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Conventional optimization methods cannot fully satisfy the interests of multiparticipants and protect the privacy of participants in
the integrated energy system that observe changes in the energy market structure. To allocate the benefits among the stakeholders
in the integrated energy system and improve renewable energy accommodation, the manuscript proposes an optimal dispatching
strategy for a park-level integrated energy system employing the Stackelberg game. Firstly, the benefits and cost models of each
stakeholder of the integrated energy system are constructed by considering the integrated demand response and the uncertainty of
renewable energy output. A master-slave game model that contains the energy system operator, energy producer, and energy users
is then established, and the existence of the Stackelberg equilibrium is demonstrated. Furthermore, a distributed algorithm is
proposed to resolve the game model by combining an improved coyote optimization algorithm with quadratic programming. Due
to the shortcomings of the conventional coyote optimization algorithm, such as slow convergence rate and quickly falling into
local optimum, a beetle antennae search is utilized to strengthen the optimal and the worst coyotes and to improve the con-
vergence speed, global search ability, and optimization accuracy of the standard coyote algorithm. Finally, an industrial park in
Northern China is adopted as an illustration to evaluate the effectiveness of the model and the improved algorithm.

1. Introduction

The over-exploitation of fossil fuels like coal and oil has led
to severe problems, such as environmental pollution and
global warming [1, 2]. Increasing the accommodation ca-
pacity of cleaner energy such as photovoltaics is crucial to
the reductions in emissions of greenhouse gases and the
sustainable development of human society [3-5]. However,
clean energy combined with conventional energy networks
can result in a large amount of abandonment of wind power
and photovoltaics, which is a great waste of resources and
does not meet the current energy demand well [6]. In this
context, the energy Internet with multienergy coupling and
also the combination of information and energy technolo-
gies will become the mainstream mode of energy supply, and
several national and international energy organizations at-
tempt to promote the development of the energy Internet
[7]. Since the park-level integrated energy system (PIES)

serves as a basis of the energy Internet, its optimization
draws a lot of interest in current energy research. The PIES
integrates the combined cooling heating power (CCHP),
energy storage devices, renewable energy devices, and other
energy conversion equipment to realize energy gradient
utilization and a high-proportion renewable energy ac-
commodation by coordinating and optimizing energy
generation, transmission, storage, and consumption.

The authors have done a lot of research on the PIES and
have constructed various energy systems based on the PIES
and resolved the constructed system models employing
feasible strategies. Various studies have been performed on
combined cooling, heating, and power-type integrated en-
ergy systems such as Refs. [8-11]. Xu et al. [9] established an
optimization model of combined cooling, heating, and
power-type multimicrogrid by considering the interaction
power of microgrids. Wang et al. [10] constructed a CCHP-
type integrated energy system by combining solar and
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compressed air energy storage and employed a non-
dominated sorting genetic algorithm to design a multi-
objective optimal operation strategy. Ju et al. [11]
constructed a hybrid energy system of the CHP and re-
newable energy driven by distributed energy and con-
structed a multiobjective operation optimization and
evaluation model.

However, the mentioned research has employed a
centralized optimization approach, which could not ap-
propriately describe the interaction between electricity
prices and loads and protect the privacy and security of the
participants. There exist multiple agents in the integrated
energy system with their demands. There may also be
conflicts between the different agents. The game theory has
been widely utilized in the optimization operations of in-
tegrated energy systems to satisfy the interests of multiple
agents. At the same time, the game process can also well
describe the interaction between electricity price and load. In
Ref. [12], the energy hub model was utilized to construct an
optimization model of the coalition game, considering the
integrated demand response. A multileader multifollower
game model was constructed in Ref. [13] to resolve the
equilibrium strategies between multiple distributed energy
stations and multiple energy consumers. Ma et al. [14]
constructed a master-slave transaction model consisting of
operators and PV prosumers based on the approach called
distributed energy management. Wang et al. [15] considered
a scenario with a variable called the integrated price of
electricity of energy retailers and heat and established a
Stackelberg game optimization framework, including the
integrated energy retailer, energy supplier, and load
aggregator for cooperative optimization of multiple agents.
However, the aforementioned studies only cover the source,
grid, and load segments. They do not consider the impact of
energy storage devices on the transaction and the uncer-
tainty of both photovoltaic and wind power outputs.

In addition, many feasible schemes are proposed to
resolve the PIES optimal scheduling model. Hou et al. [16]
employed an improved particle swarm algorithm to opti-
mize an integrated electro-thermal-hydrogen energy system
by considering the uncertainty of the renewable energy
output. Binary particle swarm algorithms and particle
swarm algorithms were adopted in Ref. [17] to resolve the
multiobjective unit commitment problem caused by binary
and real variables in the model, respectively. Delice et al. [18]
proposed a new modified particle swarm optimization al-
gorithm with negative knowledge to resolve the mixed-
model two-sided assembly line balancing problem. An al-
gorithm [19] was proposed that combines an adaptive
gravitational search algorithm (AGSA) with pattern search
(PS) called AGSA-PS. Koessler and Almomani [20] tested
three methods of hybridizing the PSO and the PS to enhance
the global minima and robustness. A hybrid optimization
method [21], the GA-SQP, in which the genetic algorithm
(GA) is a stochastic method was combined with the se-
quential quadratic programming (SQP) method, which was
a deterministic method. An algorithm [22] was proposed
that consists of the combination of both genetic algorithm
(GA) and the particle swarm optimization (PSO). A new
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metaheuristic method [23] was suggested that was inspired
by the life cycle of water striders. A new approach to the
firefly algorithm [24] was suggested that was based on
opposition-based learning (OBFA) to enhance the global
search ability of the original algorithm. As a novel swarm
intelligence optimization algorithm, the coyote optimization
algorithm (COA) was proposed [25], and testing functions
verified its superiority over the other algorithms. However,
due to the large-scale, nonlinear, and nonconvex charac-
teristics of the optimal scheduling model of the PIES, the
COA still suffers from slow convergence speed, low con-
vergence accuracy, and other shortcomings in the optimi-
zation process of the actual PIES.

