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(is study introduces a resilient frequency controller for nonlinear interconnected power systems to counteract endogenous/
exogenous system disturbances. A neural network-based observer (NNO) is intended to estimate lumped system disturbances,
such as unmodelled dynamics and unknown disturbances. (e estimated NNO’s output is incorporated with a second-order
sliding mode controller (SOSMC) to minimize chattering in the control effort and improve the nominal performance of the
undertaken plant.(e design parameters of SOSMC have been optimally identified by applying Harris hawk optimization (HHO),
exercising integral error-based objective function. HHO has demonstrated superior tuning capabilities than other well-known
optimization methodologies in terms of convergence rate and transient measurements of system outputs. (e asymptotic
convergence of estimated error and overall stability of the system has been established employing the Lyapunov argument. System
outputs are compared with the results reported in the literature to validate the efficacy of the proposed resilient frequency
controller. Presented results showcase the mastery of the applied NNO-based SOSMC over its counterparts in weaker chattering,
fast disturbance rejection, and a high degree of robustness against endogenous/exogenous disturbances.

1. Introduction

Due to the continuum shrinking of conventional fossil fuel
resources, escalating fuel prices, geographical constraints,
global warming, and increasing load demand, low-inertia
inverter-based renewable energy resources (RERs) that are
integrated into the existing power grid have been progres-
sively increased. Among the RERs, wind power generator
(WPG) is widely utilized due to their high energy conversion
efficiency and relatively cheaper than photovoltaic system [1].
In the future, wind energy is predicted to meet a large portion
of global energy needs. Several huge offshore wind farms have
already been built and are connected to the electrical grid.
Wind energy farms are predicted to produce 40% of all energy
in the United States by 2030.

Grid frequency stability and power system operation
grow increasingly difficult as large-scale wind farms are
developed. (e frequency stability in the region is impacted
by the randomness and nondispatchable characteristics of
wind power [2]. WPGs contribute little or nothing to

frequency stability. Due to the use of power electronic
converters, modern wind farms are mostly isolated from grid
frequency and do not contribute to power system inertia.
Only synchronously connected rotating generators and
motors give apparent inertia and help to maintain frequency
stability. Hence, large penetration of variable renewable
energy reduces the power system’s apparent inertia, which
can cause undesired frequency variation, voltage instability,
low-grade power quality, and reliability obstruction.
Moreover, unpredictable load variations may cause the
frequency to droop from its theoretical value (50Hz/60Hz).
Excessive frequency droop may cause instability/blackout of
the entire system. To preserve frequency stability under
extensive penetration of WPGs, the design and realization of
resilient frequency controllers are in high demand [2, 3].

1.1. Litrature Survey. To alleviate frequency oscillations
caused by sudden load variations and/or RERs transient,
various control methodologies have been reported in the
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state of the art, including metaheuristic-based classical
controllers [4–6], robust controllers [7], fractional-order
aided controllers [8–10], intelligent controllers [11, 12], and
so on. According to a study of the existing literature, the
performance of conventional controllers in frequency reg-
ulation of power systems with/without RERs incorporated
has been widely used [2, 3]. An output feedback-based
optimal control for in frequency regulation of reduced
power systemsmodel has been discussed in reference [13]. In
the above-cited works, traditional controllers considerably
improve system dynamics. However, its performance de-
teriorates with parametric uncertainty, unmodelled dy-
namics, and unknown/uncertain external perturbations.
Fuzzy-aided controllers may overcome the above-said
limitations and increases stability degree. However, the
design of a fuzzy-aided controller requires high training data
set, a suitable selection of input control parameters (e.g.,
membership function and scaling factors), and is compu-
tationally intensive [6].

Robust control algorithms are necessary to achieve good
dynamic performance throughout various operating con-
ditions and severe loading fluctuation. (e sliding mode
controller (SMC) has appeared as one of the most powerful
robust controllers for uncertain nonlinear interconnected
power systems (NIPSs) due to its inherent robust operation
against structured vulnerabilities and considerable im-
provement in the system dynamics [14, 15]. In frequency
regulation of power systems with or without RPRs, the SMC
has received much attention. In references [16–18], SMC’s
ability to provide quick frequency response was highlighted,
leaving high-frequency oscillation (chattering) in control-
ler’s output. In reference [19], nonlinear SMLFC for power
systems is presented. A disturbance-observer based SMLFC
is discussed in references [20, 21]. Considering the above-
said troubled situation, the SMC’s performance has been
improved by integrating linear/nonlinear disturbance ob-
servers [21, 22]. Sliding mode observer-based SMLFC has
been presented in reference [23].

