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To alleviate the issues of global warming and energy crisis, countries are vigorously developing renewable energy technology. ,e
integration of large-scale renewable energy, including wind energy, hydropower, and photovoltaic (PV), has a great impact on
system operation scheduling and economic dispatch. ,is paper presents an economic dispatching method of wind-PV-CSP-
hydro-battery system with wind and photovoltaic power generation as the main energy sources. ,e long short-term memory
(LSTM) neural network is applied to predict wind and PV power, besides, the Latin Hypercube Sampling (LHS) method and the
synchronous reduction algorithm are used to obtain 10 typical wind and PV power scenarios. A day-ahead economic dispatch
model of wind-PV-CSP-hydro-battery mathematical model is established, and relevant constraints are considered. Concentrated
solar power (CSP), hydropower stations, batteries, and transferable loads are used as flexible resources to increase the penetration
rate of wind and photovoltaic power generation. Finally, three cases are tested to demonstrate the feasibility of the proposed
model. ,e results show that: (1) LSTM neural network can well predict the output power of wind and photovoltaic power
generation with a small root mean square error (RMSE). (2),e introduction of transferable loads and CSP power station into the
renewable energy power system can effectively reduce the fluctuation and curtailment rates of wind power and PV
power generation.

1. Introduction

Climate warming has become an indisputable fact in the
world.,eChinese government has promised to reach carbon
peak and carbon neutralization in 2030 and 2060, respectively
[1–3]. For the power industry, developing large-scale re-
newable energy and reducing the use of thermal power units
are effective ways to reduce carbon emissions. ,e renewable
energy power generation reached 22148 billion kWh in 2020,
including 466.5 billion kWh for wind power and 260.5 billion
kWh for photovoltaic power [4]. For large-scale renewable
energy, the uncertainty and randomness of its output power
limit its energy utilization, especially for the economic dis-
patching of renewable energy power systems [5].

To reduce the uncertainty of renewable energy in eco-
nomic dispatch, scholars have conducted a lot of research on
the power side and load side. On the power side, the inter-
mittence of wind and photovoltaic power generation is
considered in the renewable energy obligation model, which

improves the penetration of wind and photovoltaic power
generation [6]. ,e complementarity of wind and PV power
generation is used to reduce its randomness [7]. In [8], the
direct cost, under estimation penalty cost and over estimation
penalty cost are applied to quantify the usage of wind power
and photovoltaic power generation. To improve the accuracy
of power generation calculation, illumination and wind speed
are predicted in [9, 10]. In [11–13], wind power and PVpower
plants are jointly dispatched, and economic dispatch is carried
out considering the objectives of the maximum wind-solar
joint benefit. In summary, the utilization rate and output
characteristics of wind power and photovoltaic power gen-
eration can directly describe the uncertainty of their behavior.
On the load side, users can follow the wind and photovoltaic
power generation adaptively according to the power con-
sumption curve. ,e flexible loads are employed in the
scheduling model to suppress the uncertainty brought by
large-scale wind power grid connections [14]. To decrease the
uncertainty in wind power generation and improve the
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penetration rate of wind power generation, transferable loads
on the demand side are investigated [15]. ,e interruptible
load is regarded as a virtual unit to tackle the challenges of
having large-scale wind power integration into the power
system [16]. ,e demand-side response resources function is
fully tapped by analyzing the difference of different loads’
responses to electricity price for solving the random fluctu-
ation of wind power in [17]. In general, the rational use of
flexible loads can reduce the uncertainty of wind power and
photovoltaic power generation.

A short-term PV power generation output prediction
method based on particle swarm optimization-deep belief
network (PSO-DBN) is proposed in [18], although the PSO
algorithm can optimal the DBN network, the optimization
results are inevitably affected by the setting of parameters.
References [19, 20] use the back propagation neural networks
to predict wind power. However, thismethodmay cause over-
learning and aggravate prediction errors due to the increase in
the number of nodes in the hidden layer. ,erefore, it is
necessary to find a suitable method to predict the output of
wind and PV power based on the wind and PV power char-
acteristics. ,e long short-term memory (LSTM) neural
network is a kind of recurrent neural network (RNN) model
that can deal with time series forecasting problems [21]. It can
predict the information for thenext timeby learning thedataof
theprevious time.Meanwhile, the transferable loadhas thebest
flexibility and the better users’ satisfaction with electricity
consumption than reducible load [22]. It should be noted that
the high penetration of wind power and PV in power system
cannot be ignored. Concentrated solar energy (CSP) has an
excellent performance in improving the penetration of re-
newable energy due to its thermal energy storage (TES)
[23–25]. References [26–28] incorporate hydropower stations
and batteries into wind power generation and PV power
generation systems,which canmaximize the system’s ability to
accept wind and PV power generation, as well as the economy
and reliability of power system operation. In the economic
dispatch of power systemwith renewable energy, there are still
two problems: (1) the prediction method of renewable energy
cannot effectively reflect the output characteristics of renew-
able energy; (2) to reduce the fluctuation of renewable energy,
how to reasonably combine flexible resources.

To address these issues, this paper investigates a day-
ahead economic dispatch model of the pure renewable
energy power system. It takes wind power generation and
photovoltaic power generation as the main power supply,
and CSP power plant, hydropower station, battery, and
transferable load as flexible resources. Meanwhile, LSTM
neural network is used to predict the wind and PV power.
Besides, the Latin Hypercube Sampling (LHS) method and
the synchronous back reduction algorithm are applied to
obtain 10 typical wind and PV power scenarios. Ultimately,
the CPLEX is employed to get the optimal solutions for the
proposed model. Moreover, three cases are used to prove the
effectiveness of the model. Compared with the literature, this
paper possesses the following contributions:

(1) A day-ahead economic dispatch model of wind-PV-
CSP-hydro-battery is established. Compared with

references [7–10] including thermal power genera-
tion, this paper is more meaningful to the economic
scheduling of purely renewable energy systems in the
future.