Facing the above issues, the manuscript established an
operational optimization strategy for multiple competing
agents under the master-slave game framework for a CCHP-
type PIES. At first, the probability scenarios method was
introduced to describe the wind speed, solar radiation, and
load uncertainty, while the scenario set of the wind, photo-
voltaics, and load was derived by utilizing the scenario re-
duction techniques. Next, the revenue model of each agent of
PIES was established under the master-slave game framework,
and the existence of the equilibrium solutions in the trans-
action game is proved. Besides, a distributed solution algo-
rithm was proposed to protect the privacy of each agent, and
the improved COA was presented. The standard COA and the
improved one were utilized to obtain the profit of the energy
system operator, thus enhancing the revenue of the operator.

The rest of this article is organized as follows. Section 2
introduces the structure of the PIES system and the energy
transaction process and establishes the mathematical model
of each agent. Section 3 constructs the Stackelberg game
model and proves the existence of the Stackelberg equilibrium
for the constructed game model. The implementation method
is introduced in Section 4. Case analysis and conclusions are
presented in Section 5 and Section 6, respectively.

2. The PIES Multiagent Model

The proposed PIES consists of an energy system operator
(ESO), energy user (EU), and energy producer (EP) to form
a complete system with the operator that functions as a
bridge for transactions between the multiple agents. The
schematic diagram of the Stackelberg game of the PIES is
shown in Figure 1.

2.1. The Description of the System. The energy producer with
the CCHP system is the primary energy source in the in-
tegrated energy system providing electrical and heat energy
to the operator and determining the output of each device
based on the energy offered given by the operator. As the
load side of the system, the energy users buy both electrical
and heat energy from the operator and adjust the electrical
and thermal consumptions based on the offer of the ESO.

The ESO connects the source and the load and acts as a
bridge for energy interaction between the EU and the EP. The
ESO sets energy prices based on supply and demand, thus
maximizing revenue by buying at lower prices and selling
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FIGURE 1: The schematic diagram of the Stackelberg game.
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Figure 2: The schematic

electric and thermal energy at higher prices. The ESO has a
more flexible pricing mechanism than that of the conven-
tional grid, encouraging consumers to participate in demand
response. The ESO suffers from inadequate energy supply,
purchasing power from the grid at a higher price when the
sum of the electric power supplied from the EP is still less than
the electric demand of the EU and compensating for the EU
when the ESO cannot meet the thermal load.

The PIES structure is shown in Figure 2, where the
natural gas flowing into the system is converted into both
electrical and thermal energies by the energy production

diagram of the PIES.

equipment and into various energy supplies to the load side
through the energy conversion equipment. The gas turbine
generates both electrical and thermal energies, where elec-
trical energy is supplied to the electrical load along with
electricity generated by wind and photovoltaics. In contrast,
thermal energy is recovered through the waste heat boiler
and then aggregated with thermal energy produced by the
boiler, a part of which is supplied to the thermal load
through the heat exchanger, and the rest is supplied to the
cold load through the chiller. The thermal storage tank (TST)
and batteries store the excess energy.



2.2. Model of the Energy System Operator. The ESO, as the
upper level, maximizes its revenue by considering the supply
and demand for electricity and heat energy and market
information to determine the price of buying and selling
energy, buying the energy from the EP and the ESP, and
selling it to the EU and the ESP. The ESO aims to maximize
its profit by
24
max Feso = Z(I;EESHO - C;%%)At’
t=1
Ii5o = I (0 (Pay (6 + P () + 1" (6 (P () + P (1),
Cith = Cith + €l + O,
buy _ _ buy buy
Ciso = Pe (t)(Pep (1) +P,, (f)) + Py (t)(Php (1) + Py, (t)))

Clso = Py (0P (1) = p" (P! (1),

Chel = Py (1)8, (1),
(1)

where I35t represents the revenue of the operator from the
sold energy; Ci3y) represents the operating cost of the op-
erator; CEIS%, CgErslg, and Cg?gl stand for the energy pur-
chasing costs of the ESO from the EP, the electricity
purchasing cost from the grid, and the penalty cost of the
interrupting heat supply, respectively; pE“‘/ and pzuy rep-
resent the prices which the ESO pays for electricity and heat;
psland piell denote the prices obtained by selling electricity
and heat by the ESO, respectively; p];uy and p;e“ represent the
time-of-use electricity price and feed-in tariffs, respectively;
P, and P, denote the electrical and heat power sold by the
ESO to the ESP; P, and P;,, represent the electrical and heat
power sold by the ESO to the EU, respectively; P,, and P,
denote the electrical and heat power purchased by ESO from
the EP, respectively; P, and P, represent the electrical and
heat power purchased by the ESO from the the ESP, re-
spectively; P, and &, denote the amount of heat load loss and
the price of heat interruption penalty, respectively.

To ensure that entities will not skip the ESO to trade or
trade with the outside world directly, some constraints
should be implied on the offers of the ESO to ensure that the
buying and selling prices are within the market price range
for the electrical and thermal energies. These constraints are
given by

sell sell

Py (O <p (< py (1),

Py ()< p (1)< py (1),
sell (2)

thin (t) < Ph (t) < thax (t))
phmin (t) < P:uy (t) < phmax (t)’

where pymax and pmi, indicate the upper and lower limits of
the heating price, respectively.

2.3. Model of the Energy Producer. The EP maximizes its
revenue by adjusting the output of each device in the CCHP
system after the ESO gives the energy offer, and its profit is
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the difference between the revenue from the energy sales Ixp,
the generation cost Ceens and the emission cost Ce.n,; as
follows:

24
maXFEP = Z(IEP - Cgen - Cemi)At’

t=1

Ip = 2 (DP,, () + pp (£)Py, (D),
(3)

I
Cgen = pgasvg (t) + Z ]iPi (t))
i=1

Cemi = PemiFgen (t) (VC + VN)’

where Cge, represents the generation cost of the CCHP
system; p,, denotes the price of the natural gas; V rep-
resents the volume of the natural gas purchased; J; denotes
the maintenance cost factor of the i CCHP device; P;
denotes the output power of the i device; I denote the total
number of devices in the CCHP; P, represents the gas
emission factor; Fg., denotes the heat energy of the con-
sumed gas; v and vy denote the carbon dioxide and ni-
trogen oxide volumes of emissions.

