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Network optimization is one of an efective ways to enhance the performance of an active distribution network (ADN). Aiming to
improve the operation and power quality of the ADN considering time variations in load and renewable distributed generation
(RDG) power, a multi-time period optimization model and its dynamic solution method are proposed. Considering the real time
load demand and power generation variation of RDG versus input parameters like wind speed and solar irradiance, the time
variation models of load and RDG power output are developed. Te minimum power loss and maximum absorption of RDG
power are served as the optimization indexes to construct the dynamic muti-time period optimization model. A hybrid particle
swarm optimization (HPSO) algorithm is presented based on integer coding and random coding technique, which can fnd the
most satisfactory solutions for the proposed dynamic model. Considering the time variation of load and RDG power of ADN, the
optimal network structure and RDG allocation scheme at any time interval are determined by analyzing the obtained solutions.
Additionally, two ADNs with time variation in load and RDG are tested to verify the efectiveness and superiority of the proposed
dynamic optimization model and HPSO algorithm. Te simulation results show that the proposed method can improve the
operation performance and RDG optimal utilization of the ADNs through muti-time period dynamic optimization.

1. Introduction

Te application of RDG is a topic that attracts a great deal of
interest in the electric power industry because it can reduce
the dependency on fossil fuels and environmental pollution
[1].Te integration of RDG in the ADN is growing rapidly in
discussions about the future of distribution systems with the
increased demand for electrical power and the requirement
of environmental conservation [2, 3]. Te share of RDG in
primary energy supply would rise from 14% in 2015 to 63%
in 2050 [4]. Recently, wind and solar photovoltaic (PV) RDG
technologies are being integrated with ADN because they are
easy to install, low operating costs, and mature technology
[5, 6]. Taking wind power generation as an example, wind
energy would share 15.7% of global electric power con-
sumption by 2020 [6]. Te integration of RDG would im-
prove the operation performance and power supply shortage

of ADN. Nevertheless, the high-level penetration of RDG
brings new challenges afecting the dispatching operations of
ADNs [7]. Moreover, Te output power of RDGs exhibits
fuctuations and intermittency because it depends on input
parameters, which places high requirements on the adapt-
ability and control of ADNs. For example, the loss of a single
400-kilovolt transmission line in the India blackout causes
sizeable voltage deviations and around 300 million cus-
tomers without power [8]. Various control actions have been
performed to tackle the uncertainties in ADNs, such as
network optimization, controllable loads, etc., [9, 10].

Network optimization is a critical issue in distribution
systems dispatching management. One efective optimiza-
tion way is network reconfguration which is implemented
on ADN in the presence of RDG. Te method is the process
of fnding the optimal topology to satisfy the operational
objective and constraints [11]. Tere are some operational
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problems with the integration of RDG [12], such as eco-
nomic dispatch, voltage oscillations, and harmonic distor-
tion. Furthermore, operational conditions of ADN will
become more severe when the characteristic of time-varying
load conditions and the uncontrollability of RDG output
power are both considered [7].Te operational conditions of
ADN change frequently along with the time-varying char-
acteristics of RDG and load. In the ADN, fexible and ef-
fective control measures are required to apply the frequently
changing of operational conditions. We aim to analyze a
potential network optimization scheme for improving the
performance of the ADN.

In [13], Merlin and Back frst propose the concept of
network optimization which is obtained the optimal topo-
logical confguration with the objective of minimum power
loss. And then, the objective functions are extended as load
balance [14], voltage deviations [15], power quality [16], and
so on. Te network optimization is defned as an optimi-
zation problem which should satisfy ADN operational ob-
jectives and constraints. Te obtained optimal solutions of
the optimization problem is a challenging task because the
search space of solutions is typically large. Many intelligent
evolutionary approaches are adopted to address the com-
binatorial problem such as genetic algorithm (GA) [17],
improved decomposition based evolutionary algorithm (I-
DBEA) [18], particle swarm optimization (PSO) [19], and so
on.

Te integration of RDG brings many potential benefts to
ADNs, such as minimizing power losses, improving voltage
profle, enhancing system stability etc [20]. However, the
fuctuation of RDG output in the ADN results in node
overvoltage swells and reverse power fow of the system. For
instance, reference [22] has shown the changes in ADN
stability and economic indicators while the RDG sizing and
siting are changed. For this reason, researchers have shown
interest to obtain an optimal management scheme for RDG
in ADNs using network optimization. In [23, 24], the op-
timizationmodel with the objectives of RDG units sizing and
sitting are established which allocates RDG to the optimal
places of ADN. In [25], an energy management scheme of
dispatchable wind and PV RDG is proposed to balance the
power generation and load demand. It is noteworthy that the
methods have been subjected to static network optimization
theory and ignored the time variations in RDG. Te static
optimization model for non-variable RDGs cannot dem-
onstrate real-time scenarios and cannot achieve the optimal
RDG confguration scheme considering time scheduling of
the ADNs.

Te RDG output power has strong uncertainty and time-
varying because it is mostly infuenced by wind speed
and solar irradiance [26]. Tese characteristics bring new
challenges to the calculation and evaluation of the ADN
network optimization problem [27]. In [28], a forecast
model is used to obtain the RDG variable power at future
time interval. In [29], a planning model of wind and
solar generations considering uncertainty is proposed to
obtain an optimal mix scheme and sizing of various RDG in
microgrids. However, Te mentioned studies have been
performed based on non-variable load models and

addressed the network optimization during a predetermined
time interval.

Considering time scheduling of the load in ADN, ref-
erence [30] presents the optimizationmodel of diferent time
horizons with aiming to reduce switching costs. In [31], the
optimally allocate RDG units have been investigated in ADN
with time-varying load demand.Temodel considering load
demand and RDG is proposed to solve the ADN optimi-
zation problem over a 24-hour time horizon [32]. An op-
timization model based on RDG fuzzy uncertainty is
presented to obtain the optimal topology with objectives of
power loss reduction and voltage stability improvement
[33]. However, the obtained strategy is not suitable for
online real-time network optimization due to the load and
RDG based on a fxed prediction. In [34], the optimal
management scheme of wind RDG in ADN is proposed on
the basis of the probabilistic generation assumption. Te
solution for the optimization model in the presence of time
variation in load and wind RDG is not evaluated markedly.

Reference [35, 36] investigates the operation perfor-
mance of the ADN based on the conditions of load variation
and wind RDG penetration level. Te obtained results have
not been suitable for the ADN with the integration of multi-
type RDG simultaneously. In [37, 38], the optimization
methods considering multiple types of RDGs and load
demand are proposed to improve the operational man-
agement of the ADN. However, the obtained solutions have
the coordination between the load and RDG. During the
process of ADN network optimization, operational and
calculation conditions would become complicated with
network size, the type and number of RDGs, and the length
of the operation horizon. In addition, the above methods did
not evaluate the operational indicators of the optimized
ADN from the overall perspective.

In an ADN with high penetration of RDGs, applying
actual operation data to model time variation and fuctua-
tion behaviours of the RDGs and loads is a practical solution
for distribution operations. An ideal optimization model
should consider dynamic optimization of network topology,
optimal management scheme for RDGs, and satisfying
demand in a reliable and stable way considering time var-
iations in RDGs and loads. However, the operational and
calculation conditions would become complicated since the
characteristic of time variation in load and RDG during the
network optimization of ADN. It is obviously that the
mathematical methods are very hard to solve this opti-
mization problem. Furthermore, the voltage oscillations
and fault currents in the ADN may increase after RDG
integration. Te mentioned problems would be more
severe in the process of optimization considering the
time-varying load and RDG conditions. Although a
countermeasure is presented to restrict the output power
of RDG by installing control devices, it is not beneft to the
efective utilization of RDG. Moreover, due to the char-
acteristic of time variation in load and RDG, the opti-
mization problem size is typically large which needs to
identify the switch statuses of multiple time steps. Tus,
the coordination mechanism between load and RDG is
more complicated in the ADN optimization problem
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considering time variations feature. To address these
challenges, we present the important theories of the
network optimization problem for ADN [39]. Based on
the theory in [39], a multi-period optimization model and
its methods are proposed to obtain suitable optimal op-
eration schemes for real-time ADN systems in this paper.
Te optimization model allows the topological network to
change in each time interval of the optimization cycle.
And the model can realize fast adjustment of operation
scheme under real-time load and RDG output. Moreover,
a dynamic optimization method is proposed to handle the
multi-period optimization problem of conficting objec-
tives to fnd the optimal solution for each time interval.
Te key contributions of this paper are as follows:

(1) An ADN network model that is close to the actual
situation of the project is established. In the network
model, the maximum RDG power in any time in-
terval is determined by combining network opti-
mization, load demand, and RDG model.