(2) ,e LSTM neural network is used to learn the output
characteristics ofwind energy and photovoltaic power
generation, which can achieve a better prediction
effect than the traditional neural network [19, 20].

(3) ,e simulation results show that compared with
hydro-battery [9] and hydro-CSP-battery [7], hydro-
CSP-battery-translatable load as flexible resources
can better reduce the fluctuation of wind power and
photovoltaic.

,e rest of this paper is arranged as follows: In Section 2,
a day-ahead economic dispatch model of wind-PV-CSP-
hydro-battery is established. Section 3 shows the forecasting
method of wind and PV output and introduces the solving
steps of the day-ahead economic dispatch model of wind-
PV-CSP-hydro-battery. ,e relevant cases are set up for
proving the validity of the model, and the corresponding
results are obtained by case simulation in Section 4. Finally,
some concluding remarks are given in Section 5.

2. Model Formulation

To improve the flexibility of power system and reduce the
fluctuation of renewable energy, this paper establishes a day-
ahead economic dispatch model with the minimum sum of
the economic costs of wind power, PV power generation,
CSP power station, hydropower station, storage battery, and
transferable load. In the meantime, the relevant constraints
for each power generation unit also are considered, as shown
in Figure 1.

2.1. Objective Function. In our work, the cost objective
function includes wind power generation cost, PV power
generation cost, CSP power station operation cost, CSP
power station spinning reservation cost, hydropower gen-
eration cost, battery cost, and transferable load cost. ,e
mathematical expression of economic cost objective func-
tion is given as follows:

minC � Cw + Cpv + Ccsp + Ch + Cb + Ctl, (1)

where C is the total cost, Cw is wind power generation cost,
Cpv is PV power generation cost, Ccsp is CSP power station
cost, Ch is hydropower generation cost, Cb is the battery cost,
and Ctl is the compensation cost of the transferable load.

,e cost of wind power generation and PV power
generation is shown as follows:

Cw � 􏽘
T

t�1
􏽘

Nw

j�1
KW,jPj,t, (2)

Cpv � 􏽘
T

t�1
􏽘

Npv

k�1
KPV,kPk,t, (3)
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where j is wind farms index, Nw is the total number of wind
farm, KW,j is the cost coefficient of the j-th wind farm, Pj,t is
the output power of the j-th wind farm at time t. k is PV
power station index, Npv is the total number of PV power
station, KPV,k is the cost coefficient of the k-th PV power
station, and Pk,t is the output power of the k-th PV power
station at time t.

,e cost of CSP power station has two parts, the first part
is the operation cost of CSP power station, and the second
part is the spinning reverse cost, which is stated as follows:

Ccsp � 􏽘
T

t�1
􏽘

Ncsp

l�1
KCSP,lPl,t + KCSP,R,lPl,t,r􏼐 􏼑, (4)

where l is CSP power station index, Ncsp is the total number
of CSP power stations, KCSP,l is the operation cost of the l-th
CSP power station, Pl,t is the output power of the l-th CSP
power station at time t,KCSP,R,l is the spinning reverse cost of
the l-th CSP power station, and Pl,t,r is the spinning reverse
power of the l-th CSP power station at time t.

,e cost of hydropower station and the cost of battery
are as follows:

Ch � 􏽘
T

t�1
􏽘

Nh

m�1
KH,mPm,t, (5)

Cb � 􏽘
T

t�1
􏽘

Nb

n�1
KB,nPn,t, (6)

where m is the hydropower station index, Nh is the total
number of hydropower stations, KH,m is the cost coefficient
of the m-th hydropower station, Pm,t is the output power of
them-th hydropower station at time t, n is the battery, Nb is

the total number of batteries, KB,n is the cost coefficient of
the n-th battery, and Pn,t is the output power of the n-th
battery at time t.

,e compensation cost of the transferable load is given as
follows:

Ctl � 􏽘
t∈Ttl

􏽘

te
tl

ttl�ts
tl

Ctl,tPt,tlUtl􏼐 􏼑, (7)

where Ttl is the original operation time set of transferable
load, [ts

tl, te
tl] is the transferable period of load, ts

tl
, te

tl
are the

start time and the end time of transferable period, Ctl,t is the
compensation cost of transferable load at time t, Pt,tl is the
power transferred from time t to tl, Utl is the status of the
transferable load, Utl � 1 means the load transferred to time
tl and Utl � 0 otherwise.

2.2. Constraint Condition

2.2.1. Power Balance Constraints. To maintain the power
balance of the system, the power balance constraint is
established as Eq. (8). It is defined as the sum of the output
power of j-th wind farm, the output power of k-th PV power
station, the output power of l-th CSP power station, the
output power of the m-th hydropower station, and the
output power of the n-th battery equals the load of power
system considering the transferable load. ,e specific for-
mulas are as follows:

􏽘

Nw

j�1
Pj,t + 􏽘

Npv

k�1
Pk,t + 􏽘

Ncsp

l�1
Pl,t + 􏽘

Nh

m�1
Pm,t + 􏽘

Nb

n�1
Pn,t � PL,t ∀t ∈ [1, T], (8)

PL,t � PL0 ,t + Ptl, (9)

Total system
operating cost

Power generation cost

Power station
operation cost

Battery cost

Transferable load cost

Power balance constraints

Operation constraints of
wind farm

Operation constraints of PV
power station

Operation constraints of
CSP power station

Constraints of transferable
load

Battery storage constraints

Operation constraints of
hydropower station

Spinning reserve constraints
of power system

Figure 1: System operating costs and constraints.
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where PL,t is the load of power system considering the
transferable load, PL0 ,t is the load of power system not
considering the transferable load, and Ptl is the load
transferred to time t.