According to the above study, a frequency controller is
developed for a rationalised power system that includes or
excludes renewable energy inputs. After that, the perfor-
mance of the controller is examined, considering system’s
nonlinearities (governor dead band (GDB) and generation
rate constraints (GRC)) as well as parametric uncertainties.
(e research mentioned above did not consider the system’s
nonlinearities and uncertainties while building the system
model. Chattering is generally acknowledged to be a major
impediment to the traditional SMC. A literature assessment
also reveals that a trade-off between chattering and ro-
bustness is required to increase SMC’s performance [24, 25].

Disturbance compensation was used by power system
researchers to reduce the impact of system’s nonlinearities
and uncertainties.(us, the planning a state and disturbance
estimator with an effective approximation is a fundamental
for achieving a superior control structure. (e neural net-
work is the most used estimation technique of the system
uncertainties/dynamics, despite its excellent approximation
analysis and adaptive learning capabilities. In reference [26],
the performance of the neural network-aided integral SMC

(NN-ISMC) was examined, and it was found to be more
effective than conventional SMC in improving chattering
tasks [25, 26]. In reference [27], NN-based nonlinear SMC
has been applied for frequency regulation of a power system.
NN was used to estimate unmatched plant uncertainties. In
reference [28], NN-based fractional-order ISMC is de-
scribed. However, the drawback of this literature was the
controller parameter was taken by trial-error method, and
the chattering was not eliminated in controller output. A
resilient frequency controller has been attempted to coun-
terbalance power-frequency oscillations of the studied
power system, taking into account the benefits of neural
networks and second-order sliding mode controllers
(SOSMCs).

1.2. Motivations. Given the preceding discussion, the fol-
lowing attributes encourage the examination of the present
work:

(i) To deliver a stable and consistent electrical power to
end-users, the analysis of a realistic (including
parametric uncertainty and nonlinearities) non-
linear interconnected power systems (NIPSs) with
renewable energy resources integrated may be
carried out.

(ii) Estimation of plant uncertainty is needed for
enriching the controller performance.

(iii) (e traditional SMC suffers from a chattering
problem. (erefore, implementing a resilient fre-
quency controller for stable power systems opera-
tion with the minimum chattering is imperative.

However, to tackle the frequency regulation problem, a
neural network observer (NNO) and second-order SMC
(SOSMC) are fused due to their accuracy and extensive
application. (e NNO is best suited to predict system
variables reliably, even in any power system vulnerability.
(e NNO may also get approximate realizations of plant
dynamics in frequency regulation support based on its in-
put-output history when subjected to uncertain nature
constrained renewable power integration. In SOSMC, a
control input’s derivative is used to perform a second-order
derivative of the sliding variable. (e control input’s de-
rivative is discontinuous. However, the control input’s in-
tegration is continuous, making the control input less
chattering. As a result, wear and tear issues in the governor
valve actuator in the steam turbine servo system are reduced.

1.3. Contributions. As a result of the abovementioned as-
pects, the significant contributions in this study are listed
below.

(i) Design and access the SOSMC’s frequency control
performance in a nonlinear interconnected power
system (NIPS).

(ii) (e SOSMC’s impacts are evaluated using a power
system model that includes both thermal and wind
power plants.

2 International Transactions on Electrical Energy Systems



(iii) (e impact of power system’s nonlinearities such as
GDB and GRC on controller performance has been
examined.

(iv) NNO is designed and used to estimate system states
and lumped unknown/uncertain plant mismatches,
and an improved control law/effort is generated
based on this estimation.

(v) Harris hawk optimization (HHO) is applied to tune
the parameter of SOSMC and compared with salp
swarm algorithm (SSA), particle swarm optimiza-
tion (PSO), deferential evaluation (DE), and crow
search algorithm (CSA). (e tuning competence of
HHO algorithm has been measured in terms of
convergence rate with PSO, DE, CSA, and SSA
under identical simulation environment.

(vi) A comparison analysis was conducted to verify the
superiority of the applied optimized SOSMC over
the NN-ISMC [26] in terms of system performance,
chattering, and robustness against system
mismatches.