(2) A multi-period optimization model for the ADN
considering time variations in load and RDG is de-
rived.Temodel aims to reduce the system power loss
and improve RDG utilization by changing real-time
topology at any time interval. Moreover, the overall
evaluation indices of ADN operation performance are
designed for a given optimization cycle.

(3) To balance the optimization objectives, the nor-
malization and weight methods are used to establish
a comprehensive objective function. Considering the
dynamic characteristic of the optimization process,
the normalized based values of the sub-objective
functions for k time interval are the optimal value of
the previous stage.Ten the comprehensive objective
function is derived by using the average weight
method.

(4) A hybrid particle swarm optimization (HPSO) based
on mixed code is used to fnd the optimal topology
and RDG power for every time interval corre-
sponding to conficting objectives. Since the load
demand and RDG power are time-varying, the
proposed method is continuous guiding the search
for the optimal solution in the next time interval
according to the optimal solution of the previous
period.

(5) Due to the diferences in dimensions and repre-
sentation between the topology and RDG power, the
proposed method uses integer coding based on loop
network and random number coding distribution to
represent the variables.Te globally optimal solution
is obtained by simultaneously updating quantum
position of mixed variables, which improves the
search efciency of the proposed method.

Te rest of this paper is organized as follows: Section II
gives the time-varying of load and RDG model. Sections III
presents the problem of mathematical formulation. Section
IV provides the HPSO method to apply to the network

optimization problem. Section V presents simulation results
of two ADNs. Finally, section VI outlines conclusions.

2. Load and RDG model

2.1. Loadmodel. In a practical scenario, the load of the ADN
changes in real time because it depends on the actual de-
mand of various type loads. Usually, the comprehensive load
model of ADN is the sum of the demands of residential,
commercial and industrial loads [37]. Fig 1 shows the actual
hourly load for residential, commercial and industrial load
patterns at a node in the ADN.

For any k time interval, the comprehensive load Pk
Li of i

node is represented as (1),

P
k
Li � P

k
Ri + P

k
Ii + P

k
Ci, (1)

where Pk
Li, Pk

Ri, Pk
Ii, and Pk

Ciare comprehensive power load,
residential power load, industrial power load, and com-
mercial power load at k time interval.

2.2. RDG model

2.2.1. (1) wind RDG model. Wind RDG output power is
often afected by some factors like weather conditions,
temperature, and so on. In particular, wind speed is one of
the infuencing factors on the output power of wind RDG.
Based on the statistical data and experience of the operators,
the best expression for depicting the distribution of wind
speed behavior is Weibull probability density function
(PDF) [40]. Te output power of wind RDG can be modeled
by wind speed variable, in which theWeibull PDF is adopted
to describe the distribution characteristics of wind speed.
random feature and uncertainty of the wind speed. For k
time interval, the actual wind RDG output behavior can be
modeled as [39]:
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where, for k time interval, Pk
r is the rated power of wind

RDG, Pk
w is the actual wind RDG output power, vk is average

wind speed,vk
in is cut in wind speed, vk

out is cut out wind
speed, and vk

r is rated wind speed.

2.2.2. (2) PV RDG model. Te PV RDG output is closely
related to the factor of solar irradiance. Te appropriate
function to characterize solar irradiance is Beta PDF. For k
time interval, the obtained solar irradiance function by using
Beta PDF is represented as follows [39]:

f r
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, (3)
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where, for k time interval, Γ(·) is the Gamma function, f(rk)
is solar irradiance distribution function, rk and rmax rep-
resent actual value and maximum value of solar irradiance,
α, β represent the shape variables of Gamma function.

Similarly, the mathematical equation of PV RDG output
is formulated as:

f P
k
Vw  �
Γ(α + β)

Γ(α)Γ(β)

Pk
Vw

EP

 

α− 1

1 −
Pk

Vw

EP

 

β− 1

, (4)

where Pk
Vw is the actual output of PV RDG at k time interval,

Ep is maximum power of PV RDG and its calculation
equation is expressed as:

EP � rmaxAηpv, (5)

Where, A and ηpv are the total area of PV panels and the
efciency of PV conversion.

For k time interval, assuming that φ is a variable of power
angle, the relational expression of active power Pk

RDG and
reactive power Qk

RDG of RDG models is shown as follows
[41].

Q
k
RDG � P

k
RDG tanφ. (6)

2.3. Mathematical Formulation

2.3.1. Objective Functions. According to various load de-
mands, the comprehensive load of ADN would randomly
decrease or increase in real time. And the output power of RDG
changes in real time with the change of wind speed and solar
radiation.Te ADN network optimization is a dynamic process
because of the time-varying features of load and RDG.
Terefore, the optimization process in the model will be per-
formed along the time intervals. Considering the engineering
actual situation of the ADN, we seek the optimal operational
scheme to enhance the operational performance of the ADN
system. In this paper, the goal is to fnd the optimum con-
fgurations which have the minimum power losses and max-
imum RDG utilization simultaneously for all time intervals.

(1) Evaluation index of power loss

Te active power loss on the line is an important index to
evaluate the system loss. For k time interval, the optimi-
zation problem is to fnd an optimal radial confguration that
gives minimum active power loss. It is described as:

F
k
1 � min f

k
1  � min 

Nl

l�1
z

k
l r

k
l

P
k
l 

2
+ Q

k
l 

2

U
k
i 

2
⎛⎜⎝ ⎞⎟⎠, (7)

For a given time, the total active power loss F1total of the
ADN is the sum of the power losses of all sub-time intervals.
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where, for k time interval, fk
1 is the system power loss, l is

branch label connecting node i and node j,Pk
l and Qk

l are the
active and reactive power of l branch, rk

l is the l branch
resistance, Uk

i is voltage amplitude at node i, zk
l is a binary

variable. If zk
l represents the opening switch status, zk

l � 1,
otherwise, zk

l � 0. Nl and NH represent the total number of
branches and time sub-intervals.

(2) Evaluation index of RDG utilization

Te network operation mode of ADN is dynamic and
variable because of time variations in load and RDG power.
In the optimization method of ADN, the index of RDG
utilization should be considered while improving the power
quality and economy. For k time interval, the sub-objective is
to fnd the network confguration of ADN such that it has the
maximum capability of RDG integration F2in.
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To maintain consistency with the optimization method,
the optimization objective can be transformed into (10).
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RDG utilization (FRDG%) is defned as an estimate of
total absorption RDG power by the ADN during a given
time.
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where h represents the index label of the RDG, NG is the
number of RDG, δh is a binary variable representing the
connection status between RDG and network, which takes
δh � 1 if the RDG is synchronized with the network and δh �

0 otherwise. Pk
RDGh and Pk

RDGhmax are actual output power
and maximum output power of h RDG at k time interval, fk

2
is total output power of RDGs at k time interval.
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Figure 1: Actual duration curves of three load patterns.
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(3) Comprehensive objective function

Due to the diference in the variation range and di-
mension of parameters, we should be normalized to elim-
inate the diference of sub-objective functions. For k time
interval, the topological structure of ADN optimization is
based on the topology of the previous stage. Terefore, the
normalized standard value of power loss of k time interval is
obtained by combining the topological structure of k-1 time
interval and load demand of k time interval. Te normalized
standard value of RDG output power is the sum of the upper
limit RDG power in each period. Te normalized standard
expression of the sub-objective functions can be expressed
as:
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Where Fk
1nor and Fk

2nor represent the normalized standard
values of power loss and RDG output power in k time in-
terval, respectively.

Confict is certain existed in the objectives of RDG
utilization and power loss. For example, the power loss of
ADN will be very high if the penetration of RDG reaches a
certain value. For coordinating the indices, we assign dif-
ferent signifcance weight coefcients to the sub-objective
functions. Tus, a muti-period comprehensive optimization
objective function is formulated by the weight coefcient
method. Te normalized comprehensive objective function
for k time interval is defned as follows:
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(14)

where σ1 + σ2 � 1 and σ1, σ2 ∈ [0, 1].