The electrical and heat energy sold by the EP can be
provided jointly by the CCHP devices as follows:

P, (t) = P,, (1) + Py (t) + Pyr (1),
(4)
Py, (t) = Pgp () + Pgp (1),

where P, and P, represent the power generated by pho-
tovoltaics (PV) and wind turbine (WT), respectively; Py
represents the power generated by the gas turbine; Pgp and
Prg denote the thermal output powers of the gas boiler and
the waste heat boiler, respectively.

The power relationship for the CCHP system is de-
scribed by

(1 - ’7MT)
MT

Ppg = Prrtiges (5)
where 77,rrdenotes the power generation efficiency of the gas
turbine and #rg represents the heat production efficiency of
the waste heat boiler.

The balance of the electrical power is expressed by

Py () + Py (8) + Pppp () + P (8) + Ppyy = 1 (£) + 1, (1),
(6)

where P, denotes the amount of power trading between the
CHP system and the grid, while positive denotes electricity
sales and negative represents electricity purchase; P, rep-
resents the power of the energy storage, while positive de-
notes discharging, negative represents charging; and I, and
I,. represent the fixed electric load and shifted electrical load,
respectively.

In the actual operation, the following constraints should
be satisfied to fulfill the constraints on the power output and
creep rate of the gas turbine and the gas boiler at time #:
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OSPMT(t) SPMT,max’

0 SPGB (t) SPGB,max’
PMT)down < PMT (t) - PMT (t - 1) < PMT,up’

Pgpdown < Pap (1) = Pgp (f = 1) < Pgp yps

(7)

where Ppir max and Pgp max denote the rated capacity of the
gas turbine and the gas boiler, respectively; Pyr,up and Pgp up
represent the upper limits of the ramp rate of the gas turbine
and the boiler; and Pys1.qown and Pgp down denote the lower
limits of the ramp rate of the gas turbine and the boiler,
respectively.

The energy storage device should satisfy some con-
straints, such as the thermal storage tank constraint, de-
scribed as

P
Hi (0= Hig (=D (1) + (nﬁhphy 0- Zl(t))
dis

H™"<H,, (t) <H™ (8)

tst tst >

Pchmin SPhs (t) - Phs (t - 1) SPchmax’

Pdismin SPh;v (1) - Phy (t-1) SPdismax’

where H,; (f) represents the real-time quantity of heat
storage; # h ch and n h dis denote the charging and dis-
charging efficiencies of the thermal energy; H ;‘s“t‘“ and H{;*
represent the minimum and maximum heat storage ca-
pacity, respectively; and #;, denotes the energy self-loss rate
of the thermal storage tank. The energy storage equipment
should ensure the consistency of the reserves at the be-
ginning and the end of the daily cycle.

The method of a probability-based scenario is adopted in
the manuscript to describe the stochastic volatility of the
wind and the photovoltaic output considering the sub-
stantial uncertainty in solar radiation and wind speed [26].
At first, probability scenarios are generated. The uncertainty
sampling of the wind speed, photovoltaics, and load is then
completed employing Latin hypercube, while the Weibull
and Beta distributions are utilized for the wind speed and the
light intensity, respectively. Various sampling scenarios are
generated after the sampling is completed. Finally, scenario
reduction techniques are employed to complete the scenario
reduction and obtain the probability of occurrence for each
scenario.

The expression for the output of the photovoltaic power
system is represented by

G(1)

Ppyy = Psrc@ (1 + k(T (1) - Tsrc))s

T (t) = Ty, () +0.0138[1 + 0.031T,;, ()] (1 - 0.042V, )G (8),

air

T = 5 (I = 17) (17 Tmi“)sin<w>,

(9)

where Ppy, represents the output power of the PV power
system at time ; Pgyc denotes the maximum output power of
solar panel under the standard test; Gsyc represents light
intensity under the standard test, which is 1000 W/m?; k
denotes the temperature coefficient; T(t) represents the
actual temperature of the solar panel at time #; Tsrc denotes
the solar panel temperature under the standard test, which is
25°C; Ty, represents the outdoor temperature at time £ Vy,
denotes the wind speed; T™** denotes the maximum daily
temperature; T™" represents the minimum daily tempera-
ture; and ¢, represents the average daily temperature.

Light intensity usually follows a beta distribution. The
probability density function is defined by

CT@+p) (GO [, G\ !
f(G(t))—m(GmaX) (1—@) Q0

where G(t) denotes the light intensity at time #; I represents
the gamma probability density function; « and 8 denote the
shape factor of the beta probability density function; and
G™™ denotes the maximum daily light intensity.

When the installed capacity is determined, the maxi-
mum value of wind power output at each moment is de-
termined by the actual conditions such as weather and
environment. The output of the wind at time ¢ can be
expressed as a function of the intermittent wind speed as

0, 0 <Y, <V, ¥ > Voups
Ve = Vin
PWPP,t = — Prated>  Vin £V < Vraged> (11)
Vrated ~ Vin
L p rated> Vrated =Vt < Vouts

where v; denotes the real-time wind speed; v, represents the
cut-in wind speed; v, represents the cut-out wind speed;
Vratea denotes the rated wind speed; and P, ,q represents the
rated power of the wind turbine.

The natural incoming wind v usually follows the Weibull
probability distribution. The probability density function is
defined by

re=50) e (12

where ¢ denotes the shape parameter and 8 represents the
scale parameter.

2.4. Model of Energy Users. In a real integrated energy
system, there exists a stochastic nature of real-time load
changes with time and season. In this paper, a short-term
load forecasting method based on the robust Holt-Winter
model is used to forecast the load. The method integrates the
time series characteristics of a linear trend, seasonal varia-
tion, and stochastic fluctuation and combines with the ex-
ponential smoothing method to have better forecasting
capability.

The basic idea is to decompose the time series with linear
trend, seasonal variation, and stochastic fluctuation and
combine them with the exponential smoothing method to



estimate the long-term trend, increment of trend, and
seasonal fluctuation respectively. A forecasting model is then
built and extrapolated to the forecast values.