1.4. Organization of the Study. (e rest of the study is laid
out as follows. Section 2 presents the modelling of the
analysed NIPS with a wind power system. Section 3 discusses
the implementation and analysis of NNO-based SOSMC.
Section 4 contains the simulation outputs and a comparison
discussion. (e conclusion of the current work is described
in Section 5.

2. System Modeling

To quantify the mastery of the proposed NNO-SOSMC, a
thermal power plant having wind power plant integrated has
been undertaken to perform the present investigation.
Figure 1 depicts the linearized model of the studied test
system. To carry out the investigation on the realistic do-
main, detailed mathematical models of WTG, including
wind aerodynamics, coupling shaft, and generator, have
been derived and considered for the assessment of the
proposed controllers’ performance. (e GRC and GDB as
physical constraints are involved in the model to assess the
proposed controller’s efficacy in coping with physical con-
straints. (e dynamical model of the studied system is
represented by the following differential equations:

Δfi

·

(t) � −
1

Tpi

Δfi(t) +
Kpi

Tpi

ΔPgi(t) −
Kpi

Tpi

ΔPij(t) −
Kpi

Tpi

ΔPdi(t)

Δpti

·
(t) � − ΔPti(t) + ΔXgi(t)􏽮 􏽯

1
Tti

+
n2

Tgi

−
Δfi(t)

R
− ΔEi(t) + u(t)􏼨 􏼩

1
Tti

ΔXgi

·

(t) � −
1
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ΔXgi(t) +
1

Tgi

n1 −
n2

Tgi

􏼨 􏼩 −
Δfi(t)
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− ΔEi(t) + u(t)􏼨 􏼩

ΔEi

·

(t) � KeiBiΔfi(t) + KeiΔPtieij
(t)

ΔPtieij

·

(t) � 2πTi,j Δfi(t) − Δfj(t)􏼐 􏼑

where i, j � 1, 2, i≠ j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)

where Δfi,ΔPti,ΔPtieij
,ΔXgi, and ΔEi are the changes in

area frequency, nonreheat turbine output, tie-line inter-
change power, governor valve position, and integral control
effort, respectively; ΔPdi(t) and Pw are the deviation in the
load demand and uncertain output power of WTG, re-
spectively; Tgi, Tpi, and Tti are the time constants of speed
governor, power system, and turbine,respectively; T12 is the

time constant of tie-line. Table 1 provides the nominal values
of the thermal power system.

2.1.WindTurbineGenerator (WTG)Model. A variable speed
WTG system model, as presented in Figure 1, is obtained to
quantify the performance of proposed NNO-SOSMC
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against the uncertain/unknown wind power output. (e
mechanical power output of wind aerodynamic is given by
the following equation:

Pm �
1
2
ρAbV

3
wCP(λ, β)

where,

CP � c1
c2

λk

− c3β − c4􏼠 􏼡exp
− c5

λk

􏼠 􏼡 + c6λ

1
λk

�
1

λ + 0.08β
−

0.03
β3 + 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

(2)

where ρ is the air density (kg/m3), Vw is the incoming wind
speed (m/s2), Ab is the WT blade swept area (m2), and Cp is
the power coefficient [19, 25].

(e model of coupling shaft is given by the following
equations:

ω
•

t(t) � −
Bt + Bsh

It

􏼠 􏼡ωt(t) +
Bsh

It

􏼠 􏼡ωg(t) −
δtg(t)

It

+
1
It

􏼠 􏼡Tr,

ω
•

g(t) �
Bsh

2Ig

􏼠 􏼡ωt(t) −
Bg + Bsh

Ig

􏼠 􏼡ωg(t) +
δtg(t)

NgIg

−
1
Ig

􏼠 􏼡Tg(t)

δ
•

tg(t) � Ksh ωt(t) −
ωg(t)

Ng

􏼠 􏼡,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3)

where Tg and Tr are the torque on generator and rotor side,
respectively; Ig and It are the inertia of generator and rotor
side, respectively; Bg and Bt are the rotor damping coeffi-
cients of generator, and turbine,respectively; Bsh and Ksh are
the damping and spring constant of the shaft,respectively;
Ng is the gear-train ratio; ωg and ωt are the generator speed
and rotor speed, respectively; δtg is the shaft stiffness of the
two-mass model. An asynchronous generator has been
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Figure 1: Two-area nonlinear interconnected power system (test system 1).
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described by a first-order differential equation, as given in
equation (4). (e generator power Pw � Tg × ωg is delib-
erated as a net WTG’s power output [20, 28].