2.2.2. Operation Constraints of Wind Farm. Wind farm
operation constraints include the upper and lower limits
constraint of the output power of j-th wind farm and forecast
power constraint. ,e specific formulas are as follows:

0≤Pj,t ≤P
max

j
, ∀t ∈ [1, T], ∀j ∈ 1, Nw􏼂 􏼃, (10)

Pj,t � Pj,t,f + Pj,t,e, ∀t ∈ [1, T], ∀j ∈ 1, Nw􏼂 􏼃, (11)

where Pmax
j is the maximum power of the j-th wind farm,

Pj,t,f, Pj,t,e are the forecast power and forecast error power of
the j-th wind farm at time t.

2.2.3. Operation Constraints of PV Power Station. PV power
station operation constraints include the upper and lower
limits constraint of the output power of k-th PV power
station and forecast power constraint. ,e specific formulas
are as follows:

0≤Pk,t ≤P
max

k , ∀t ∈ [1, T], ∀k ∈ 1, Npv􏽨 􏽩, (12)

Pk,t � Pk,t,f + Pk,t,e, ∀t ∈ [1, T],∀k ∈ 1, Npv􏽨 􏽩, (13)

where Pmax
k is the maximum power of the k-th PV power

station, and Pk,t,f, Pk,t,e are the forecast power and forecast
error power of the k-th PV power station at time t.

2.2.4. Operation Constraints of CSP Power Station. ,e CSP
power station can provide a spinning reserve because it has
thermal energy storage (TES) units. ,e constraints of a CSP
power station include upper and lower limits of the output
power, upper and lower limits of TES discharge and
charging power, positive and negative spinning reserve
constraints provided by TES of CSP power station, and
capacity constraints of TES of CSP power station. ,e
specific formulas are as follows [9]:

Pl,t �P
TES
l,t,d −P

TES
l,t,c , ∀t∈[1,T],∀l∈ 1,NCSP􏼂 􏼃, (14)

0≤PTES
l,t,d +P

TES
l,t,r+≤P

TES,max
l,t,d Yl,t, ∀t∈[1,T],∀l∈ 1,NCSP􏼂 􏼃,

(15)

0≤PTES
l,t,c +P

TES
l,t,r−≤P

TES,max
l,t,c 1−Yl,t􏼐 􏼑, ∀t∈[1,T],∀l∈ 1,NCSP􏼂 􏼃,

(16)

0≤PTES
l,t,r+≤P

TES,max
l,t,d , ∀t∈[1,T],∀l∈ 1,NCSP􏼂 􏼃, (17)

0≤PTES
l,t,r−≤P

TES,max
l,t,c , ∀t∈[1,T],∀l∈ 1,NCSP􏼂 􏼃, (18)

Pl,t,r �P
TES
l,t,r+ +P

TES
l,t,r−, ∀t∈[1,T],∀l∈ 1,NCSP􏼂 􏼃, (19)

where Pmax
l is the maximum power of the l-th CSP power

station, PTES
l,t,d , PTES

l,t,c are the TES discharge power and the TES
charge power of the l-th CSP power station at time t, PTES

l,t,r+,
PTES

l,t,r− are the positive spinning reserve and the negative
spinning reserve provided by TES of the l-th CSP power
station at time t, PTES

l,t,d , PTES
l,t,c are the TES maximum discharge

power and the TES maximum charge power of the l-th CSP
power station at time t, Yl,t is state variable, Yl,t � 1 means
TES is discharging, while Yl,t � 0 means TES is charging.

2.2.5. Operation Constraints of Hydropower Station. ,e
constraints of hydropower station include upper and lower
limits of the output power of hydropower station, storage
capacity, and discharge capacity constraints of hydropower
station, neglecting the spillage of hydropower station, which
is shown as follows:

Pm,t � ρ1,m Vm,t􏼐 􏼑
2

+ ρ2,m Qm,t􏼐 􏼑
2

+ ρ3,mVm,tQm,t

+ ρ4,mVm,t + ρ5,mQm,t + ρ6,m,
(20)

P
min
m ≤Pm,t ≤P

max
m , ∀t ∈ [1, T], ∀m ∈ 1, Nh􏼂 􏼃, (21)

V
min
m ≤Vm,t ≤V

max
m , ∀t ∈ [1, T], ∀m ∈ 1, Nh􏼂 􏼃, (22)

Q
min
m ≤Qm,t ≤Q

max
m , ∀t ∈ [1, T], ∀m ∈ 1, Nh􏼂 􏼃, (23)

Vm,t+1 � Vm,t + Im,t − Qm,t + 􏽘

Nul

o�1
Qo, t−τom( ),

∀t ∈ [1, T], ∀m ∈ 1, Nh􏼂 􏼃,

(24)

where ρ1,m, ρ2,m, ρ3,m, ρ4,m, ρ5,m, ρ6,m are the hydropower
generation coefficients, Pmax

m , Pmin
m are the maximum output

power and the minimum output power of the m-th hy-
dropower station, Vm,t, Vm,t+1 are the storage capacity of the
reservoir of the m-th hydropower station at time t and time
t + 1, Vmax

m , Vmin
m are the maximum and the minimum

storage capacity of the reservoir of the m-th hydropower
station, Qm,t is the outflow of them-th hydropower station at
time t, Qmax

m , Qmin
m are the maximum and the minimum

outflow of the m-th hydropower station, Im,t is the inflow of
the m-th hydropower station at time t, o is an upstream
hydropower station of the m-th hydropower station, τom is
the time delay from the o-th hydropower station to them-th
hydropower station, and Qo,(t−τom) is the outflow of the o-th
hydropower station by time t − τom.