The multiplicative Holt-Winter model consists of three
smoothing equations and one forecasting equation. The
equation system of the parameters is defined by

a =g+ (1-a)(a,_; +b,_4),
t-1

A

b, =p(a, —a,,)+ (1 =P, (13)

S = y§+ (1-9)S,;.
L t

The forecasting equation is defined by
Vewk = (@, + kb)S, 1o (14)

where y, represents the observed value of the time series at
time t; a, denotes the stable component of the load data at
time f; b, represents the tendency trend component of the
load data at time t; S; denotes the seasonal component of the
load data at time #; I represents the seasonal length; «, 3,
y€[0,1] denote the smoothing parameter; and k represents
the number of moments to be predicted.

The EU adjusts the energy use plan according to the ESO
offer, and the objective function is the difference between the
utility of the user and the cost of energy purchase which is
defined by

max Fp; =Upgy — C?(l]y. (15)

Ugy denotes the utility function of the user, which is the
sum of the satisfaction gained by the user from the con-
sumed electricity and heat energy [27], which is expressed as
follows:

Upo = vede (8= 2o (0)° ] + [ty (0 = 2, )
(16)

where v,, u,, v, and uy, represent the preference constants
for the widely used quadratic utility function [28-30]. d, and
d;, denote the electrical and thermal load demands of the EU.

ng denotes the cost of energy purchase by the user as
follows:

= pel()P,, (1) + pil (£)P,, (). (17)

The demand response of the EU is divided into shifted
electrical load I,, and curtailable thermal load [,;,, while the
fixed load of the EU is divided into fixed electrical load I;, and

fixed thermal load lﬂ,, which is formulated as
d.(t) =g (1) + 1, (D),
(18)
dy, (t) = Ly, (£) = L, (2).

I . and I, should satisfy the following constraints as
follows:
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0 < lte (t) < lte max’>

(19)
0< lrh (t) = lrh max>

where liomax and Lymay present the upper limits of the re-
sponse volume set to 20% of the total load.

3. Stackelberg Game Model

This section establishes a Stackelberg game model to analyze
the trading of multiple energies. Besides, the existence of the
game equilibrium is proved.

3.1. Basic Elements of the Game. According to the above
section, the ESO, the EP, and the EU are all independent
agents in the PIES. The ESO sets the price strategy to obtain
maximum revenue, while the EP and EU make optimal
adjustments according to the price signals of the ESO,
influencing the price setting of the ESO. The decisions
among the agents are sequential and affect each other. Since
the ESO is a manager with the decision priority, the game of
three agents can be constructed as a Stackelberg game [31].
The master-slave game model is given by

Y ={(EUPUU); L; F}. (20)

The participant set, strategy set, and payoff function as
the three elements of the game model described in (20) can
be described as

(1) The game participants include energy system oper-
ator E, energy user U, and energy producer P

(2) The strategies set is defined as L = {L,, L, L}, where
the strategy of the ESO, L,, represents the offer of
energy, expressed as L,=(p buy e, p buy h, p sell e, p
sell h); the strategy of the EP, L,, denotes the output
of gas turbines and boilers at each period, denoted as
L, = (Pyr> Pgp); the strategy of the user, L, repre-
sents the amount of demand response at each mo-
ment, denoted as L, _ (I, L1,

(3) The payoft set F={Fgso, Fgp, Fry} is the objective
function of the four agents, calculated by equations
1), (3), and (15)

3.2. Stackelberg Game Equilibrium. When all the followers
respond optimally to the prior strategy of the leader and the
leader accepts this response, the two-level game reaches
Stackelberg equilibrium [13]. Let L, be the equilibrium
strategy of the ESO and L," and L," be the optimal response
strategies of the EU and EP, respectively. The set of strategies
(Le*, L,*, and L,*) is the equilibrium solution of the
Stackelberg game under the following constraints as follows:

Foo(Les Ly Ly ) 2 Fego (L2 iy L Ly Ly )

=~ eso ei?

FEU(L:,L;,L;;) zFEU(L;‘,Lu,L;),
FEP(L:’L:’L;) >Fpp(L;, Ly, Lp),
VL €L,

(21)
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where L*e(—i) stands for the other strategies except L,
When the strategies of each agent in the game are equi-
librium solutions, no agent on either side can increase its
profit by adjusting its set of strategies individually [13].

The following conditions should be satisfied to ensure
the existence of a Stackelberg equilibrium [32]:

(1) The strategy sets L., L,, and L, are nonempty,
bounded, and convex sets in the Euclidean space

(2) Fgp and Fgy represent quasi-concave functions
concerning L, and L, respectively

(3) Fgso denotes a continuous function of L,, L, L,, and

Ly

(4) Fgp and Fgy denote continuous functions of Ly, and
L,, respectively

According to the above PIES model, the strategy of the
ESO and the strategy of the EP should satisfy constraints
equations (2) and (7), respectively, while the strategy of
the EU should satisfy constraints (18) and (19). Accord-
ingly, the set of strategies of each agent satisfies condition
).

It can be concluded from equations (15)-(17) that the
utility function of the EU is convex, and the other terms are
linear or constant functions about I, and ;. Thus, Fgy
represents a convex function of L,. Similarly, the objective
functions of EP are convex. Moreover, since the convex
function must be a quasi-concave function, condition (2) is
also satisfied.

F gso, Fep, and Fry can be calculated from equations (1),
(3), and (15) respectively. Therefore, it can be concluded that
the four objective functions are continuous. Accordingly,
conditions (3) and (4) are also satisfied.

In summary, the existence of the equilibrium solution of
the Stackelberg game is proved.

4. The Solution of the Stackelberg Game Model
Based on the Improved Coyote
Optimization Algorithm

A large-scale nonlinear programming problem should be
resolved to optimize the objective function of the leader
ESO, while the improved coyote optimization algorithm
(beetle antennae search coyote optimization algorithm, the
BCOA) can be employed to reduce the solution complexity.
As for the lower level of the model, since the objective
function contains quadratic terms, quadratic programming
can resolve the problem.