Tg

•

� −
1
τg

Tg +
uw

τg

, (4)

where τg is the generator’s time constant.
(e state-space model of the investigated power system,

including dynamic variation in system parameter, is ob-
tained as in the following equation:

x(t)
·

� A1x(t) + B1u(t) + Bd1ΔP(t), (5)

where A1 � (A + ΔA), B1 � (B + ΔB), Bd1
� (Bd + ΔBd)

x(t) �
􏼨

Δf1􏼂 ΔPt1ΔGg1ΔE1Δf2ΔPt2ΔGg2ΔE2ΔPtie12 ΔωtΔωrΔδtr

ΔTr]
T ∈ R13×1

u(t) � u1 u2 uw􏼂 􏼃 ∈ R3×1ΔP(t) �

ΔPd1 ΔPd2 Pw Tg􏽨 ]T ∈ R4×1, x(t) is the system states,
u(t) is the states, and ΔP(t) is the disturbance input of the
system. Including the parameter uncertainties, equation (5)
can be written as follows:

x(t)
·

� (A + ΔA)x(t) +(B + ΔB)u(t) + Bd + ΔBd( 􏼁ΔP(t)

x(t)
•

� Ax(t) + Bu(t) + BdΔP(t) + ΔAx(t) + ΔBu(t) + ΔBdΔP(t)

⎫⎪⎬

⎪⎭
,

(6)

whereA ∈ R13×13 is the systemmatrix, B ∈ R13×13is the input
matrix, Bd ∈ R13×4 is the disturbance matrix, computed at
nominal value, and ΔAx(t), ΔBu(t), and ΔBdΔP(t) show
the parametric uncertainties.

GRC bounds the maximum generated power. (e steam
turbine’s output with GRC can be described [25] as follows:

ΔPti

−
1

Tti

􏽚ψdt α(t)<− ψ,

1
Tti

􏽚 α(t)dt |α(t)|≤− ψ,

1
Tti

􏽚ψdt α(t)>ψ.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(7)

(erefore, α(t) � [ΔGgi(t) − ΔPti(t)] andψ > 0. Con-
sidering GRC, equation (6) is modifiedas follows:

x(t)
·

� Ax(t) + Bu(t) + BdΔP(t) + ΔAx(t)

+ ΔBu(t) + ΔBdΔP(t)φ(t).
(8)

where φ(t) in equation (8) denotes the impact of GRC.
(erefore, the state-space model of the studied power system
is described as follows:

x(t)
•

� Ax(t) + Bu(t) + d(t)

whered(t) � ΔAx(t) + ΔBu(t) + ΔBdΔP(t) + ϕ(t) + BdΔP(t)

⎫⎪⎬

⎪⎭
,

(9)

where d(t) symbolizes the lumped unknown plant uncer-
tainties and nonlinearities, and A, B, and H matrices are the
matrices computed for test system 1 described in Appendix.
(e proposed control technique for the system (equation
(9)) is presented in the next section.

3. Control Strategy

A neural network-based observer (NNO) is developed in this
section to effectively estimate limped plant uncertainty
[29–32]; later, the estimated output is incorporated with
second-order SMC for increasing speed of response and
minimizing chattering. (e design of the proposed method
is not distinctive and can be realized on four-area power
system. (e schematic diagram of proposed control struc-
ture is shown in Figure 2.

3.1. Neural Network Observer. (e Chebyshev neural net-
work is a useful tool for estimating vulnerabilities with a
basic topological structure that fills the gap between system
stability and the uncertain boundary value. (e following
recursive formula can be used to define Chebyshev poly-
nomials equation (10) [29, 30].

Pj+1 � 2xPj(x) − Pj− 1(x),

P0(x) � 1,
(10)

where Pj(x) is the Chebyshev polynomial and j is the
polynomial order.

(e structure of neural network (NN) is revealed in
Figure 3. (e output of NN is described in the following
equation:

d(x) � w
Tϕ(x, u) + ε(x), (11)

where ε(x) is the reconstruction error and ‖ε(x)‖≤ ε1 is
bounded.w is the ideal weight of NN.