2.3.2. Constraints. Te operating constraints include power
fow constraint, voltage constraint, radial topology con-
straint, Branch apparent power fow constraint, and RDG
constraint. Tese constraints are described in detail in [39],
and only relevant expressions are listed here.
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where, for k time interval, Pk
si and Qk

si are the injected active
and reactive power of the node i, Pk

Li and Qk
Li are the load

demand of node i, Pk
RDGi and Qk

RDGi are the actual RDG
output power on node i.gk

l , bk
l , θ

k
l are conductance, sus-

ceptance, phase angle of branch l. Uk
i and Uk

j are voltage
amplitude of node i and j. N is the set of nodes of the ADN.
Uk

i , Uk
imin, Uk

imax the real time voltage amplitude, lower limit
amplitude and upper limit amplitude of node i at k time
interval. Tk

g is the reconfgured network topology at k time
interval and TGr is the set of radial topologies. Sk

l , Sk
lmax are

apparent power fow and the apparent power limit of
branch l at k time interval. Pk

RDGh and Qk
RDGh are the actual

active and reactive power of i RDG at k time interval,
Pk

RDGhmin, Q
k
RDGhmin, Phk

RDGhmax, Q
k
RDGhmax are the minimum

and maximum output power of RDGs for k time interval.

3. Methodology

Te power fow in ADN is changing frequently with the time
variations of load demand and RDG outputs. Tis paper
focuses on the multi-period optimization model which the
studied time cycle divides into several sub-time intervals.
Several requirements need to be considered in dealing with
the multi-period optimization problem combining RDG
integration, load demand and network topology. And the
HPSO method is chosen to solve the coordination opti-
mization problem.

HPSO is a meta-heuristic optimization model that
mimics the swarm characteristics of the foraging behaviour
of bird focks based on the traditional PSO algorithm [42].
Te movement of each particle has a random speed that
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determines the direction and distance of its fight. Based on
the speed update rule and location update rule, the algorithm
brings about local search and global information exchange
during the optimization process. In the traditional PSO, the
speed and position of each particle are described as random
vectors. In our study, a particle is composed of the opened
switch number of a possible radial network confguration
and potential RDG power. Te opened switch number is
usually expressed as an integer code, and the RDG power can
be a random code. Moreover, the method should be efcient
to address the multi-time period optimization problem. Te
concepts are considered within the traditional PSO to de-
velop an HPSO method discovering a set of solutions of
multi-time period and multi-objective optimization model.
Te procedure of HPSO is shown in Fig 2. Based on the [39],
the detailed implementation process of the HPSO is as
follows.

Step 1. Calculating the output power of RDGs for each time
interval. Te maximum outputs of RDGs for sub-time in-
tervals are obtained by measuring the real-time input pa-
rameters of RDG such as wind speed and solar irradiance.
Te PSO is used to determine the base values Pr and Ep of
wind and PV RDGs output power based on the peak load
point. We calculate time sequence RDG outputs based on
wind and PV RDG models.

Step 2. Inputting the parameters like topology structure,
RDG type and location, time sequence RDG outputs and
load data, and so on.

Step 3. Designing the multi-period optimizationmodel for a
given time. Te problem aims to fnd the best solution that
satisfes the requirements of power loss and RDG utilization
fxed by distribution manager. For k time interval, the in-
tegration RDG number and type are not fxed. For example,
there may be no PV RDG power since the solar irradiance is
0. Terefore, the type and number of RDGs connected to
ADN for k time interval rely on the real time input pa-
rameters of RDG. After that, the multi-time period opti-
mization model is designed as equations (7)-(19).

Step 4. Initializing the population. In the proposed HPSO
method, the population is composed of a set of random
particles. For k time interval, the best solution to the op-
timization problem is a particle in the population. A particle
is defned as a vector Xd � x1 x2 . . . xd  which contains
the radial topology and RDG power.Te network topology is
usually represented by the opened switches in loops that
label the integer coded. And the RDG output power is
generated randomly. Given an ADN with n loops and NG
RDGs, a random population is represented as equation (20).

Xd �

x1.1 x1.2 · · · x1.n

x2.1 x2.2 · · · x2.n

⋮ ⋮ · · · ⋮
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√√√√√√√√√√√√√√√√√√√√Swiches lable

x1.n+1 · · · x1.n+NG

x2.n+1 · · · x2.n+NG

⋮ · · · ⋮

xnop.n+1 · · · xnop.n+NG

√√√√√√√√√√√√√√√√√√
RDG power
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

Step 5. Evaluating the ftness of the comprehensive objective
functions. In the proposed method, a forward-backward
sweep based load fow method is used to calculate the op-
eration indices of the ADN. Te weight coefcient of the
objective functions is σ1 � σ2 � 0.5. According to equation
(14), the objective function values of each particle for k time
interval are calculated to identify the best and worst solu-
tions in the entire population. Assuming that the current and
global best position of a D-dimensional particle are pk

md �

p
k
m1 p

k
m2 ... p

k
mD

  and pk
gd � p

k
g1 p

k
g2 ... p

k
gD . For t

iteration, we obtain the average and optimal best position of
M particles in a population are represented as mbestk(t) and
pk

md(t).

mbestk(t) �
1

M


M

m�1
p

k
md(t),

p
k
md(t) � φp

k
md(t) +(1 − φ)p

k
gd(t)(φ ∈ [0, 1]).

(21)

Step 6. Updating the position particles satisfying all
the operating constraints. For k time interval, the
updated position of topology particle ixk

mdn(t + 1) and RDG
power particle i position xk

idNG
(t + 1) after t iteration are

obtained.

Calculate the maximum output power of
RDG for each time interval

Input the parameters

Design multi-time period optimization
model

Initialize the population

Evaluate the fitness of the objective
function

Update the position particles

Check the termination conditions

Output optimization results

Figure 2: Te procedure of HPSO.
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x
k
mdn(t + 1) � P

k
md(t) ± λk ∗ mbestk(t) − x

k
mdn(t)



∗ ln
1
u

 

x
k
mdNG

(t + 1) � round P
k
md(t) ± λk ∗ mbestk(t) − x

k
mdNG

(t)


∗ ln
1
u

  

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,

λk
max �

t
k
max − t

k
  × βk

max

t
k
max

.

(22)

where, for k time interval, λk and λk
max are the current value

and upper limit of control coefcient of and convergence
speed, u is the uniformly distributed random number, tk

max is
the maximum number iterations

Step 7. Setting tk�tk+1 and updating the particle positions
pk

md andpk
gd.

Step 8. Checking the termination conditions. Te optimi-
zation process will be continued until the current iteration is
less than equal to the maximum iteration number. Te al-
gorithm repeat steps (4)-(7) until these termination con-
ditions are satisfed.

Step 9. Checking the optimization completion for all time
intervals NH. Te algorithm repeats steps(2)–(8) until k≥NH
is satisfed.

Step 10. Output the best optimal results of all time intervals.

4. Case Study And Results

4.1. 33-bus ADN. Te multi-time period model and pro-
posed optimization method is tested on an ADN, presented
in Fig 3.Te system has fve loops which the tie-branches are
e34-e37.Te line impedances can be found in [43]. From Fig
3, the wind and PV RDGs are installed on the corresponding
nodes. Te voltage fuctuation range is 0.90-1.05 p.u. Te
comprehensive objective function is shown in (9) which the
weight values are set σ1�σ2�0.5.

Te real-time load of one day is considered an opti-
mization cycle. Based on the load and RDG models, Fig 4

show the actual hourly load demand and output power of
RDGs in a certain area.

4.1.1. Benefts of combining network optimization and RDG
integration. To analyze the operation performance of ADN
after RDG integration and network optimization, three cases
are simulated to utilize the proposed method at peak load
point.

Case 1. Initial system without RDGs and network
optimization.

Case 2. Solving the optimal problem of RDG utilization
maximization and power loss minimization without net-
work optimization.

Case 3. Solving the problem of RDG utilization maximi-
zation and power loss minimization with network
optimization.

In Fig 4, the peak load point of actual hourly load de-
mand is 7.4406MW+4.5314MVar at 19:00. Te obtained
results of the cases are presented in Table 1.

In case 2, the RDG is optimally integrated utilization
without network optimization, providing an 80.2% reduc-
tion of system power loss (Ploss). However, the Ploss is re-
duced by 89.53% in case 3. Moreover, the absorption RDG
power (PRDG) by the system has improved to 6.1836MW
after optimization. Te combination of network optimiza-
tion and RDG integration is efective in reducing the system
power loss of the ADN.

Fig 5 shows the hourly voltage profles of all the cases.
Te voltage amplitude is improved when combining net-
work optimization with RDG integration than when

e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17

e25

e26 e27 e28 e29 e30 e31 e32

e23 e24

e19 e20 e21

e18

e22

e33

e1

e35

e34

e36

e37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25
26 27 28 29 30 31 32 33

Wind

Wind

PV

PV

Figure 3: Te 33-bus ADN.
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integrating RDG only and base system. Te minimum
voltage (Vmin) amplitude of case 3 has increased to
0.9734p.u., which is above 0.9494p.u. of case 2 and 0.8104
p.u. of case 1. Te results show that system efciency in the
optimization problem with adding the RDG is better than
the base system and has resulted in more power loss re-
duction, more voltage profle change, and more RDG power
utilization.Te use of RDG along with network optimization
leads to better operation conditions of the ADN due to the
injection of RDG power.