4.1. The Coyote Optimization Algorithm. The main difference
between the COA and the most intelligent algorithms is that
coyotes are divided into several groups, and the internal
social influences are considered [25]. The COA should only
set some control parameters, including the number of
coyotes Nj, the number of coyotes in each group N,, the
population of coyotes N, and the maximum number of it-
erations Maxlter.

4.1.1. Initialization of Coyote Populations. The coyote
population N consists of N, groups of coyotes with N,
coyotes in each group, while the coyotes can be initialized in
the search space [Ib, ub] through the following equation:

socli = Ib; +r;(ub; - Ib;), (22)

where c=[1, 2, .N], p=[1, 2, ..N,], and j=[1, 2, .., D],
while D is the dimension of the optimization problem, and 7
is a random number generated by a uniform probability
distribution within [0, 1]. socp,t ¢,j is randomly initialized for
the j dimension of the ¢™ coyote in the p™ group, and Ib;
and ub; denote the lower and upper bounds of the 7" di-
mension of the coyote, respectively.

4.1.2. Coyote Growth in the Group. The adaptive ability of

coyotes can be evaluated according to the objective function
defined by

fith* = f(socf’t). (23)

Naturally, the alpha coyote is the best socially adapted
coyote. In the COA, it corresponds to the best (minimum or
maximum) objective function value, as follows:

alpha?' = {socﬁJ ’tlargcz{l,szc}min £ (soct) ]» (24)

The alpha coyote and other ones naturally influence the
social behaviors of coyotes. In the COA, the median coyote
ct p,t j is employed to represent the cultural tendencies of
each group of coyotes as follows:

ctﬁ-”t = median(socﬁ’;). (25)

The social status of coyotes can be updated according to
the alpha coyote 8, and median coyote J;, while the growth
of coyotes within the group can be described by

new_soc”’ = soc? + 1,8, + 7,0,
8, = alpha - X, ,, (26)
O, =ct—X,,.

In (26), new_soc' represents the coyote social condi-
tion after the update; both random numbers r, and r, are
within the probability uniform distribution [0,1], and
X,1and X,, denote any two coyotes in the group that are not
equal to c.

4.1.3. Birth and Death of Coyotes. The birth and death of
coyotes can increase the diversity of a population. Young
pups are born according to the following equation:

-

ot r;< b,
$0C,py, 5> .
ory = Jp»
pt _
pupj = < i erPs+Pa (27)
S0Cpa,j> .
ory = Jz
R;, otherwise.



In (27), r; denotes a random number generated with a
uniform probability distribution within [0, 1], j; and j,
represent two randomly generated dimensions, and R; de-
notes a random number generated randomly within the j
dimensional decision variable. The probabilities of the
scatter P, and the association P, are calculated as follows:

1
P=p
(28)
1-P
p = _ ),

where D denotes the dimension. After the coyote pup is
born, the newly produced pup is first evaluated for social
adaptability and then compared to the group’s worst
adaptable and oldest coyote. If the pup adapts better, the
oldest coyote dies while the pup is retained, and the age of
the pup is set to 0; otherwise, the pup dies.

4.1.4. Migration of Coyotes. In the COA, coyotes migrate
between groups with probability P,. At first, a coyote is
randomly assigned to a group. However, as the coyote grows,
the group expels and forces it to migrate. Two random
coyotes from different groups swap their positions with a
probability P,, which is calculated as

P, = 0.005N. (29)

4.2. Improving the Algorithm of the Coyote Optimization.
In the COA, the alpha and median coyotes in the group lead
to the growth of the whole group. Although the mechanism
of coyote birth and death can jump out of the local optimum,
the conventional coyote algorithm still suffers from the
defects such as quickly falling into the local optimum, low
convergence rate, and insufficient exploration ability for a
high-dimensionality and complex model. Therefore, this
manuscript adopts a novel growth approach.

4.2.1. Initializing Populations Based on Tent Chaotic
Sequences. Chaos is a characteristic of nonlinear dynamical
systems with bounded unstable dynamical behavior, ergo-
dicity, and nonperiodic behavior [33]. The idea of utilizing
chaotic sequences instead of random sequences has been
employed in the optimization theory in the literature due to
the advantages of chaos like randomness and ergodicity
[34-36]. The population is initialized in the standard coyote
algorithm utilizing the rand function, while the sample is not
distributed uniformly and the distribution of individuals has
some extreme values, reducing the probability of finding the
global optimum. Therefore, a uniformly distributed chaotic
sequence generated by tent mapping is utilized in the
manuscript in the initialization stage to enhance the tra-
versal of the population, to improve the exploration ability,
to reduce the adverse effect of the unevenly distributed initial
population within the search for an optimum, and makes it
easier to escape from a local minimum.
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The tent mapping is given as
2z;, 0<z<0.5,
i+l =

2(1-z), o

0.5<z<1.

The Bernoulli shift transformation is applied to the tent
mapping as follows:

zi = (2z;)mod1, (31)

where mod denotes a function to find the remainder of the
division. Equation (31) is employed to obtain the chaotic
variables Z, and apply them to the solution space of the real
problem.

The equation for the initial population generated by the
tent mapping is defined by

soc? = Ib; + z,,(ub; - Ib;). (32)

4.2.2. Leading the Growth of the Best and the Worst Coyotes
with the Beetle Antennae Search Strategy. If only the best
coyote leads the growth of the coyotes in the group, the
algorithm can easily fall into local optimality, while the birth
and death mechanisms of a coyote determine the global
search ability limitations. According to the idea of the barrel
principle, the worst coyote in the group also has a significant
impact on the pack, and if the worst coyote is strengthened,
the best and the median coyotes inevitably grow more
optimally. The best coyote leads the other coyotes in the
group to grow, while the guidance of the best coyote can
improve the convergence accuracy in the local search
process. However, the best coyote falling into local optimum
can also affect the other coyotes in the group. Therefore, to
further optimize the growth of the best and worst coyotes in
the group, the improved coyote algorithm (beetle antennae
search coyote optimization algorithm, the BCOA) is pro-
posed to strengthen the growth of the best and the worst
coyotes based on the beetle antennae search strategy.