(e NN observer (NNO) for the system (equation (9)) is
defined as follows:

_􏽢x(t) � A􏽢x(t) + Bu(t) + 􏽢d(t) + L(y(t) − 􏽢y(t))

􏽢y(t) � C􏽢x(t)

⎫⎬

⎭. (12)

where 􏽢x is the estimated state variable and 􏽢y is the estimated
output. (e observer gain L ∈ Rn×m is chosen such that the
matrix (A − LC) is a Hurwitz matrix [28]. (erefore, matrix
(A, C) should be observable.

Table 1: (ermal power system parameters.

Kp1, Kp2 120 Tt1, Tt2 0.3 B1, B2 0.425 Ki1, Ki2 1.2 n1 0.8
Tp1, Tp2 20 Tg1, Tg2 0.08 T12 0.05 R1, R2 2.4 n2 − (0.2/π)
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Assumption 1. (e ideal weight ‖w‖F ≤wm, where ‖ · ‖F

represents the Frobenius norm.
(e NN estimate of d(x) is described by using the

following equation:
􏽢
d(x) � 􏽢w

Tϕ(x, t), (13)

where 􏽢w is the estimated weight w,
ϕ(x) � [1Pj(x1) . . . Pj(x13)]

T, and j� 2.
(e NNO error dynamics is represented by the following

equation:

e(t) � x(t) − 􏽢x(t). (14)

Using equations (9) and (12), the error dynamics of
NNO is represented as follows:

e(t)
·

� (A − LC)e(t) + w
T
(ϕ(x, u) − ϕ(􏽢x, u)) + ε(x) + 􏽥w

Tϕ(􏽢x, u),

(15)

where 􏽥w � w − 􏽢w, andAL � A − LC, and the tuning law of
weight 􏽢w is given in equation (31).

3.2. Design of Second-Order Sliding Mode Controller
(SOSMC). Sliding mode control (SMC) is identified as an
effective, robust control technique due to its (i) fast dynamic
response and (ii) insensitivity to variations in plant pa-
rameters and external disturbance. SOSMC is developed in
this section to reduce chattering at the SMC output while
maintaining the system’s robustness. (e main inadequacy
of SMC is the chattering, which may cause damage to the
final control element and makes the system more vulnerable
to instability. Hence, it is required to quickly reduce/elim-
inate the chattering at the controller output effectively.
Using a SOSMC can help reduce chattering and increase the
overall robustness of a closed-loop control system. SOSMC
design comprises two basic steps, similar to traditional SMC
design: choosing a sliding surface and developing an ef-
fective control law. SOSMC has been designed based on the
assumptions listed below [20, 27].

Assumption 2. (e pair (A, B) is fully state controllable.

Assumption 3. ‖ _d(t)‖≤d, d(> 0), where ‖ · ‖ indicates the
standard vector norm, d(t) is continuously differentiable
function and bounded; that is, d is unknown but bounded
positive constant.

Let the first-order sliding surface be

σ(t) � α1􏽢x(t) − 􏽚
t

0
α1A − α1Bα2( 􏼁􏽢x(τ)dτ, (16)

where α1 and α2 are the controller design parameters with
appropriate dimension, the matrix α2 is to be selected to
make sure the eigenvalues of Re(A − Bα2)< 0, and |α1B|≠ 0.

(e prime objective of the SOSMC is to act on second-
order derivative of the sliding surface σ(t) rather than the
first derivative as in standard-sliding mode, also retaining
the advantage of the SMC, and SOSMC also has the ad-
vantage of eliminating the chattering effect [24]. (e basic
equality condition to design SOSMC is σ(t) � σ(t)

•

� 0.
To design the SOSMC, the first and second-order time

derivatives of sliding surface (equation (16)) are obtained, as
in equations (17) and (18), respectively:

σ(t)
·

� α1􏽢x(t)
·

− α1A − α1Bα2( 􏼁􏽢x(t) � 0. (17)

σ(t)
··

� α1􏽢x(t)
··

− α1A − α1Bα2( 􏼁􏽢x(t)
•

� 0. (18)

For designing SOSMC, the sliding function is chosen as
shown in the following equation:

σn(t) � σ(t)
•

+ Υσ(t), [Υ> 0], (19)

where σn(t) is the second-order sliding surface. Differen-
tiating equation (19) yields

σn(t)
·

� σ(t)
··

+ Υσ(t)
·

. (20)

Substituting equations (17) and (19) into equation (20)
gives

NN

C

A

1
s

1
s C

L

x

ŷ

y

x̂

x̂

NN Observer

SOSMC x̂

ŷ
u

d̂

Haris hawk optimization
Objective function Eq. (46)

System states

x

∆fi ∆Ptieij

Plant
x(t)= Ax(t)+Bu(t)+d(t)

+ +

+

+
-

Figure 2: Schematic diagram of neural network observer with a
controller.