2.2.6. Constraints of Battery. ,e constraints of battery
include capacity constraints, charge and discharge power
constraints, and charge and discharge state constraints. ,e
specific formulas are as follows:

E
min
n ≤En,t ≤E

max
n , ∀t ∈ [1, T], ∀n ∈ 1, Nb􏼂 􏼃, (25)

0≤P
c
n,t ≤P

c,max
n , ∀t ∈ [1, T], ∀n ∈ 1, Nb􏼂 􏼃, (26)
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0≤P
d
n,t ≤P

d,max
n , ∀t ∈ [1, T], ∀n ∈ 1, Nb􏼂 􏼃, (27)

cn,t + dn,t ≤ 1, ∀t ∈ [1, T], ∀n ∈ 1, Nb􏼂 􏼃, (28)

Pn,t � cn,tP
c
n,t + dn,tP

d
n,t, ∀t ∈ [1, T], ∀n ∈ 1, Nb􏼂 􏼃, (29)

En,t �
En,t−1 + P

c
n,tη

c
nΔtn − P

d
n,tΔtn

ηd
n

, ∀n ∈ 1, Nb􏼂 􏼃, (30)

where En,t, En,(t−1) are the capacities of the n-th battery at
time t and time t − 1, Emax

n , Emin
n are the maximum and the

minimum capacities of the n-th battery, Pc
n,t, Pd

n,t are the
charge and discharge power of the n-th battery at time t,
Pc,max

n , Pd,max
n are the maximum charge power and the

maximum discharge power of the n-th battery, cn,t, dn,t are
the states of charge and discharge of the n-th battery at time
t, cn,t � 0, cn,t � 1 means not charge and charge of the n-th
battery at time t, dn,t � 0, dn,t � 1 means not discharge and
discharge of the n-th battery at time t, ηc

n, ηd
n are the charge

and the discharge efficiencies, respectively, and Δtn is the
unit time interval.

2.2.7. Spinning Reserve Constraints of Power System.
Spinning reserve constraints of power system include up
spinning reserve and down spinning reserve. ,e specific
formulas are as follows:

􏽘

Nh

m�1
P
max
m − Pm,t􏼐 􏼑 + 􏽘

Ncsp

l�1
P

TES
l,t,r+ + 􏽘

Nb

n�1
P

d,max
n − P

d
n,t􏼐 􏼑≥RUs, ∀t ∈ [1, T],

(31)

􏽘

Nh

m�1
Pm,t − P

min
m􏼐 􏼑 + 􏽘

Ncsp

l�1
P

TES
l,t,r− + 􏽘

Nb

n�1
P

c,max
n − P

c
n,t􏼐 􏼑≥RDs,

∀t ∈ [1, T],

(32)

where RUpv, RDs are the up spinning reserve and down
spinning reserve of the power system.

2.2.8. Constraints of Transferable Load. Based on not af-
fecting the user’s satisfaction with power consumption, the
transferable load shall be limited to a certain time area, that
is, only the transferable load within the allowable time shall
be considered. ,e specific formula is as follows:

(a) Transferable load within allowable time:

Ptl � UtlPt,tl + 1 − 􏽘

te
tl

ttl�ts
tl

Utl
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦Pt,tl, ∀t ∈ Ttl, ∀ttl ∈ t
s
tl, t

e
tl􏼂 􏼃,

(33)

where Ptl is transfer power of the transferable load.
(b) Transferable load in disallowed time:

Ptl � 0, ∀t ∉ Ttl, ∀ttl ∉ t
s
tl, t

e
tl􏼂 􏼃. (34)

3. Solution Steps

3.1. Forecast Wind Power and PV Power. Wind power and
PV power are uncertain and random. If the deterministic
wind power and PV power data are used to solve the
economic dispatch, it will influence the veracity of the
economic dispatch results. ,erefore, it is necessary to use
historical data to predict wind power and PV power.

,e LSTM neural network has a special gate structure,
which solves the gradient vanishing problem in the RNN
neural network [29]. It can predict the information of the
next time by learning data of the previous time. ,erefore,
LSTM neural network is used to predict wind power and PV
power. ,e specific structure of LSTM neural network is
shown in Figure 2 [30].

In Figure 2, xt is the input variable of the LSTM neural
network at time t, ht−1, ht are the output variables of the
LSTM neural network at time t − 1 and t, Ct−1, Ct are the
memory units status at time t − 1 and t, ft is forget gate, it is
input gate, ot is output gate, 􏽥Ct−1 is memory unit status, and
δ is the sigmoid function. ,e mathematical formula of each
gate is as follows [31]:

ft � δ Wh,f ∗ ht−1 + Wx,f ∗xt + bf􏼐 􏼑

it � δ Wh,i ∗ ht−1 + Wx,i ∗xt + bi􏼐 􏼑

􏽥Ct−1 � tanh Wh,c ∗ ht−1 + Wx,c ∗xt + bc􏼐 􏼑

ot � δ Wh,o ∗ ht−1 + Wx,o ∗ xt + bo􏼐 􏼑

Ct � ft ∗Ct−1 + it ∗ 􏽥Ct−1

ht � ot ∗ tanh Ct( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (35)

where Wh,f Wh,i Wh,c,Wh,o are the recursive weight matrixes
of ft, it, 􏽥Ct−1, ot. Wx,f, Wx,i, Wx,c, Wx,o are the input weight
matrixes of ft, it, 􏽥Ct−1, ot, respectively, and bf, bi, bc, bo are
the offset matrixes of ft, it, 􏽥Ct−1, ot, respectively [32].