The beetle antennae search (BAS) is a heuristic algorithm
that simulates the search of a beetle for food [37]. The beetle
determines the concentration of food in the left and right
directions by its left and right whiskers and moves towards
the direction of a higher concentration as follows:

{ x, = x + ddir,

33
x; = x — d,dir, (33

where dir denotes a random direction vector; X, and X
denote a position located in the right and left search regions,
respectively; dy represents the length of the antenna, which
should be long enough to cover the appropriate initial search
region in the iteration to escape from the local optimum in
the initial state and then gradually decay over time.

df = 0.95d, " +0.01. (34)
By analogizing coyotes to beetles based on comparing

the adaptations of left and right and moving towards a better
direction, the best and the worst coyotes grow according to
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xly = x71 + dird'sign (f (x,) - £ (%)) (35)

where x; denotes the social condition of the best and worst
coyotes in the group after completing the update; &' rep-
resents the step size of the search; sign denotes the sign
function, and f(x;) and f(x,) denote the fitness values of the
left and right whiskers, respectively.

The convergence speed of the coyote algorithm and its
global search ability can be improved by strengthening the
growth of coyotes through BAS [38].

4.2.3. Dynamic Adjustment of the Number of Coyote Groups.
In the COA, the number of coyote groups and the number of
coyotes in each group can significantly influence the per-
formance of the algorithm. Assuming that the total number
of coyotes is given, the higher the number of groups, the
smaller the number of each group with the smaller growth
space, but the search ability for the global optimal solution is
enhanced. Conversely, the higher the number of each group,
the stronger the local search ability. Therefore, the number of
groups is set to 20, with five coyotes per group in the early
iterations of the algorithm and 10 with ten coyotes per group
in the later iterations.

By setting in this way, in the late search period, the
number of groups is high, which enhances the positive
feedback effect of the global solution and the local search
ability; in the early search period, the number of groups is
low, which weakens the positive feedback effect of the global
solution and enhances the global search ability. Therefore,
dynamically adjusting the number of coyotes in a group
parameter not only improves the operability but also can
better balance the exploration and exploitation ability. In
addition, random grouping after dynamically adjusting the
parameters eliminates the process of coyote repulsion and
admission by the group and improves the operability. The
specific distribution is shown in Figure 3.

The flowchart of the BCOA is shown in Figure 4.

4.2.4. Offspring Generation Employing Genetic Crossover
Operations. The conventional birth of the coyote is shown in
(27). To prevent falling into the local optimum, the genetic
crossover strategy is introduced to increase the diversity of
the population further and expand the search space, thus
enhancing the probability of finding the global optimum.

Crossover variation is applied to the random dimension
of the two parental coyotes, taking the one with better
adaptability as the newborn pup and then the fitness value of
anew pup is calculated. If the pup is worse than all the older
coyotes, it dies; otherwise, the coyote with the oldest and
worst adaptability is replaced.

Cross-probability CR setting. The first period fluctuates
slightly around a CR of 0.5, with higher diversity and en-
hanced exploration ability. The later period jumps signifi-
cantly around a CR of 0.5, producing new solutions
dominated by one of the operations, with reduced diversity
and enhanced exploitation ability. The calculation is as
follows:

4>

FIGUure 3: The allocation of the number of groups Np and the
number of coyotes in the group Nc.

t
CR=0.5 ( in (2 0.25 xt < ) 1), 36
x [ sin (27 x Xt + 1) X MaxDT + (36)

where MaxDT denotes the maximum number of iterations.

4.3. Solution Method of the Improved Coyote Algorithm
Combined with Quadratic Programming. Although the
conventional centralized solution method exposes much
information about each agent, such as the objective function
and the equipment information, each agent cannot divulge
its trade secrets to its competitors in the actual electricity
market. Therefore, this paper combines the improved coyote
algorithm with quadratic programming to propose a dis-
tributed solution method. The steps of the distributed so-
lution algorithm are shown as follows:

(1) Initialize the coyote population with the chaotic
mapping and send the electricity and heat prices
determined by the ESO to the lower level

(2) Employ quadratic programming based on pricing
signals from the ESO to resolve the objective func-
tions of the EP and the EU and send the energy
trading scheme back to the ESO

(3) Calculate the ESO profit based on the feedback
power of the lower level

(4) Update the prices as equations (26) and (35), then
replace the best-adapted price with the objective
function of the ESO, perform the selection operation,
and take the optimal tariff as the internal electricity
price for the next iteration

(5) If the game has reached equilibrium, output the
result; otherwise, go to the next iteration

4.4. The Validation of the BCOA Algorithm. To verify the
performance of the BCOA that is run on four standard test
functions with the PSO, DE, and GWO algorithms, the
results of the four algorithms are then compared. The ex-
pressions and variable ranges of these four functions are
shown in Table 1.

All algorithms were run 30 times independently on the
standard test function, and then the mean and standard
deviation of the obtained optimal solutions were recorded.
In all experiments, the population size and the maximum
number of iterations are set to 40 and 200, respectively.
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the globally optimum individual
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Dynamically adjust N and N
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Compute the median coyote, the best coyote, and the worst
coyote within the pack
The best coyote and worst coyote in the pack are updated
according to formula (37); The rest of the coyotes are updated
as according to formula (28)
Calculate the fitness of the updated individuals, and save the
individual of the best fitness using the greedy algorithm
Birth and death inside the pack
Coyote's transition between packs
Coyotes ages update
L—» Select the best adapted coyotes as the solution
End
FIGURE 4: The flowchart of the BCOA.
TaBLE 1: The benchmark functions. Table 2 depicts that the BCOA proposed in paper has the
Functions Dim Range fom best comprehensive performance. In addl.tl(.)n, t.he p-values
P are all less than 0.05, and the null hypothesis is rejected for all
Fi(x) =YY", x; 30 [-100, 100] 0 . . . .
L 30 functions. There exists an obvious difference between the
Fy(x) = Y71, x|+ TTZ 1% 30 [-10, -10] 0 P leorith
Fy(x) = Xy (X %)) 30 [-100, 100] 0 our algorithms.
F, (x) = max{|x;|,1 <i<n} 30 [-100, 100] 0