To justify the superiority of the proposed method, the
optimization problem in case 3 is also solved by the con-
ventional algorithms, GA method [43] and moth-fame
optimization (MFO) [44]. the obtained simulation results
are compared with those obtained by the conventional
methods. Te methods are based on initial conditions and
similar assumptions. Table 2 and Fig 6 illustrate the detailed
comparison results.

Te proposed method presents a superior performance
to the GA and MFO. Te proposed method provides an
optimal solution with 99.9680kW of system power loss
which is less than 101.3932kW in GA algorithm. According
to Fig 6, the proposed method could achieve optimal so-
lution faster than other methods, i. e., 47 iterations against 95
in MFO, 47 iterations compared to 157 in GA. Conse-
quently, the proposed method is an efective way for
addressing ADN network optimization due to its high
convergence ability and accuracy.

4.1.2. Experiment considering time variations in RDG and
load. Te proposed model and method is used to address
the optimization problem of ADN considering the time
variations in RDG and load. Te hourly data in RDG and
load of an average day as an example of study are illustrated
in Fig 4. In the 33-bus ADN, four cases are adopted to
investigate the efect of time-varying characteristics on
network optimization indicators.

Case 4. Load variation is considered without network op-
timization and RDG.

Case 5. Load variation and network optimization simula-
tion are considered.

Case 6. Time variations in load and RDG are considered
without network optimization.

Case 7. Simultaneous hourly network optimization and
time variations in load and RDG are studied.

Table 1: Benefts of combining network optimization and RDG
integration.

Cases Open switches Ploss/kW PRDG/MW Vmin/p.u.
1 e33-e37 954.8644 0 0.8104
2 e33-e37 189.0362 5.9423 0.9494
3 e33, e3, e17, e35, e13 99.9680 6.1836 0.9734

X:18
Y:0.8104

X:18
Y:0.9494

X:18
Y:0.9734

5 10 15 20 25 300

Node Number

0.8
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.u
)
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Case 2
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Figure 5: Te voltage profle for cases.

Table 2: Comparison with last optimization methods.

Items Open switches Ploss/kW
PRDG/
MW

Vmin/
p.u.

Proposed
method

e33, e3, e17, e35,
e13 99.9680 6.1836 0.9734

GA [43] e33, e28, e17, e35,
e13 101.3932 6.1836 0.9662

MFO [44] e33, e3, e17, e35,
e13 99.9680 6.1836 0.9734
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Fig 6: Te convergence curve of the IEEE33 bus system.
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Figure 4: Hourly load demand and RDG power.
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Using the proposed model and method, we obtained the
selected open switches and RDG utilization for a given time
certain. Tables 3 and 4 present the simulation results and
optimal solutions for each time interval for the cases. In each
time interval, the open switches, Ploss, Vmin, and absorbed

RDGs power are presented corresponding to each time
interval for cases.

In cases 4 and 5, the simulation is carried out in the
system with time variation of load demand. Table 3 lists the
results of active power loss, minimum node voltage, and

Table 3: Te simulation results for cases 4 and 5.

Hour
Case 4 Case 5

Ploss/kW Vmin/p.u. Open switches Ploss/kW Vmin/p.u. Open switches
0 22.7169 0.9708

e33, e34, e35, e36, e37

15.4203 0.9800

e7, e14, e9, e32, e28
1 22.7168 0.9708 15.4203 0.9800
2 16.3075 0.9746 10.4509 0.9836
3 6.0509 0.9849 4.0918 0.9900
4 6.0507 0.9849 4.0918 0.9900
5 26.4839 0.9678 18.6209 0.9774

e7, e14, e9, e32, e376 59.2882 0.9521 41.4271 0.9675
7 102.6528 0.9381 71.6523 0.9557
8 454.6853 0.8711 299.2572 0.9111

e7, e14, e9, e32, e289 634.7827 0.8465 406.9587 0.8958
10 707.9717 0.8399 458.5657 0.8907
11 667.9735 0.8449 434.8238 0.8943
12 450.9375 0.8707 303.2061 0.9095 e7, e14, e9, e32, e37
13 524.2916 0.8622 353.2866 0.9055

e7, e14, e9, e32, e2814 655.2344 0.8467 429.3050 0.8945
15 957.7037 0.8154 617.2244 0.8735
16 972.4477 0.8126 631.8764 0.8646

e7, e14, e9, e32, e37
17 800.6986 0.8283 523.4494 0.8786
18 704.0766 0.8373 460.8127 0.8870
19 954.8644 0.8104 612.0081 0.8692
20 892.3920 0.8166 574.1248 0.8726
21 245.2501 0.9043 164.6489 0.9364 e7, e14, e9, e32, e28
22 107.0733 0.9359 74.2170 0.9554 e7, e14, e9, e32, e37
23 42.5950 0.9603 29.0150 0.9729 e7, e14, e9, e32, e28

Table 4: the simulation results for cases 6 and 7.

Hour
Case 6 Case 7

Ploss/kW Vmin/pu PRDG/MW Open switches Ploss/kW Vmin/pu PRDG/MW Open switches
0 8.1067 0.9975 1.4218

e33, e34, e35, e36, e37

6.0394 1.0000 1.6812 e18, e26, e15, e35, e13
1 8.1067 0.9975 1.4217 6.0394 1.0000 1.6812 e18, e26, e15, e35, e13
2 5.8469 0.9980 1.2532 4.8468 1.0000 1.4586 e18, e26, e15, e35, e13
3 3.2958 0.9989 0.8466 2.5442 1.0000 0.9858 e18, e26, e15, e35, e13
4 3.2958 0.9962 0.8466 2.5442 1.0000 0.9858 e18, e26, e15, e35, e13
5 15.4035 0.9926 1.5047 14.5019 1.0000 1.7885 e18, e26, e15, e35, e13
6 16.5998 0.9902 2.1212 10.6640 1.0000 2.5000 e18, e26, e15, e35, e13
7 20.7617 0.9791 2.8600 11.7804 1.0000 3.1844 e33, e26, e34, e11, e13
8 67.9496 0.9094 5.1583 32.0832 0.9961 5.5973 e33, e27, e34, e10, e14
9 260.6859 0.9250 3.7394 93.8267 0.9617 3.7394 e20, e28, e7, e9, e14
10 255.5533 0.9539 4.9059 76.6267 0.9785 5.0553 e19, e5, e34, e8, e14
11 145.1387 0.9539 5.2497 63.2703 0.9912 6.3646 e7, e28, e8, e10, e14
12 135.4337 0.9603 4.2558 57.9087 0.9898 5.2516 e3, e28, e8, e9, e13
13 123.2461 0.9625 4.7329 56.2066 0.9912 5.7489 e7, e28, e8, e9, e14
14 126.8513 0.9373 5.3648 60.6288 0.9923 6.4603 e7, e28, e8, e10, e14
15 559.0125 0.8513 1.5438 194.9442 0.9463 3.5852 e6, e37, e15, e8, e 14
16 174.5450 0.9471 5.4858 80.6216 0.9706 5.4860 e20, e5, e15, e10, e 14
17 121.4635 0.9643 5.0480 72.5454 0.9706 5.0480 e33, e4, e17, e11, e14
18 165.7809 0.9210 3.3588 126.0127 0.9492 3.3588 e33, e28, e32, e10, e14
19 194.7916 0.9516 6.0711 99.9680 0.9734 6.1836 e33, e3, e17, e35, e13
20 166.3880 0.9382 5.1636 97.5013 0.9628 5.1636 e33, e4, e17, e11, e13
21 54.0669 0.9768 3.4541 28.3297 0.9859 3.5698 e33, e28, e17, e35, e13
22 30.2893 0.9908 2.6554 20.0171 0.9959 3.2057 e18, e26, e15, e35, e13
23 13.1778 0.9958 1.8297 9.5739 0.9994 2.1778 e18, e26, e15, e35, e13
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open switches before and after optimization (case 4 and case
5). As seen in Table 3, the optimal solutions with opening
switches e7, e14, e9, e32, and e28 are consistent at time
intervals 0∼4th, 8∼11th, 13∼15th, 21th, and 23th.Te opened
switches in other time intervals are e7, e14, e9, e32, and e37
after optimization. Te active power loss for each time in-
terval reduces after optimization, i.e, 41.4271kW against
59.2882kW at 6:00, 458.5657kW compared to 707.9717kW
at 10:00, 458.6379kW instead of 631.8764kW at 16:00, and so
on. Further, it is noted that the minimum node voltage for
each interval has increased in case 5 compared in case 4. For
example, Te percentage improvement in minimum node
voltage value after optimization is 1.67%, 5.08%, and 6.40%
at 6:00, 10:00, and 16:00, respectively. Fig 7 gives the total
power loss andminimum voltage profle in a day of the cases.
From Fig 7, the total daily power loss in case 4 is
10.0352MW. Te daily total power loss after optimization
has been reduced by 34.69%. Te minimum voltage am-
plitude in a day improves to 0.8646p.u. in case 5, which
implies an improvement of 6.69% compared to case 4. Te
results illustrate network optimization can efectively im-
prove the system operation level. However, the daily min-
imum voltage amplitude 0.8646p.u. in case 5 is lower than
the voltage limit of 0.90p.u. It is not conducive to the long-
term stable operation of the active distribution system. Te
way of integration of RDG is considered to improve op-
erating indices.