,e explanation of each gate in Figure 2 is as follows: the
forget gate ft determines the information to be retained and
discarded through the sigmoid function, the input gate it
determines the information to be updated through the
sigmoid function. 􏽥Ct−1 is generated by the tanh function.,e
output gate ot firstly obtains the initial output through the
sigmoid function and then multiplies the initial output with

δ δ tanh δ

tanh

Ct-1

ft it ot

ht-1

xt

ht

ht

Ct

Figure 2: Structure diagram of LSTM neural network.
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Ct which through the tanh function layer at the time t to
obtain the final output ht.

3.2. Prediction Error Fitting of Wind Power and PV Power.
Most literature regards the probability distribution of pre-
diction error of wind power and PV power generation as
having a normal distribution. However, according to ref-
erences [33, 34], the t-Location Scale function may better
reflect the probability distribution of prediction error of
wind power and PV power generation.

f(δ) �
Γ vt + 1( 􏼁/2( 􏼁

σt

���
vtπ

√
Γ vt/2( 􏼁

vt + δ − μt( 􏼁/σt( 􏼁
2

vt

􏼢 􏼣

− vt+1( )/2( )

,

(36)

where μt is the mean, σt is the variance, vt (vt > 0) is the free
degree.

3.3. Scenario Generation and Reduction of Wind Power and
PV Power. LHS method has the characteristics of stratified
sampling and disordered sorting [35], which avoids the
disadvantages of clustering and repeated sampling. ,ere-
fore, the LHS method is adopted to generate 1000 wind
power and PV power scenarios.

To simulate economic dispatch for 1000 scenarios could
be highly time consuming. It is therefore necessary to reduce

the number of scenarios. In this paper, the synchronous back
reduction algorithm [36] is used to solve the problem. ,e
solution flow chart is shown in Figure 3. ,e specific steps
are given inTable 1.

4. Case Simulation

In this paper, the data of wind power and PV power gen-
eration are from Elia company in Belgium. ,e cost coef-
ficients of wind power and PV power generation are adopted
from reference [10], the relevant parameters of hydropower
station are from reference [17], and the coefficient of CSP
station comes from [35]. ,e relevant parameters of the
storage battery are shown in Table 2. ,e system load data
are shown in Table 3, and 5% of the system reserve is
considered.,e case simulation adopts a PV power station, a
wind farm, two hydropower stations, two batteries and a
CSP station, and three different cases as shown below are set
to verify the mathematical model. Matlab R2019b is used to
predict wind power and PV power generation, and the
mathematic model is solved by CPLEX.

Case 1. Economic dispatch of wind-PV-hydro-battery.

Case 2. Economic dispatch of wind-PV-hydro-CSP-battery.

Start

Scene initialization, giving each scene an
initial probability PS

Calculate the Euclidean distance
of any two scenes

Find the scene Sj closest to Scene Si and
calculate the probability distance

between them

Delete scene Sj, and update
scenes number

Is the required number
of scenarios met?

NO

End

YES

(a)

Prediction of photovoltaic power and wind
power using LSTM neural network 

The t-location scale function is used to fit
the prediction error of photovoltaic

power and wind power

Scenario of photovoltaic power and wind
power using Latin Hypercube Sample 

Is the number of
scenes 1000? 

Scene reduction using synchronous back
reduction algorithm 

Use CPLEX to solve economic dispatch
model 

Initialization processing, read dispatching
related parameters and unit

related parameters 

NO

Start

End

YES

(b)

Figure 3: Flow chart: (a) Synchronous back reduction algorithm. (b) Solution steps of mathematical model.
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Case 3. Economic dispatch of wind-PV-hydro-CSP-battery
considering transferable load.

4.1. Forecast ofWind Power and PV Power. ,e data of wind
power and PV are from the measured data from July 1, 2020
to September 1, 2020 provided by Elia company in Belgium.
,e sampling time of wind power and PV is 1 hour. A total of
24 data sets are sampled a day, and the historical data of wind
power and PV are 2208 points, respectively.

,e LSTM neural network is used to predict wind
power and PV. ,e hidden layer of LSTM neural network is
taken 200 layers. ,e first 90% of the historical data se-
quence is used for training and the last 10% is used for
testing. ,e solver is set to ‘Adam’. According to the

different output characteristics of PV and wind power, PV
shall carry out 250 rounds of training. We specify the initial
learning rate of 0.005 and reduce the learning rate by
multiplying the factor of 0.2 after 125 rounds of training.
We conducted 300 rounds of wind power training and
specified an initial learning rate of 0.005. After 150 rounds
of training, multiplying by a factor of 0.2 reduces the
learning rate.

To enhance the diagnostic accuracy of wind power
output, K-means clustering method is adopted for pro-
cessing the historical data of wind power, and the historical
data of wind power with similar output characteristics are
used for prediction three days before the prediction date.,e
forecasted wind power output data is shown in Figure 4. ,e
output characteristics of PV power generation are obvious,
and the historical data are not processed. ,e forecasted PV

Table 1: ,e specific steps of synchronous back reduction algorithm.

Step 1: Assign probabilities to N scenarios generated by sample Ps � 1/N.
Step 2: Calculate the Euclidean distance between any two scenarios Si and Sj (Si ≠ Sj) in the scenario set: DTi,j �

�����Si − Sj

�����.
Step 3:,e probability distance between scenario Si and scenario Smwith the smallest Euclidean distance is calculated.,e distance formula
is as follows: PDTs

� min DTi,m|Si ≠ Sm􏽮 􏽯 × Ps.
Step 4: Calculate the probability distance between two scenarios in the scenario set, then sort the scenario according to the probability
distance: PDT � min PDTs

|1≤ S≤N􏽮 􏽯.
Step 5: Update the scenario probability PDT � min PDTs

|1≤ S≤N􏽮 􏽯, remove the scenario Sm from the original scenario set, change the
number of scenarios to N�N− 1, and repeat Step 2 to Step 5 until the number of scenarios reaches the required number.

Table 2: Battery parameters.