Chebyshev
Expansion

d̂

x̂1

x̂2

x̂n-1

x̂n

wT

∑

Figure 3: Structure of NN.
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σn

·
(t) � α1􏽢x

·

(t) − α1A − α1Bα2( 􏼁􏽢x
·

(t) + Υ α1􏽢x
·

(t) − α1A − α1Bα2( 􏼁􏽢x(t)􏼚 􏼛

or σn

·
(t) � α1 A􏽢x

·

(t) + Bu
·
(t) + d

·

(t)􏼚 􏼛 − α1A − α1Bα2( 􏼁􏽢x
·

(t) + Υσ
·
(t)

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (21)

(e equality hitting condition (σn(t)σn(t)
·

< 0) is as-
sumed for designing the controller [20]:

σn(t)
·

� − c1σn(t) − c2sgn σn(t)( 􏼁. (22)

From equations (21) and (22), we get

u(t)
·

� − α2x(t)
·

− α1B( 􏼁
− 1 α1

����
����d(t) + Υσ(t)

·

+ c1σn(t) + c2sgn σn(t)􏼈 􏼉􏼔 􏼕.

(23)

It is impractical to know the exact boundary value d(t) of
the lumped plant uncertainty. (e controller is designed
under the assumption that the uncertainties are unknown
boundary. To refine the control effort, NNO is applied to
estimate the upper bound of uncertain/unknown lumped
plant uncertainty d(t).

Equation (23) is modified by using the Chebyshev-based
NNO approximation:

u(t)
·

� − α2x(t)
·

− α1B( 􏼁
− 1 α1

����
����
􏽢
d(t) + Υσ(t)

·

+ c1σn(t) + c2sgn σn(t)􏼈 􏼉􏼔 􏼕

u(t) � 􏽚
t

0
− α2x(t)

·

− α1B( 􏼁
− 1 α1

����
����
􏽢
d(t) + Υσ(t)

·

+ c1σn(t) + c2sgn σn(t)( 􏼁􏼒 􏼓􏼔 􏼕dτ

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (24)

Equation (24) represents the control law of the proposed
SOSMC integrated with NNO (NNO-SOSMC). (e con-
troller parameter is optimized by Harris hawk algorithm,
which is given in Section 4. (e stability analysis of the
proposed controller is given in the next subsection.

3.3. Stability Analysis

Assumption 4. |(wTϕ(x) − d)|≤ ξ, ξ is a positive constant.

Theorem 1. Take Assumption 1–3 into account. Considering
the system (equation (9)), sliding surface (equation (19)), and
control law equation (24), if the system is stable, then weight
update law for NN has the following form:

􏽢w
·

� Τ k1
����

����ϕσT
n − kw σn

����
����Τ􏽢w, (25)

where Τ is a positive constant. Ee weight error 􏽥w and sliding
surface σn are constrained by

σn

����
����>

kww
2
m/4􏼐 􏼑 − c2

����
���� − α1

����
����‖ξ‖

c1( 􏼁min

⎛⎝ ⎞⎠,

‖􏽥w‖F >
wm

2
+

������������������

kww
2
m

4
− c2

����
���� − α1

����
����‖ξ‖

􏽳

.

(26)

Proof. Take into account the following Lyapunov function
candidate:

V �
1
2
σT

n σn +
1
2

􏽥w
TΤ− 1

􏽥w, (27)

where 􏽥w � w − 􏽢w and _􏽥w � − _􏽢w.
Differentiating equation (27)

_V � σT
n σn

·
− 􏽥w

TΤ− 1 _􏽢w. (28)

Using equations (21) and (28)

V
·

� σT
n α1􏽢x(t)

··

− α1A − α1Bα2( 􏼁􏽢x(t)
·

+ Υ α1􏽢x(t)
·

− α1A − α1Bα2( 􏼁􏽢x(t)􏼚 􏼛􏼔 􏼕 − tr 􏽥w
TΓ− 1

􏽥w
·

􏼒 􏼓

V
·

� σT
n α1 A􏽢x(t)