To perform the suggested method which requires time
variations in RDG and load demand, diferent load profles
and RDG output power are added to the system at each time
interval. Table 4 depicts the variations of the operational
indices of the system in cases 6 and 7. It is observed that the
optimization efects of cases 6 and 7 are better than those of
cases 4 and 5. In cases 6 and 7, the obtained optimal so-
lutions provide the total daily power loss are 2.6758MW and
1.2290MW, respectively. Te maximum power loss of the
day in case 7 is 194.9442kw at 15:00, which implies a re-
duction of 762.7595kW, 263.0196kW, and 364.0683kW
compared to case 4, case 5, and case 6. From Fig 7, the daily
minimum voltage amplitude of case 7 is 0.9463p.u., which is
higher than the minimum voltage limit 0.90p.u. It indicates
that simultaneous network optimization with time-varying
load and RDG can improve the performance of the ADN.
Moreover, the day absorption RDG power for case 7 is
90.2614MW, which has increased by 12.42% with case 6.
And the RDG utilization (RDG%) has been improved from
67.04% in case 6 to 75.37% in case 7.

Due to space reasons, the operational indices of the ADN
at 11:00 and 21:00 are analyzed as examples to describe the
operation characteristic at each time interval clearly. Fig 8
shows the power loss of each branch at 11:00 and 21:00. In
case 4, the power loss of ADN is relatively large without
network optimization and integration of RDGs. In case 5, it
is signifcantly reduced after optimization by changing the
topology with opening switch combinations [e7, e14, e9, e32,
e28]. Te system power loss is reduced by 53.62% at 11:00,
and 32.87% at 21:00, respectively. After integrating of RDGs,
Te system power loss for case 6 is reduced by 78.27% at 11:
00, and 77.95% at 21:00, respectively. Te benefts of
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Figure 7: the simulation results for all the cases in a day.
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simultaneously combining network optimization with the
integration of RDG are investigated in case 7. Te obtained
fnal opening switch combinations at 11:00 and 21:00 are [e7,
e28, e8, e10, e14] and [e33, e28, e17, e35, e13], respectively. It
provides a reduction to 63.2703kW at 11:00 and 28.3297kW
at 21:00 of system power loss, which is signifcantly lower
than that of other cases.

Fig 9 shows the voltage profle at two-time interval
points. In case 4, voltage violations occur in most of the
nodes which leads to an unsatisfactory low voltage profle.
Te network performance is improved by using network
optimization and integration of RDGs simultaneously. It is
observed that the system voltage volatility range is reduced
in case 7. And the minimum voltage profle in cases 4-7 are
0.8449 p.u. for node 33 at 11:00, 0.8943 p.u. for node 32 at 11:
00, 0.9539 p.u. for node 33 at 11:00, 0.9912 p.u. for node 24 at
11:00.Teminimum voltage of ADN has raised dramatically
with the network optimization and RDG integration.

As seen in Table 4, the absorption RDG power at two-
time intervals by the system of case 6 are 5.2497 MW and
3.4541MW, while the optimization system of case 7 reaches
6.3646MW and 3.5698MW. It turns out that the absorption
power of RDGs in case 6 is increased by 21.24% at 11:00 and
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Fig 10: RDG utilization at of each time interval in case 6 and case 7.

Table 5: Te open switches of four algorithms at each time interval.

Hour
open switches

HPSO BPSO BAS GA MFO
0 e18, e26, e15, e35, e13 e7, e14, e9, e32, e28 e3, e14, e11, e32, e28 e18, e26, e15, e35, e13 e18, e26, e15, e35, e13
1 e18, e26, e15, e35, e13 e7, e14, e9, e32, e28 e33, e14, e11, e32, e3 e18, e26, e15, e35, e13 e18, e26, e15, e35, e13
2 e18, e26, e15, e35, e13 e7, e14, e9, e32, e28 e33, e14, e10, e36, e3 e18, e26, e16, e11, e12 e18, e25, e16, e11, e12
3 e18, e26, e15, e35, e13 e7, e14, e9, e32, e28 e33, e13, e10, e17, e3 e18, e26, e16, e35, e13 e18, e25, e16, e35, e13
4 e18, e26, e15, e35, e13 e7, e14, e9, e32, e28 e33, e14, e11, e32, e4 e18, e26, e16, e35, e13 e18, e26, e16, e11, e12
5 e18, e26, e15, e35, e13 e7, e14, e9, e32, e28 e33, e13, e11, e17, e3 e18, e27, e16, e35, e13 e18, e26, e16, e35, e13
6 e18, e26, e15, e35, e13 e7, e14, e9, e32, e37 e33, e14, e11, e32, e3 e19, e26, e15, e21, e13 e19, e26, e15, e21, e13
7 e33, e26, e34, e11, e13 e7, e14, e9, e32, e28 e33, e14, e11, e16, e4 e33, e25, e15, e11, e13 e33, e26, e15, e11, e13
8 e33, e27, e34, e10, e14 e7, e14, e9, e32, e28 e33, e11, e21, e15, e4 e33, e27, e34, e10, e14 e33, e27, e34, e9, e13
9 e20, e28, e7, e9, e14 e7, e14, e9, e32, e28 e6, e34, e9, e14, e28 e20, e28, e7, e9, e14 e20, e28, e6, e9, e14
10 e19, e5, e34, e8, e14 e7, e14, e9, e32, e28 e6, e14, e10, e15, e28 e19, e5, e34, e8, e14 e19, e 5, e8, e9, e14
11 e7, e28, e8, e10, e14 e7, e14, e9, e32, e28 e5, e14, e10, e15, e28 e7, e28, e34, e8, e14 e7, e14, e9, e32, e28
12 e3, e28, e8, e9, e13 e7, e14, e9, e32, e37 e33, e9, e6, e14, e28 e7, e4, e8, e9, e14 e7, e4, e8, e10, e14
13 e7, e28, e8, e9, e14 e7, e14, e9, e32, e37 e5, e13, e9, e15, e28 e7, e28, e8, e10, e14 e7, e28, e8, e10, e14
14 e7, e28, e8, e10, e14 e7, e14, e9, e32, e28 e33, e34, e9, e14, e5 e7, e28, e8, e10, e14 e7, e28, e8, e10, e14
15 e6, e37, e15, e8, e 14 e7, e14, e9, e32, e28 e6, e34, e9, e14, e37 e6, e37, e15, e9, e 34 e6, e37, e15, e9, e 34
16 e20, e5, e15, e10, e 14 e7, e14, e9, e32, e37 e5, e13, e9 15, e28 e20, e5, e15, e9, e 14 e20, e5, e15, e10, e 14
17 e33, e4, e17, e11, e14 e7, e14, e9, e32, e28 e33, e14, e11, e17, e4 e33, e4, e32, e11, e14 e33, e4, e17, e11, e14
18 e33, e28, e32, e10, e14 e7, e14, e9, e32, e37 e33, e11, e6, e14, e28 e33, e28, e32, e10, e14 e33, e28, e32, e10, e14
19 e33, e3, e17, e35, e13 e7, e14, e9, e32, e37 e33, e13, e11, e36 , e4 e33, e3, e16, e35, e13 e33, e3, e17, e35, e13
20 e33, e4, e17, e11, e13 e7, e14, e9, e32, e28 e33, e14, e11, e36, e4 e33, e4, e17, e11, e13 e33, e4, e17, e11, e13
21 e33, e28, e17, e35, e13 e7, e14, e9, e32, e28 e33, e14, e11, e36, e3 e33, e28, e17, e35, e13 e33, e28, e17, e35, e13
22 e18, e26, e15, e35, e13 e7, e14, e9, e32, e37 e33, e13, e10, e36, e3 e18, e26, e15, e35, e13 e18, e26, e15, e35, e13
23 e18, e26, e15, e35, e13 e7, e14, e9, e32, e28 e33, e14, e11, e36, e3 e18, e2, e15, e35, e12 e18, e26, e15, e 35, e13

Table 6: Obtained results.