Parameter Battery charge and discharge
efficiency

Battery charge and discharge power
(MW)

Maximum battery
capacity

Minimum battery
capacity

Value 0.95 20 100MW•h 35MW•h

Table 3: Prediction values of system load.

Time/h 1 2 3 4 5 6
Power/MW 1740.8 1664.53 1720.35 1997.6 2122.38 2365.49
Time/h 7 8 9 10 11 12
Power/MW 2667.35 3061.15 3345.56 3665.04 3701.22 3703.08
Time/h 13 14 15 16 17 18
Power/MW 3587.42 3513.2 2577.89 2848.33 3224.32 3370.84
Time/h 19 20 21 22 23 24
Power/MW 3322.42 2855.17 2404.45 2351.39 2226.54 2097.86
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Figure 4: Forecast of wind power: (a) Wind power forecast curve. (b) Root mean square error of wind power forecast.
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Figure 5: Forecast of PV: (a) PV forecast curve. (b) Root mean square error of PV forecast.
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Figure 6: Wind and PV scenarios: (a) 1000 wind power scenarios. (b) 1000 PV scenarios. (c) 10 typical wind power scenarios. (d) 10 typical
PV scenarios.
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power generation is shown in Figure 5.,e RMSE is adopted
to measure the accuracy of scenery prediction. ,e ex-
pression of RMSE is as follows:

RMES �

���������������

1
m

􏽘

m

i�1
xo,i − xr,i􏼐 􏼑

2

􏽶
􏽴

, (37)

where xo,i is the observed value, xr,i is the true value, and m is
the number of observations.

In Figures 4 and 5, ‘Observed’ is the real observation of
the data to be predicted, ‘Forecast’ is the predicted result.,e
RMSE of wind power forecast is 190.6511MW, and the
RMSE of PV power generation forecast is 313.0239MW. By
observing the ‘Observed’ and ‘Forecast’ curves in Figures 4
and 5, it is found that the ‘Forecast’ curve can well reflect the
power size and trend of the ‘Observed’ curve. And the RMSE
is also small, so the LSTM neural network has good pre-
diction results.

4.2. Scenario Generation and Reduction of Wind Power and
PV. ,e instability and randomness of clean energy have
negative effects on the safe and stable operation of power
systems with access to clean energy, thus it is necessary to
discuss the uncertainty of clean energy. In this paper, the LHS
method is used to generate 1000 scenery scenarios to describe
their uncertainty. To reduce the calculation pressure, the
synchronous back reduction algorithm is used to reduce the
scenery scenarios, and 10 representative scenarios are gen-
erated for economic scheduling research. 1000 wind power
and 1000 PV power generation scenarios generated by LHS
are shown in Figure 6(a) and Figure 6(b), respectively.,e 10
typical wind power and PV power generation scenarios
generated by synchronous back generation reduction

algorithm are shown in Figure 6(c) and Figure 6(d), re-
spectively, in which s1, s2 . . . s10 represent 10 scenarios.

,e LHS data of wind power is the first 24 points in
Figure 4, and the PV LHS data is the 25th to 48th points in
Figure 6. 1000 samples are taken for measuring the pre-
diction errors of wind power and PV, respectively, and 1000
groups of sampling data are superimposed on the prediction
curve to obtain 1000 wind power output scenarios as shown
in Figure 6(a) and Figure 6(b). To reduce the pressure of
calculation, the 10 typical wind and PV output scenarios
generated by the synchronous back reduction method are
shown in Figure 6(c) and Figure 6(d). ,e 10 typical sce-
narios generated can well represent 1000 scenarios of wind
power and PV power generation from the output range and
output direction.

4.3. Influence of CSP Power Station on Wind Power and PV.
,e output results of each generation unit in Case 1 are
shown in Figure 7(a), and the charge and discharge of the
battery are shown in Figure 7(b). ,e results of Case 2 are
shown in Figure 8(a); Figure 8(b) is the output of the storage
battery and CSP power station. In the simulation picture,
‘WIND’ represents wind power, ‘PV’ is photovoltaic, ‘H1’
and ‘H2’ mean two hydropower stations, ‘BD’ and ‘BC’
represent battery discharge and charging, respectively,
‘CSPD’ and ‘CSPC’ are CSP power station discharge and
charging, respectively, and ‘load’ represents the load of the
system. If ‘BD’ and ‘CSPD’ are positive, it means that the
battery and CSP power station are discharging, and ‘BC’ and
‘CSPC’ are negative, it means that the battery and CSP power
station are charging. ,e abscissa is time and the ordinate is
output power.

To reflect the influence of CSP power stations on the
output of wind power and PV, the fluctuation rate of wind
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Figure 7: Simulation results of Case 1: (a) Generation unit output results of Case 1. (b) Battery output results of Case 1.
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power and PV and the curtailment rate of wind power and
PV are defined. ,e specific expression is as follows:

(1) ,e fluctuation rate of wind power and PV:

ct �
Pt − Pt−1( 􏼁

Pt−1
, (38)

wherePt, Pt−1 is the output power of wind power and
PV in t and t − 1, ct is the fluctuation rate of wind
power and PV.

(2) ,e curtailment rate of wind power and PV:

α �
PV0 + WIND0 − PV1 − WIND1( 􏼁

PV0 + WIND0( 􏼁
, (39)

where PV0 and WIND0 are the output power of PV
station and wind power station, PV1 andWIND1 are
the actually used PV and wind power in an economic
dispatch, α is the curtailment rate of wind power and
PV.