5. Case Study

These four functions were resolved by employing the 571 Basic Data. A PIES in Northern China is employed as a
MATLAB software employing the PSO, the DE, and the  practical example to evaluate the optimal dispatching
GWO algorithms and compared with the results produced  strategy of the mentioned PIES model. The general overview
by the BCOA algorithm as shown in Table 2. of this PIES is shown in Figure 5. The trading patterns are
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TaBLE 2: The statistical results of the benchmark functions.
Functions BCOA PSO DE GWO p values
F Ave 1.43E—-47 1.08E + 03 1.89E +01 3.72E-31 5.6E—12
! STD 4.85E—47 7.56E + 02 4.83E+01 8.64E - 31 ’
F Ave 543E-35 8.46E +01 5.83E-02 1.18E-18 32E-10
2 STD 7.73E-35 2.21E+01 2.21E-01 9.52E-19 ’
F Ave 4.68E - 52 8.84E+03 8.42E +02 1.40E - 04 28FE—11
3 STD 1.57E-55 3.60E +03 4.59E + 02 2.36E—-04 ’
F Ave 2.73E-28 2.08E + 01 3.36E + 01 2.83E-06 8A4E—6
4 STD 4.52E-29 2.95E+00 6.98E + 00 3.96E - 06 ’
b3 —laclpe |-
bo bl b2 Load Battery
_ Load 2
J
Load 3
L e ] b4 -
—»Load5|____~ —_|Ac|pc N
Other lines PV
Load 4 -—
F———p —p»Load 6
- lac|pct—pclac
b5 WT
Superior e
Grid 10kV 10/0.4 —|ACDC Cooling load
@7@_/ Load7 Fuel Cell
—pLoad 8 Head
—»Load 9 load
b7 f?sor i
ption
—p»Load 10 Load 11 Thermal chiller
Energy Storage
b6 Load 12 Cold
~ Load 13 storage
B g Load 14
| _~___|AC|pCcl—DC|AC CHP
Cogeneration system
FIGURE 5: The general overview of the case.
similar in winter and summer, while only the output of the TasLE 3: Electricity and heat prices.
new energy is somewhat different. This article only analyses Price
the energy transaction process and the operating state of the =~ — Times (h) (¥/kWh)
system in winter, considering its length limitation. Table 3 1-00-9:00 04
shows the time-of-use prices of the grid and the gas price. g price  9:00-12:00, 16:00-20:00, 23:00-1:00 0.8
Th'e feed-in tariff of the grid is 0.35 ¥/kWh, anq the heating 12:00-16: 00, 20 : 0023 : 00 1.25
price ranges between 0.15 and 0.5 ¥/kWh. Consider that the Gas price The whole day 0.35

customer preference coefficients for electrical and heat
energies are as presented in Ref. [13]. Figure 6 shows the
prediction curves of renewable energy and load power for a
typical winter day based on the probability scenarios
method, while the device parameters of each system are
presented in Table 4.

5.2. Algorithm Comparison. To verify the BCOA optimi-
zation for the constructed model, the improved BCOA al-
gorithm is compared with the conventional COA and the
improved differential evolutionary algorithm (ADE) to

optimize the revenue objective function of the ESO. Figure 7
depicts the comparison results.

The population of coyotes is adjusted as 100, while the
number of coyote groups is chosen as 20 with five coyotes in
each group, and the maximum number of iterations is se-
lected as 100. Table 5 summarizes that the improved BCOA
algorithm converges at 26 iterations, while the conventional
COA and the ADE algorithms converge at 39 and 55 iter-
ations, respectively, demonstrating the superiority of the
BCOA over the other algorithms concerning the
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FIGURE 6: The curve of the power prediction.

TaBLE 4: The operation parameters for each type of equipment.

Equipment parameters

Numerical values

Maximum charging and discharging powers of the battery (kW)
Maximum charging and discharging powers of the TST (kW)
Heat storage and release efficiencies of the TST

Charging and discharging efficiencies of the battery

Energy self-loss rate of the TST

The capacity of the GB (kW)

The capacity of the GT (kW)

Upper and lower ramp rate limits of the GT (kW)

Upper and lower ramp rate limits of the GB (kW)

The efficiency of the GT

The efficiency of the GB

The efficiency of the WHB

200, 200
200, 150
0.98, 0.98
0.95, 0.95
0.02
700
400
220, 220
400, —-220
0.35
0.9
0.83

15000
14000 |
13000
12000
11000 |-
10000
9000 -
8000
7000 |-
6000 -
5000 |-
4000
3000 -

Profit of the ESO (¥)

1 1 1 1 1 1
0 20 40 60 80 100
Iterations

—x— BACOA
—»— COA
—+— ADE

FIGURE 7: The comparison of convergence curves of different
algorithms.

TaBLE 5: The optimization results of different algorithms.

Algorithms ESO revenue (¥) Number of iterations
ADE 8803 55
COA 9503 39
BCOA 10781 26

convergence speed. Given the optimal value, the BCOA finds
the revenue of the ESO as 10781 ¥, the revenue of the COA as
9503 ¥, and the revenue of the ADE as 8803 ¥. According to
the obtained results, the BCOA finally finds the highest
optimal daily revenue, and the optimal solution is superior
to the other algorithms.

5.3. Analysis of the Game Results. Figure 8 depicts the
comparisons of the convergence processes of the ESO, the
EP, and the EU benefits. The benefits of each agent converge
at the 26" iteration, demonstrating the fast convergence rate
of the proposed solution method and the existence of the
game equilibrium. As the iteration number increases, the
game agents have different convergence trends, verifying the
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FIGURE 9: Energy prices of the ESO. (a) The curve of heat price. (b) The curve of electricity price.

existence of a game process among agents. Moreover, the
ESO benefits show an overall upward trend, while the lower-
level benefits tend to decline, reflecting the leadership po-
sition of the ESO in the Stackelberg game. After the 26"
iteration, the game equilibrium reaches between the leader
and the followers, and each agent cannot adjust its strategy
individually to obtain a higher profit. The ESO and the EP
benefits are 10781, and 5511 ¥, respectively, while the con-
sumer surplus of the EU is 12621 ¥.

