: constant load torque, sinusoidal load torque, and
square load torque. We highlighted the industrial situa-
tions where the amplitude of the load torque of the PMSM
is varied in contrast to the frequency variation in the
literature, in addition to the ON/OFF load torque not yet
presented as far as our knowledge goes. We showed that
PMSM exhibits periodic and chaos behavior with new
shape of attractors, and chaos bursting and intermittency
oscillations. *ese finding dynamics in these engineering
applications of the PMSM need to be shared. In addition,
we implement successfully the self-feedback delay con-
troller which stabilized the PMSM from chaotic regime in
the desired periodic state.

Furthermore, the electronic verifications based on the
OrCAD-PSpice environment are in good agreement with
numerical results obtained. Complexity and losses occurring
will be investigated in a real experiment of the PMSM in
future research [45, 46].
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V.-T. Pham, and S. Jafari, “Synchronous reluctance motor
with load vibration perturbation: analysis, electronic imple-
mentation and adaptive backstepping sliding mode control,”
Iranian Journal of Science and Technology, Transactions of
Electrical Engineering, vol. 45, no. 2, pp. 645–654, 2021.

[18] A. S. Kemnang Tsafack, J. R. M. Pone, A. Cheukem,
R. Kengne, and G. Kenne, “Coexisting attractors and bursting
oscillations in IFOC of 3-phase induction motor,” He Eu-
ropean Physical Journal—Special Topics, vol. 229, no. 6,
pp. 989–1006, 2020.

[19] A. S. K. Tsafack, J. R. M. Pone, A. Cheukem, R. Kengne, and
G. Kenne, “Chaos control using self-feedback delay controller
and electronic implementation in IFOC of 3-phase induction
motor,” Chaos Heory and Applications, vol. 2, no. 1,
pp. 40–48, 2020.

[20] E. H. Abed, H. O. Wang, J. C. Alexander, A. M. A. Hamdan,
and H.-C. Lee, “Dynamic bifurcations in a power system
model exhibiting voltage collapse,” International Journal of
Bifurcation and Chaos, vol. 03, no. 05, pp. 1169–1176, 1993.

[21] C. Rajagopalan, P. W. Sauer, and M. Pai, “Analysis of voltage
control systems exhibiting Hopf bifurcation,” in Proceedings
of the 28th IEEE Conference on Decision and Control, IEEE,
Tampa, FL, USA, 1989.

[22] A. M. Harb and W. A. Ahmad, “Control of chaotic oscillators
using nonlinear recursive backstepping controllers,” Journal
of Bifurcation and Chaos, vol. 9, no. 11, pp. 2189–2196, 1999.

[23] N. Hemati, “Strange attractors in brushless DCmotors,” IEEE
Transactions on Circuits and Systems I: Fundamental Heory
and Applications, vol. 41, no. 1, pp. 40–45, 1994.

[24] N. Hemati and M. C. Leu, “A complete model character-
ization of brushless DC motors,” IEEE Transactions on In-
dustry Applications, vol. 28, no. 1, pp. 172–180, 1992.

[25] H.-S. Choi, Y.-H. Park, Y. Cho, and M. Lee, “Global sliding-
mode control. Improved design for a brushless DC motor,”
IEEE Control Systems Magazine, vol. 21, no. 3, pp. 27–35,
2001.

[26] B. Zhang, Y. Lu, and Z. Mao, “Bifurcations and chaos in
indirect field-oriented control of induction motors,” Journal
of Control Heory and Applications, vol. 2, no. 4, pp. 353–357,
2004.

[27] N. Jabli, H. S. Khammari, M. F. Mimouni, and R. Dhifaoui,
“Bifurcation and chaos phenomena appearing in induction
motor under variation of PI controller parameters,” WSEAS
Transactions on Systems, vol. 9, no. 7, pp. 784–793, 2010.

[28] K. Chakrabarty and U. Kar, “State variable participation in the
limit cycle of induction motor,” Pramana, vol. 84, no. 3,
pp. 423–441, 2015.

[29] N. Hemati and H. Kwatny, “Bifurcation of equilibria and
chaos in permanent-magnet machines,” in Proceedings of the
32nd IEEE Conference on Decision and Control, IEEE, San
Antonio, TX, USA, 1993.