To verify the effect of CSP power stations on system
regulation performance, the wind power and PV output
curves in Figure 7(a) and Figure 8(a) are compared. It can be
found that the wind power and PV output curves in
Figure 8(a) are relatively stable compared with those in

Figure 7(a). Most obviously the load curve fluctuates greatly
from 14 : 00 to 15 : 00, specifically, the PV output changes by
1066MW from 14 : 00 to 15 : 00 in Case1, and by 703MW in
Case 2, which is due to the addition of CSP power station in
Case 2. ,e output of the hydropower station is increased in
Case 2 from 14 : 00 to 15 : 00, and stored the excess PV
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Figure 8: Simulation results of Case 2: (a) Generation unit output results of Case 2. (b) Battery and CSP power station output results of
Case 2.

Table 4: Fluctuation rate of wind power and PV of three cases.

Case 1 2 3
Wind volatility 0.998 0.6178 0.6241
PV volatility 6.4348 4.8748 4.7650
Wind and PV volatility 7.4328 5.4926 5.3891

Table 5: Curtailment rate of wind power and PV of three cases.

Case 1 2 3
Wind and PV curtailment 0.3625 0.3576 0.3539
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Figure 9: Load before translation and load after translation.
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output in CSP power station and storage battery, making the
PV output curve relatively stable. At the same time, it can be
found from Table 4 that the fluctuation rate of wind power
and PV is 5.4926 in Case 2, which is smaller than that of Case
1, which is 7.4328.

It can be seen from Figure 7(b) and Figure 8(b) that after
adding CSP power station, excess wind power and PV are
stored in CSP power station and battery at 1 : 00–6:00 and
12 : 00–17 : 00 with sufficient wind and PV output. At 20 :
00–23 : 00 with smaller wind and solar output, CSP power
station and battery provide more output to make up for the
lack of wind and solar output. At the same time, it can be
found in Table 5 that adding CSP power station reduces the
curtailment rate of wind power and PV.

4.4. Influence of Transferable Load on Wind Power and PV.
To verify the influence of transferable load on system op-
eration, transferable load is considered in Case 3. ,e
fluctuation rate of wind power and PV, and economic cost in
three cases are compared. ,e translatable intervals of
translatable load are 9 : 00–10 : 00, 10 : 00–11 : 00, 11 : 00–12 :
00, and the acceptable intervals of translatable load are 1 :
00–2:00, 15 : 00–16 : 00. Figure 9 shows the load curve after
translation, in which ‘load0’ is the load curve before
translation and ‘load’ is the load curve after translation.

,e load curve is the load curve after taking the
translational load in Case 3. ,e output curve of each
generation unit is shown in Figure 10(a), and the output of
CSP power station and the battery is shown in Figure 10(b).

We can see from Figure 10 that after considering the
transferable load, the peak-to-valley difference of the system
load is reduced, which reduces the flexibility requirements
for the output of each unit in the system. At the same time, it

can be found from Table 5 that the fluctuation rates of the
wind power and PV decrease after the introduction of the
translatable load, which is 5.3891, and which is the lowest
among the three cases, but its curtailment rates of wind
power and PV rates are not much different from those in
Case 2. Also, we can see from Table 6 that the economic cost
of 4513 $ in Case 3 is higher than that of 4444 $ in Case 2,
which is due to the introduction of transferable load
compensation cost, but the economic cost is lower than that
of Case 1.

In conclusion, the curtailment rate of wind power and
PV rate and the fluctuation rate of wind and PV in Case 2
considering CSP power station are better than those of Case
1 without CSP power station. ,e fluctuation rate of wind
power and PV of Case 3 considering CSP power station and
transferable load is better than that of Case 2 considering
only CSP power station and Case1 not considering CSP
power station and translational load, its curtailment rate of
wind power and PV is also better than that of Case 1.

5. Conclusion

In this paper, taking the carbon peak and carbon neutrality
as the background, we investigated the economic dispatch of
power systems with wind and PV generation as main power
supplies. To improve the permeability of wind power and PV
power generation and reduce the output uncertainty, this
paper established an economic dispatching model including
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Figure 10: Simulation results of Case 3: (a) Generation unit output results of Case 3. (b) Battery and CSP power station output results of
Case 3.

Table 6: Economic cost of three cases.

Case 1 2 3
COST/($) 4565 4444 4513
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wind-PV-hydro-CSP-battery and transferable load. ,e
model took the economic cost of the system as the objective
function and considered the relevant constraints of wind,
PV, hydropower station, CSP power plants, batteries, and
transferable load. ,e following conclusions are obtained:

(1) ,e wind and PV power generation predicted by
LSTM neural network can well reflect their power
output, and the RMSE is small in which wind power
forecast is 190.6511MW, PV power generation
forecast is 313.0239MW.

(2) Compared with the traditional renewable energy
system with wind power and photovoltaic as energy
source, the proposed wind-PV-hydro-CSP-battery
system considering transferable load reduces the
fluctuation rate of wind and PV power by 27.5%, the
reduction of wind and photovoltaic power genera-
tion curtailment rate by 2.6% and the economic cost
by 1.1%, which prove the effectiveness of the com-
bination of hydropower, CSP power station, battery
and transferable load resources in reducing the
fluctuation of wind and PV power generation.

In this paper, we find that only considering the flexible
resource of transferable load has little impact on reducing
the fluctuation of wind and PV power generation.,erefore,
we will consider more demand-side response policies in
future research.