Items Total Ploss/MWh RDG% Vmin/pu
HPSO 1.2290 75.37% 0.9463
GA 1.2335 75.22% 0.9461
MFO 1.2302 75.28% 0.9463
BPSO 2.3031 50.98% 0.8848
BAS 1.3446 54.53% 0.9409
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3.4% at 21:00 in case 6.Te RDG utilization of a day in case 7
has increased by 15.48% and 3.24% compared to case 6.
Moreover, Fig 10 compares the absorption RDG power over
24 hours for cases 6 and 7.Te minimum RDG utilization in
case 7 is 19.68% at 17:00, which is higher 16.64% in case 6. In
both cases, the maximum diference of RDG utilization has
reached to 56.94%. Tus, considering the time variations in
load and RDG, the operational performance of the ADN
would improve by using the proposed dynamic optimization
model and the HPSO method.

4.1.3. Comparing the results of HPSO and Other Methods.
As a comparison, the optimization problem of ADN con-
sidering time variation feature is also addressed by the

methods of BPSO [19], BAS (beetle antennae search algo-
rithm) [37], GA [43] and MFO [44].

Using all the methods, the list of fnal open switches for
the best solutions during 24 hours are listed in Table 5. Te
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Figure 11: Comparison of power loss at each time interval.
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Table 7: Te simulation results of 69-bus ADN in a day.

Items Total Ploss/MW Total RDG/MW Vmin/pu
Case 4 94.4404 0 0.4092
Case 5 1.8752 0 0.8079
Case 6 180.9674 83.5132 0.5476
Case 7 1.4379 123.6139 0.9203
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crucial constraint for the radial structure is satisfed for each
topology. According to the optimal topologies, Fig 11 shows
the power loss, minimum voltage standard amplitude, and
RDG utilization based on case 7 using HPSO, BPSO, BAS,
GA and MFO for the ADN. Te obtained results show that
the indexes of the proposed HPSO are better than other
methods for ADN optimization considering time variations
in load and RDG over 24 hours.

Te power loss of the 33-bus ADN after optimization
during 24 hours is shown graphically in Fig 11. Te maximum
total power loss for themethods over 24 hours is 194.9442 kWh
(HPSO), 389.0171 kWh (BPSO), 227.4633 kWh (BAS),
195.7518 kWh (GA), and 195.2001 kWh (MFO) at 15 p.m.

Fig 12 shows the RDG utilization after optimization at
each time interval of a day. Te results show that the
minimum RDG utilization for each algorithm over 24 hours
is 19.6811%, 9.0749%, 11.0089%, 19.6928%, and 19.6811%.
Te maximum RDG utilization for each algorithm over 24
hours is 100%, 92.9588%, 99.9970%, 99.9940%, and 100%.
Moreover, the RDG utilization has reached 100% in eight-
time intervals, which is obviously better than other methods.

Te minimum voltage profles of the ADN after opti-
mization in a day are illustrated in Fig 13.Te day minimum
voltage amplitude of each algorithm is 0.9463 p.u., 0.8848
p.u., 0.9409p.u., 0.9461 p.u., and 0.9463 p.u. at 15 p.m. Te
minimum node voltage for a day is almost the same as that of
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Figure 17: Absorbed RDG power of 69-bus ADN during 24 hours.

Table 8: Open switches of hourly optimization for 69-bus ADN.

Hour Case 4 Case 5 Case 6 Case 7
0

e69, e70, e71, e72, e73

e64, e14, e68, e44, e38

e69, e70, e71, e72, e73

e4, e18, e13, e53, e47
1 e3, e18, e67, e50, e42 e4, e17, e14, e26, e47
2 e3, e18, e12, e47, e7 e4, e18, e13, e53, e47
3 e69, e19, e62, e50, e47 e4, e18, e13, e53, e47
4 e4, e16, e14, e53, e38 e4, e18, e13, e25, e47
5 e4, e17, e68, e52, e38 e4, e18, e13, e72, e47
6 e65, e17, e71, e52, e36 e4, e18, e13, e24, e47
7 e10, e15, e13, e12, e35 e4, e16, e13, e20, e41
8 e9, e15, e68, e20, e37 e7, e18, e13, e50, e47
9 e3, e16, e11, e13, e36 e3, e15, e5, e12, e45
10 e3, e17, e 68, e11, e4 e3, e17, e9, e12, e7
11 e8, e70, e68, e11, e36 e69, e13, e 67, e48, e7
12 e9, e70, e12, e16 , e36 e61, e16, e7, e12, e41
13 e9, e15, e13, e20, e36 e10, e15, e68, e11, e5
14 e3 e70, e 66, e11, e7 e3, e15, e71, e50, e41
15 e10, e15, e13, e23, e37 e69, e13, e5, e49, e35
16 e8, e16, e13, e11, e36 e65, e16, e14, e20, e47
17 e8, e15, e71, e11, e35 e3, e17, e68, e20, e7
18 e8, e17, e11, e13, e36 e60, e15, e9, e11, e36
19 e8, e15, e66, e12, e38 e3, e19, e68, e21, e5
20 e9, e15, e68, e22, e36 e65, e16, e68, e53, e7
21 e9, e18, e12, e14, e35 e4, e18, e68, e20, e36
22 e10, e15, e68, e25, e36 e4, e18, e13, e72, e47
23 e3, e19, e11, e26, e36 e4, e15, e68, e25, e47
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MFO, but 0.21%, 0.57%, and 6.95% higher than GA, BAS,
and BPSO.

Table 7 shows the total active power loss and RDG
utilization in a day. Te day power loss by the proposed
HPSO is 1.2290MWh which is lower than 1.2302MWh
(GA), 1.2335MWh (MFO), 1.3346MWh (BAS), and
2.3031MWh (BPSO). Te RDG utilization for a day using
HPSO, GA, MFO, BAS, and BPSO are 75.37%, 75.22%,
75.28%, 54.53%, and 50.98%, respectively. From all the
results, we can see that the obtained results of HPSO al-
gorithm are better to compare the GA, MFO, BAS, and
BPSO. Tus, the proposed HPSO method is better in global
optimization ability.

4.2. 69-busADN. Te69-bus ADN consists of 69 buses and 5
tie branches, as provided in Fig 14 [44]. Te wind RDGs are
connected to nodes 11 and 50. Te PV RDGs are connected
to nodes 38 and 53. Te open switches in the initial network
are e69, e70, e71, e72, and e73. Te proposed method is
applied to obtain the optimal reconfgure to enable RDG
penetration. Te hourly load demand for the system is
obtained by using the method in [43].

For the sake of investigating the optimal problem of the
ADN considering time variations in load and RDG, cases 4-7
will be implemented to the 69-bus ADN. Table 7 provides
simulated results of the test active distribution network for
24 hours using the proposed method.

Te original network considers the time-varying na-
ture of load demand without the integration of RDGs and
network optimization. From Table 7, we observe that the
total daily active power loss of 94.4404MW for case 4.
After network optimization, the total power loss has been
reduced to 1.8752MW in case 5. To discuss the RDG efect,
consider the integration of RDGs as case 6. Te total
power loss of the case is calculated as 169.0020MW. When
both network optimization and RDG integration are
considered, the daily power loss is minimized to
1.4379MW. Fig 15 shows active power loss for the four
cases during 24 hours. In all hours, the power loss has
been reduced greatly using network optimization and
integration of RDGs in case 7.

Te voltage profles of the cases during 24 hours have
been illustrated in Fig 16. Te hourly minimum voltages
in cases are 0.4092p.u. at 15:00, 0.8079 p.u. at 21:00,
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Figure 18: Comparison of power loss of 69-bus ADN.
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0.5476 p.u. at 8:00, and 0.9203 p.u. at 14:00, respectively.
It is observed that the minimum voltage profle for cases
4-6 is lower than the lower voltage limit 0.9p.u. Te
network optimization based on time variation of RDGs
and load demand brings much less voltage fuctuations
with respect to case 7 than case 5 and case 6 because the
scheme considers the network optimization and inte-
gration of RDGs.