[30] T. M. Jahns, G. B. Kliman, and T. W. Neumann, “Interior
permanent-magnet synchronous motors for adjustable-speed
drives,” IEEE Transactions on Industry Applications, vol. IA-
22, no. 4, pp. 738–747, 1986.

[31] R. C. Hilborn, Chaos and Nonlinear Dynamics: An Intro-
duction for Scientists and Engineers, Oxford University Press
on Demand, Oxford, UK, 2000.

[32] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Appli-
cations to Physics, Biology, Chemistry, and Engineering, Av-
alon Publishing, New York, NY, USA, 2014.

[33] H. William, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, “Numerical recipes,” He Art of Scientific
Computing, Cambridge University Press, Cambridge, UK, 3rd
edition, 2007.

[34] H. Kantz, “A robust method to estimate the maximal Lya-
punov exponent of a time series,” Physics Letters A, vol. 185,
no. 1, pp. 77–87, 1994.

[35] C. Jeffries and J. Perez, “Observation of a Pomeau-Manneville
intermittent route to chaos in a nonlinear oscillator,” Physical
Review A, vol. 26, no. 4, pp. 2117–2122, 1982.

[36] Y. Guan, V. Gupta, and L. K. Li, “Intermittency route to self-
excited chaotic thermoacoustic oscillations,” Journal of Fluid
Mechanics, vol. 894, 2020.

[37] I. M. De la Fuente, L. Martinez, and J. Veguillas, “Intermit-
tency route to chaos in a biochemical system,” Biosystems,
vol. 39, no. 2, pp. 87–92, 1996.

[38] A. Ngo Mouelas, T. Fonzin Fozin, R. Kengne, J. Kengne,
H. B. Fotsin, and B. Z. Essimbi, “Extremely rich dynamical
behaviors in a simple nonautonomous Jerk system with
generalized nonlinearity: hyperchaos, intermittency, offset-
boosting and multistability,” International Journal of Dy-
namics and Control, vol. 8, no. 1, pp. 51–69, 2020.

[39] V. Jan, “Energy optimal control of PMSM drive for time-
varying load torque,”AppliedMechanics &Materials, vol. 710,
2014.

[40] D. Janiszewski, “Load torque estimation in sensorless PMSM
drive using Unscented Kalmana Filter,” in Proceeding of the
2011 IEEE International Symposium on Industrial Electronics,
IEEE, Gdansk, Poland, 2011.

[41] D. C. Hamill, “Learning about chaotic circuits with SPICE,”
IEEE Transactions on Education, vol. 36, no. 1, pp. 28–35,
1993.

[42] G. Bianchi, N. V. Kuznetsov, G. A. Leonov, S. M. Seledzhi,
M. V. Yuldashev, and R. V. Yuldashev, “Hidden oscillations in
SPICE simulation of two-phase Costas loop with non-linear
VCO,” IFAC-PapersOnLine, vol. 49, no. 14, pp. 45–50, 2016.

[43] S. Vaidyanathan, P. S. Godwin Anand, A. Sambas, and
S. Zhang, “A new four-dimensional nonlinear plant with
double-scroll hyperchaotic oscillator and its electronic circuit
realization,” in Proceedings of the 2018 International Con-
ference on Circuits and Systems in Digital Enterprise Tech-
nology (ICCSDET), IEEE, Kottayam, India, 2018.

22 International Transactions on Electrical Energy Systems



[44] C. Ainamon, V. K. Tamba, J. R. M. Pone, and S. T. Kingni,
“Analysis, circuit realization and controls of an autonomous
Morse jerk oscillator,” SeMA Journal, vol. 78, pp. 1–19, 2021.

[45] J. Xu, B. Zhang, X. Kuang, H. Guo, and S. Guo, “Influence
analysis of slot parameters and high torque density optimi-
sation for dual redundant permanent magnet motor in
aerospace application,” IET Electric Power Applications,
vol. 14, no. 7, pp. 1263–1273, 2020.

[46] K. Chau, J. H. Chen, C. C. Chan, J. K. H. Pong, and
D. T. W. Cha, “Chaotic behavior in a simple DC drive,” in
Proceedings of Second International Conference on Power
Electronics and Drive Systems, IEEE, Singapore, 1997.

International Transactions on Electrical Energy Systems 23