Nomenclature

C: Total cost
Cg: Cost of the thermal power unit
Cw: Wind power generation cost
Cpv: PV power generation cost
Ccsp: CSP power station cost
Ch: Hydropower generation cost
Cb: Battery cost
Ctl: Compensation cost of the transferable load
j: Wind farms index
Nw: Total number of wind farm
Kw,j: Cost coefficient of the j-th wind farm5
Pj,t: Output power of the j-th wind farm at time
k: PV power station index
Npv: Total number of PV power station
l: CSP power station index
Ncsp: Total number of CSP power stations
KCSP,l: Operation cost of the l-th CSP power station
Pl,t: Output power of the l-th CSP power station at

time t
KCSP,R,l: Spinning reverse cost of the l-th CSP power

station
Pl,t,r: Spinning reverse power of the l-th CSP power

station at time t
m: Hydropower station index
Nh: Total number of hydropower stations
Nb: Total number of batteries
KH,m: Cost coefficient of the m-th hydropower

station
KB,n: Cost coefficient of the n-th battery

Pm,t: Output power of the m-th hydropower station
at time

tts tl: Start time of transferable period
Ttl: Original operation time set of transferable load
Ctl,t: Compensation cost of transferable load at time t
PL,t: Load of power system considering the

transferable load
PL0,t: Load of power system not considering the

transferable load
Pj,t,f: Forecast power of the j-th wind farm at time t
cn,t: States of charge of the n-th battery at time t
Pn,t: Output power of the n-th battery at time t
Ptl: Transfer power of the transferable load
Pt,tl: Power transferred from time t to tl
Utl: Status of the transferable load
Pmax j: Maximum power of the j-th wind farm
Δtn: Unit time interval
Pj,t,e: Forecast error power of the j-th wind farm at

time t
Pmax k: Maximum power of the k-th PV power station
Pk,t,f: Forecast power of the k-th PV power station at

time t
Pk,t,e: Forecast error power of the k-th PV power

station at time t
Pmax l: Maximum power of the l-th CSP power station
PTES l,t,d: TES discharge power of the l-th CSP power

station at time t
PTES l,t,c: TES charge power of the l-th CSP power

station at time t
PTES l,t,r+: Positive spinning reserve provided by TES of

the l-th CSP power station at time t
PTES l,t,r-: Negative spinning reserve provided by TES of

the l-th CSP power station at time t
PTES,max
l,t,d:

TES maximum discharge power of the l-th
CSP power station at time t

PTES,max
l,t,c:

TES maximum charge power of the l-th CSP
power station at time t

RUpv: Up spinning reserve of the power system
RDs: Down spinning reserve of the power system
ηc n: Charge efficiencies
ηd n: Discharge efficiencies
dn,t: States of discharge of the n-th battery at time t
te tl: End time of transferable period
Wh,f: Recursive weight matrixes of ft
Wh,i: Recursive weight matrixes of it
Wh,o: Recursive weight matrixes of ot
Wx,f: Input weight matrixes of ft
Wx,i: Input weight matrixes of it
Wx,o: Input weight matrixes of ot
bf: Offset matrixes of ft
bi: Offset matrixes of it
bo: Offset matrixes of ot
μt: ,e mean
σt: ,e variance
vt: Free degree
Kpv,k: Cost coefficient of the k-th PV power station
Pk,t: Output power of the k-th PV power station at

time t
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Yl,t: State variable
Pmax m: Maximum output power of the m-th

hydropower station
Pmin m: Minimum output power of the m-th

hydropower station
Vm,t: Storage capacity of the reservoir of the m-th

hydropower station at time t
Vm,t+1: Storage capacity of the reservoir of the m-th

hydropower station at time t+1
Vmax m: Maximum storage capacity of the reservoir of

the m-th hydropower station
Vmin m: Minimum storage capacity of the reservoir of

the m-th hydropower station
Qm,t: Outflow of the m-th hydropower station at

time t
Qmax m: Maximum outflow of the m-th hydropower

station
Qmin m: Minimum outflow of the m-th hydropower

station
Im,t: Inflow of the m-th hydropower station at time

t
o: Upstream hydropower station of the m-th

hydropower station
τom : Time delay from the o-th hydropower station

to the m-th hydropower station
Qo,(t-τom): Outflow of the o-th hydropower station by time

(t-τom)
En,t: Capacities of the n-th battery at time t
En,t-1: Capacities of the n-th battery at time t-1
Emax n: Maximum capacities of the n-th battery
Emin n: Minimum capacities of the n-th battery
Pc n,t: Charge power of the n-th battery at time t
Pd n,t: Discharge power of the n-th battery at time t
Pc,max n: Maximum charge power of the n-th battery
Pd,max n: Maximum discharge power of the n-th battery.
Abbreviations
PV: Photovoltaic
CSP: Concentrating solar power
LSTM: Long short-term memory
CFCEP: Chaotic fast convergence evolutionary

programming
LHS: Latin hypercube sampling
GA: Genetic algorithm
SQP: Sequential quadratic programming
AGC: Automatic generation control
TES: ,ermal energy storage
RNN: Recurrent neural network
RMSE: Root means square error.
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reactive power compensation in distribution networks with
batteries: a day-ahead economic dispatch approach,” Com-
puters & Electrical Engineering, vol. 85, Article ID 106710,
2020.

[37] D. M. Zhao, H. X. Wang, and R. Tao, “Multi-time scale
dispatch approach for an AC/DC hybrid distribution system
considering the response uncertainty of flexible loads,”
Electric Power Systems Research, vol. 199, Article ID 107394,
2021.

[38] A. AbuElrub, H. M. K. Al-Masri, and C. Singh, “Hybrid wind-
solar grid-connected system planning using scenario aggre-
gation method,” International Transactions on Electrical
Energy Systems, vol. 30, no. 9, Article ID e12519, 2020.

[39] S. W. Yu, S. S. Zhou, and J. P. Qin, “Layout optimization of
China’s power transmission lines for renewable power inte-
gration considering flexible resources and grid stability,”
International Journal of Electrical Power & Energy Systems,
vol. 135, Article ID 107507, 2022.

[40] J. J. Zhang, H. H. Li, D. Y. Chen, B. Xu, and M. A. Mahmud,
“Flexibility assessment of a hybrid power system: hydro-
electric units in balancing the injection of wind power,”
Renewable Energy, vol. 171, pp. 1313–1326, 2021.

14 International Transactions on Electrical Energy Systems