Fig 17 also compares the absorbed RDG power by the
system at each interval before and after network optimi-
zation (case 6 and case 7).We observe that the total absorbed
RDG power after optimization for a day is 123.6139MW,
which has increased by 45.40% before the system. Te RDG
utilization has been improved from 52.93% to 76.96% after
optimization. With the expansion of network structure, the
proposed method is more efective for improving the op-
eration indices of the ADN.

Table 8 shows the open switches of the hourly optimi-
zation solution for the cases. Te application of network
optimization to the ADN has permitted to achieve a better

operational conditions. As an example, the topological
structure [e7, e18, e13, e50, e47] is optimal for the hour 8:00
of the day in case 7. It ensures a reduction of 93.37%, 49.97%,
and 95.32% of power loss with other cases. In addition, Te
voltage profle is increased by 42.87%, 8.68% and 66.58% for
case 4, case 5, and case 6, respectively. And the absorbed
RDG power of case 7 is improved to 6.6721MW which is
higher than 4.8958MW of case 6. Tese results show that the
proposed model and method yield acceptable results in
terms of power loss reduction, voltage improvement, and
RDG utilization for both test systems under time variations
of load demand and RDG. Tis demonstrates the ability of
the proposed approach to fnd the optimal network topology
along with absorbed RDG power and load demand for the
ADN considering time characteristics.

To further illustrate the superiority of the HPSO, we
compared and analyzed the 24 hours simulated results of
case 7 by methods of HPSO, BPSO, BAS, GA, and MFO.
Fig 18–20 show the comparison of the proposed HPSO
and the conventional approaches BPSO, BAS, GA, and
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MFO. And the comparison of the simulation results in a
day is also shown in Fig 21–22. We can clearly the
minimum voltage profles in a day are 0.9203 p.u. for
HPSO, 0.8487 p.u. for BPSO, 0.9048 p.u. for BAS, 0.9009
p.u. for GA, 0.9066 p.u. for MFO, respectively. From Fig
18, the total active power loss of a day 1.4379 MWh by
HPSO, which is less 77.57%, 67.07%, 34.34%, and 21.09%
than BPSO, BAS, GA, and MFO. Te day RDG utilization
with a penetration rate of 76.96% is the highest among all
the methods. Tus, considering the overall operation
economy in terms of power loss, voltage quality, and RDG
utilization, the proposed HPSO is superior to the other
methods.

5. Conclusions

In this paper, a successful multi-period optimization strategy
of the ADN considering time variations in load demand and
RDG has been presented. Te objective function of the
dynamic optimizationmodel includes the power loss and the
RDG utilization for a given time to ensure optimal operation
of the ADN. Additionally, the average weigh factors ap-
proach is used to balance the relationship of the objectives in
multi-period optimization model. Furthermore, the pro-
posed HPSO algorithm and the optimization model are
combined to determine the optimal topology and RDG
resource allocation scheme for each time interval in the
ADN.

Te optimization strategy considers diferent possi-
bilities of network optimization, time variations of load
demand and RDG. Te proposed optimization model and
HPSO method test on the 33-bus and 69-bus ADNs to
verify the efectiveness. Te simulation results show that
the proposed strategy obtains reasonable and high-
quality schedules for switching and the active power
values of RDGs in multi-period optimization objective
frameworks. Additionally, considering the network op-
timization helps signifcantly increase RDG utilization

and improve the voltage profle in a day. Case studies are
conducted on 33-bus and 69-bus ADNs under diferent
operating conditions. Simulation results show that the
proposed strategy can fnd the corresponding optimal
solution in each time interval. Tus, the performance of
the ADN can be improved by integrating RDG and
network optimization. Moreover, the superiority of the
proposed optimization algorithm considering time var-
iations of load and RDG is proved by comparing con-
ventional methods. Tis paper presents a management
strategy for ADN considering time variations in load and
RDG, which is an important requirement to mostly ex-
plore the benefts without extra investment costs or
system risks. However, the switches in the optimization
process would be changed constantly according to time
intervals. Te infuence of frequent switch action is ig-
nored in this paper. Te author suggestion for future
study would be to modify the method according to the
switch constraint. [21, 45].

Abbreviations

k: Label of sub time interval
i, j: Node label
m: Particle label
l: Branch label
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Nl: Number of branches
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Pk
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vk
in: Cut in wind speed

vk
out: Cut out wind speed

vk
r : Rated wind speed
Γ(·): Gamma function
r: Solar irradiance
α, β: Shape parameters of beta distribution
Pk

Vw: Actual power output of photovoltaic RDG
Ep: Maximum power of photovoltaic RDG
A: Total area
ηpv: Weighted photoelectric conversion efciency
φ: Power factor angle
Pk

l : Active power of lth branch
Qk

l : Reactive power of lth branch
rk

l : Branch resistance
Uk: Node voltage amplitude
δh: Connection status between RDG and network
zk

l : Switch status
FRDG%: RDG utilization
NG: RDG number
δi: Binary variable
Pk
RDG and

Qk
RDG:

Actual active and reactive power of RDG

Pk
s and Qk

s : Injected active and reactive power
Pk

L and Qk
L: Active and reactive power of load

gk
l : Conductance value

bk
l : Susceptance value
θk

l : Phase angle
zk

l : Switch status
Tk

G: Network topology
TGr: Topology set
Sk

l : Apparent power fow
Xd: Particle vector
pk

md, pk
gd: Best particle position and the globally best

particle position
σ1, σ2: Weight coefcient of optimization indices
λk: Control parameter
RDG: Renewable distributed generation
ADN: Active distribution network
GA: Genetic algorithm
I-DBEA: Improved decomposition based evolutionary

algorithm
PSO: Particle swarm optimization
PDF: Probability density function
HPSO: Hybrid particle swarm optimization
MFO: Moth-fame optimization
PV: Photovoltaic
BAS: Beetle antennae search algorithm.
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[3] A. M. Foley, B. Ó Gallachóir, E. J. McKeogh, D. Milborrow,
and P. G. Leahy, “Addressing the technical and market
challenges to high wind power integration in Ireland,” Re-
newable and Sustainable Energy Reviews, vol. 19, pp. 692–703,
2013.

[4] Irena, Global Energy Transformation: A Roadmap to 2050,
IRENA, Abu Dhabi, United Arab Emirates, 2019.

[5] W. Jing, C. H. Lai, W. S. H. Wong, and M. D. Wong, “A
comprehensive study of battery-supercapacitor hybrid energy
storage system for standalone PV power system in rural
electrifcation,” Applied Energy, vol. 224, pp. 340–356, 2018.

[6] J. Moccia, A. Arapogianni, J. Wilkes, C. Kjaer, R. Gruet, and
S. Azau, “Brussels, Belgium,” in Pure Power: Wind Energy
Targets for 2020 and 2030Tech. Rep, 2011.

[7] J. Liu and H.-D. Chiang, “Maximizing available delivery
capability of unbalanced distribution networks for high
penetration of distributed generators,” IEEE Transactions on
Power Delivery, vol. 32, no. 3, pp. 1196–1202, 2017.

[8] H. Sekhavatmanesh and R. Cherkaoui, “A novel decompo-
sition solution approach for the restoration problem in dis-
tribution networks,” IEEE Transactions on Power Systems,
vol. 35, no. 5, pp. 3810–3824, 2020.

[9] X. Zhao, X. Shen, Q. Guo, H. Sun, and S. S. Oren, “A stochastic
distribution system planning method considering regulation
services and energy storage degradation,” Applied Energy,
vol. 277, pp. 1–13, 2020.

[10] A. Noori, Y. Zhang, N. Nouri, and M. Hajivand, “Multi-
objective optimal placement and sizing of distribution static
compensator in radial distribution networks with variable
residential commercial and industrial demands considering
reliability,” IEEE Access, vol. 9, pp. 46911–46926, 2021.

International Transactions on Electrical Energy Systems 19



[11] M. E. Baran and F. F. Wu, “Network reconfguration in
distribution systems for loss reduction and load balancing,”
IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1401–
1407, 1989.

[12] C. Joon-Ho and K. Jae-Chul, “Advanced voltage regulation
method of power distribution systems interconnected with
dispersed storage and generation systems,” IEEE Transactions
on Power Delivery, vol. 16, no. 2, pp. 329–334, 2001.

[13] A. Merlin and H. Back, “Search for a minimal-loss operating
spanning tree confguration in an urban power distribution
system,” in Proc. 5th Power Syst. Comput. Confpp. 1–18,
Cambridge, U.K, 1975.

[14] M. W. Siti, D. V. Nicolae, A. A. Jimoh, and A. Ukil,
“Reconfguration and load balancing in the LV and MV
distribution networks for optimal performance,” IEEE
Transactions on Power Delivery, vol. 22, no. 4, pp. 2534–2540,
2007.