Figure 9 shows the price of the ESO for energy trans-
actions after the convergence of the iterative process. The

green and blue lines in Figure 9(a) indicate the upper and
lower bounds of the heat prices of the park within which the
ESO should set more competitive heat prices for the fol-
lowers. In Figure 9(b), the electricity price set by the ESO
should be between the time-of-use electricity prices of the
grid and the feed-in tariff to satisfy the constraint. The peaks
of electricity selling prices are at 12:00 and 21:00 because
these are the peak hours for the electricity consumption of
the customers and the peaks of the PV and the WT outputs.
On the other hand, higher selling prices can promote re-
newable energy accommodation.
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FiGure 11: The electric and heat load curves before and after
optimization.

Figure 10 shows the operation of the energy storage
device. The electric and thermal loads before and after the
demand response are compared in Figure 11. The EU re-
duces its energy costs and improves the overall benefit by
adjusting the use time of electric cars and washing machines
and other equipment. After adopting the demand response
strategy, the electric load fluctuation is smoothed out, which
plays the role of peak load shifting, reducing the energy
consumption burden of the system and many hidden
problems of the grid and the PIES. The heat load has been
cut-in all hours, while the cut is less in the hours with lower
heat load to ensure the comfort of the EU.

Figures 12 and 13 show the electric and thermal energy
outputs of each device in the CCHP system at the
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FIGURE 13: The heat output optimal results of the PIES.

equilibrium state. In Figure 12, all the electricity from the
WT and the PV is sold to the ESO, sending the surplus
energy to energy storage devices to improve renewable
energy accommodation. At night, the EU takes advantage of
the lower price of electricity to charge some devices like
electric vehicles, while the ESP also buys electricity at a lower
price. During the peak period of electrical load, the supply of
the EP cannot meet the electrical load, while the ESP and the
grid supplements the shortfall. The thermal load is at its peak
between 9:00-11:00 and 22:00 and requires a portion of
the thermal energy supplied by storage devices in addition to
the thermal energy supplied by the GB and the GT.

To verify the rationality and effectiveness of the pro-
posed optimization strategy, two different scenarios are
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TaBLE 6: Income comparison of each player under different
scenarios.

Benefits (¥)

Scenarios
ESO EP EU
1 10781 5964 12621
9996 3370 11391

TaBLE 7: The comparison of income of each player under different
scenarios.

. Benefits (¥)
Scenarios

ESO EP EU
1 9681 6839 9231
10781 5964 12621

selected, and the returns of each agent are calculated for
comparison.

(1) Scenario 1: the proposed optimization strategy is
utilized to construct the PIES model based on the
Stackelberg game.

(2) Scenario 2: no energy storage devices are considered.
The leader is the ESO, and the followers are only
producers and energy users.

The above scenarios are adopted to calculate the corre-
sponding payoffs of the game participants, as shown in Table 6.

A comparison between Scenarios 1 and 2 reveals that the
revenue of the ESO, the EP, and the EU can be improved
after introducing the energy storage, with the revenue of the
ESO increasing by 785 ¥. Energy storage devices also help the
consumption of renewable energy sources, reducing the rate
of wind and light curtailment and improving the revenue of
the overall system.

To verify the validity of the model proposed in this paper
regarding the load side, the following comparison of the
benefits of each subject under two scenarios is considered
separately:

(1) The optimization of the load side is not considered,
and the data obtained from the forecast is used for
the load-side power

(2) Considering the level ability of the electric load and
the curtailing of the thermal load, the load-side
power utilizes the optimized data in Figure 11

From the comparison results of the two scenarios in
Table 7, when the load-side adjustability is considered, the
energy cost decreases from 22875 to 20254, and the utility
function increases from 32106 to 32875. Overall, the load-
side objective function increases from 9231 to 12621. It
shows that the model proposed in this paper can reduce
energy costs and improve the economy of energy use while
ensuring the comfort of energy use. The revenue of the
producer decreases because the load side cuts some of the
load.

15

6. Conclusions

The manuscript suggests an optimal dispatch model based
on the Stackelberg game, with the ESO as the upper-level
leader and the EP and the EU as the lower-level followers,
considering the privacy, economy, and stability of the agents.
Each agent pursues the highest return under stable operation
and formulates its respective trading strategies to reach
Stackelberg equilibrium after several games.

An implementation method is proposed to determine
the game equilibrium, which can protect the privacy of each
agent. To resolve the problems of uneven initial population
distribution and quickly fall into local optimum in the
conventional COA, some improvements are introduced,
such as chaotic mapping of initial populations, utilizing the
beetle antennae search strategy to strengthen the best and
the worst coyotes, dynamic grouping, and genetic crossover.
This improves the convergence speed, the global search
ability, and the solution stability of the algorithm. These
improvements increase the daily revenue of the ESO by
11.8%, while the BCOA-based optimized system increases
the revenue while ensuring the stable operation of the
system.

The algorithm analysis shows that the proposed game
model enhances the revenue of each agent and reduces the
pressure of energy consumption at the maximum load by
introducing the energy storage provider. The transferable
electric load is shifted to the valley through the demand
response of the consumers, improving the consumer surplus
and reducing the load fluctuation.

The optimal operation method of the proposed PIES is
employed to obtain the optimal equilibrium strategies for
each agent in the game process, which can be considered as a
reference value for market decisions. To enhance system
integrity, future research will investigate the impact of the
inclusion of other agents into the game model and the in-
clusion of more energy conversion and storage devices.

Abbreviations

PIES:  Park-level integrated energy system
CCHP: Combined cooling heating and power

DR: Demand response
TOU: Time of use
COA: Coyote optimization algorithm

BCOA: Beetle antennae search coyote optimization
algorithm

BAS:  Beetle antennae search

EU: Energy users

ESP:  Energy storage provider

EP: Energy producer

ESO:  Energy system operator

PV: Photovoltaics

GB: Gas boiler

WHB: Waste heat boiler

GT: Gas turbine

TST:  Thermal storage tank
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