[15] A. Mendes, N. Boland, P. Guiney, and C. Riveros, “Switch and
tap-changer reconfguration of distribution networks using
evolutionary algorithms,” IEEE Transactions on Power Sys-
tems, vol. 28, no. 1, pp. 85–92, 2013.

[16] M. J. H. Moghaddam, A. Kalam, J. Shi, S. A. Nowdeh,
F. H. Gandoman, and A Ahmadi, “A new model for recon-
fguration and distributed generation allocation in distribu-
tion network considering power quality indices and network
losses,” IEEE Systems Journal, vol. 14, no. 3, pp. 3530–3538,
2020.

[17] Z. Liu, Y. Liu, G. Qu, X. Wang, and X. Wang, “Intra-day
dynamic network reconfguration based on probability
analysis considering the deployment of remote control
switches,” IEEE Access, vol. 7, pp. 145272–145281, 2019.

[18] A. Ali, M. U Keerio, and J. A Laghari, “Optimal site and size of
distributed generation allocation in radial distribution net-
work using multi-objective optimization,” Journal of Modern
Power Systems and Clean Energy, vol. 9, no. 2, pp. 404–415,
2021.

[19] T. T. Nguyen and T. T. Nguyen, “An improved cuckoo search
algorithm for the problem of electric distribution network
reconfguration,” Applied Soft Computing, vol. 84, p. 105720,
2019.

[20] H. S. Ramadan, A. F. Bendary, and S. Nagy, “Particle swarm
optimization algorithm for capacitor allocation problem in
distribution systems with wind turbine generators,” Inter-
national Journal of Electrical Power & Energy Systems, vol. 84,
pp. 143–152, 2017.

[21] G. S. Chawda, A. G. Shaik, O. P. Mahela, S. Padmanaban, and
J. B. Holm-Nielsen, “Comprehensive review of distributed
FACTS control algorithms for power quality enhancement in
utility grid with renewable energy penetration,” IEEE Access,
vol. 8, pp. 107614–107634, 2020.

[22] J. Shukla, B. Das, and V. Pant, “Stability constrained optimal
distribution system reconfguration considering uncertainties
in correlated loads and distributed generations,” International
Journal of Electrical Power & Energy Systems, vol. 99, no. 1,
pp. 121–133, 2018.

[23] Y. K. Wu, C. Y. Lee, L. C. Liu, and S. H. Tsai, “Study of
reconfguration for the distribution system with distributed
generators,” IEEE Transactions on Power Delivery, vol. 25,
no. 3, pp. 1678–1685, 2010.

[24] A. Mohamed Imran, M. Kowsalya, and D. Kothari, “A novel
integration technique for optimal network reconfguration
and distributed generation placement in power distribution
networks,” International Journal of Electrical Power & Energy
Systems, vol. 63, pp. 461–472, 2014.

[25] M. A. Muhammad, H. Mokhlis, K. Naidu, and
A. A. M. Othman, “Distribution network planning en-
hancement via network reconfguration and DG integration
using dataset approach and water cycle algorithm,” J. Mod.
Power Syst. Cle.vol. 8, no. 1, pp. 86–93, 2020.

[26] M. Falahi, S. Lotffard, M. Ehsani, and K. Butler-Purry,
“Dynamic model predictive-based energy management of DG
integrated distribution systems,” IEEE Transactions on Power
Delivery, vol. 28, no. 4, pp. 2217–2227, 2013.

[27] A. Alonso-Travesset, H. Mart́ın, S. Coronas, and J. de la Hoz,
“Optimization models under uncertainty in distributed
generation systems: a review,” Energies, vol. 15, no. 5,
pp. 1932–1940, 2022.

[28] Y. Gao, W. Wang, J. Shi, and N. Yu, “Batch-Constrained
reinforcement learning for dynamic distribution network
reconfguration,” IEEE Transactions on Smart Grid, vol. 11,
no. 6, pp. 5357–5369, 2020.

[29] M. Rahmani-Andebili and M. Fotuhi-Firuzabad, “An adap-
tive approach for PEVs charging management and reconf-
guration of electrical distribution system penetrated by
renewables,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 5, pp. 2001–2010, 2018.

[30] J. Jithendranath and D. Das, “Stochastic planning of islanded
microgrids with uncertain multi-energy demands and re-
newable generations,” IET Renewable Power Generation,
vol. 14, no. 19, pp. 4179–4192, 2020.

[31] Z. Li, S. Jazebi, and F. De Leon, “Determination of the optimal
switching frequency for distribution system reconfguration,”
IEEE Transactions on Power Delivery, vol. 32, no. 4,
pp. 2060–2069, 2017.

[32] R. Ebrahimi, M. Ehsan, and H. Nouri, “‘A proft-centric
strategy for distributed generation planning considering time
varying voltage dependent load demand,” International
Journal of Electrical Power & Energy Systems, vol. 44, no. 1,
pp. 168–178, 2013.

[33] F. Ding and K. A. Loparo, “Feeder reconfguration for un-
balanced distribution systems with distributed generation: a
hierarchical decentralized approach,” IEEE Transactions on
Power Systems, vol. 31, no. 2, pp. 1633–1642, 2016.

[34] H. Wu, P. Dong, and M. Liu, “Distribution network recon-
fguration for loss reduction and voltage stability with random
fuzzy uncertainties of renewable energy generation and load,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 9,
pp. 5655–5666, 2020.

[35] A. Ahmed, M. F. Nadeem, I. A. Sajjad, R. Bo, I. A. Khan, and
A. Raza, “‘Probabilistic generation model for optimal allo-
cation of wind DG in distribution systems with time varying
load models,” Sustainable Energy, Grids and Networks, vol. 22,
pp. 1–12, 2020.

[36] D. Q. Hung, N. Mithulananthan, and K. Y. Lee, “Determining
PV penetration for distribution systems with time-varying
load models,” IEEE Transactions on Power Systems, vol. 29,
no. 6, pp. 3048–3057, 2014.

[37] S. Cheng and Z. Li, “‘Multi-objective network reconfguration
considering V2G of electric vehicles in distribution system
with renewable energy,” Energy Procedia, vol. 158, pp. 278–
283, 2019.

[38] J. Wang, W. Wang, Z. Yuan, H. Wang, and J. Wu, “A chaos
disturbed beetle antennae search algorithm for a multi-
objective distribution network reconfguration considering
the variation of load and DG,” IEEE Access, vol. 8,
pp. 97392–97407, 2020.

[39] J. Wen, X. Qu, Y. H. Huang, and S. Y. Lin, “A reconfguration
method of distribution network considering time variations

20 International Transactions on Electrical Energy Systems



for load and renewable distributed generation,” in Proceedings
of the 2022 7th Asia Conference on Power and Electrical
Engineering, pp. 544–549, Hangzhou, China, April 2022.

[40] W. ur Rehman, M. F. N. Khan, I. A. Sajjad, and M. Umar
Afzaal, “Probabilistic generation model for grid connected
wind DG,” Journal of Renewable and Sustainable Energy,
vol. 11, no. 4, pp. 045301–045312, 2019.

[41] Q. Chen, W. Wang, H. Wang, J. Wu, X. Li, and J. Lan, “A
social beetle swarm algorithm based on grey target decision-
making for a multiobjective distribution network reconf-
guration considering partition of time intervals,” IEEE Access,
vol. 8, pp. 204987–205013, 2020.

[42] D. Q. Hung, N. Mithulananthan, and R. C. Bansal, “Analytical
expressions for DG allocation in primary distribution net-
works,” IEEE Transactions on Energy Conversion, vol. 25,
no. 3, pp. 814–820, 2010.

[43] J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu, “Quantum-
behaved particle swarm optimization: analysis of individual
particle behavior and parameter selection,” Evolutionary
Computation, vol. 20, no. 3, pp. 349–393, 2012.

[44] A. A. Hassan, F. H. Fahmy, A. E.-S. A. Nafeh, and M. A. Abu-
elmagd, “Genetic single objective optimisation for sizing and
allocation of renewable DG systems,” International Journal of
Sustainable Energy, vol. 36, no. 6, pp. 545–562, 2017.

[45] A. Jafar-Nowdeh, M. Babanezhad, S. Arabi-Nowdeh,
A. Naderipour, and V. K. Ramachandaramurthy, “Meta-
heuristic matrix moth-fame algorithm for optimal reconf-
guration of distribution networks and placement of solar and
wind renewable sources considering reliability,” Environ-
mental Technology & Innovation, vol. 20, pp. 101–118, 2020.

International Transactions on Electrical Energy Systems 21