·

+ B􏽢x(t)
·

+ d(t)
·

􏼚 􏼛 − α1A − α1Bα2( 􏼁􏽢x(t)
·

+ Υ α1􏽢x(t)
·

− α1A − α1Bα2( 􏼁􏽢x(t)􏼚 􏼛􏼔 􏼕 − tr 􏽥w
TΓ− 1

􏽥w
·

􏼒 􏼓

V
·

� σT
n α1 Bu(t)

·

+ d(t)
·

􏼚 􏼛 + α1Bα2􏽢x
·

(t) + Υσ(t)
·

􏼔 􏼕 − tr 􏽥w
TΓ− 1

􏽥w
·

􏼒 􏼓

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (29)

Substituting the control law equation (24) into equation
(29)
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V(t)
·

� σT
n (t) − α1

����
����􏽤d(t) − α1Bα2􏽢x(t)

·

− Υσn(t)
·

− c1σn(t) − c2sgn σn(t)􏼈 􏼉 + α1
����

����􏽤d(t) + α1Bα2􏽢x(t)
·

+ Υσ(t)
·

􏼔 􏼕 − tr 􏽥w
TΤ− 1

􏽢w
·

􏼒 􏼓

V(t)
•

� σT
n (t) − α1

����
����(􏽤d(t) − 􏽤d(t)) − c1σn(t) − c2sgn σn(t)􏼈 􏼉􏽨 􏽩 − tr 􏽥w

TΤ− 1
􏽢w
·

􏼒 􏼓

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (30)

Substituting equation (25) into equation (30)

V
·

≤ σT
n (t) − α1

����
����w

Tϕ − ξ − 􏽢w
Tϕ􏽨 􏽯 − c1σn(t) − c2sgn σn(t)􏼈 􏼉]

− tr 􏽥w
TΤ− 1 α1

����
����ΤϕσT

n − kw σn

����
����Τ􏽢w􏼐 􏼑􏽮 􏽯.

(31)

It is noted that σT
n (t) sign σn(t) � ‖σn‖ in equation (31).

Owing to σT
n (t)c1σn(t) � ‖σn‖(c1)min‖σn‖, (c1)min is the

minimum eigenvalue of c1. Equation (31) can be rewritten as
follows:

V
·

≤ − σn

����
���� c1( 􏼁min σn

����
���� − c2

����
���� σn

����
���� − α1

����
����‖ξ‖ σn

����
���� + α1

����
����􏽥w

TϕσT
n􏽨 􏽩 − tr 􏽥w

T α1
����

����ϕσT
n − kw σn

����
����􏽢w􏼐 􏼑􏼐 􏼑

V
·

≤ − σn

����
���� c1( 􏼁min σn

����
���� − ‖μ‖ σn

����
���� − α1

����
����‖ξ‖ σn

����
����􏽨 􏽩 + tr kw σn

����
����􏽥w

T
􏽢w􏼐 􏼑)

⎫⎪⎬

⎪⎭
. (32)

(e inequality is applied as given in the following
equation:

tr 􏽥w
T
(w − 􏽥w)≤ ‖w‖F‖􏽥w‖F − ‖􏽥w‖

2
F.􏼐 (33)

We get

V
·

≤ − σn

����
���� c1( 􏼁min σn

����
���� + c2

����
���� + α1

����
����‖ξ‖ + kw‖􏽥w‖F ‖􏽥w‖F − wm( 􏼁􏽨 􏽩

V
·

≤ − σn

����
���� c1( 􏼁min σn

����
���� + c2

����
���� + α1

����
����‖ξ‖ + kw ‖􏽥w‖F −

wm

2
􏼒 􏼓

2
−

kww
2
m

4
􏼢 􏼣

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

σn

����
����>

kww
2
m/4􏼐 􏼑 − c2

����
���� − α1

����
����‖ξ‖

c1( 􏼁min

⎛⎝ ⎞⎠,

‖􏽥w‖F >
wm

2
+

������������������

kww
2
m

4
− c2

����
���� − α1

����
����‖ξ‖

􏽳

.

(34)

As a result, V
·

(equation (34)) is negative outside of a
compact set, demonstrating that it is uniformly ultimately
bounded (UUB) of both ‖σn‖ and ‖􏽥w‖F.

Harris hawk optimization (HHO) is applied to tune the
parameter of SOSMC, which is given in next section. □

4. Harris Hawk Optimization (HHO)

(e Harris hawk (HH) is one of the most intellectual and
illustrious birds in nature with unique mass hunting skills in
tracking, swirling, rinsing, and capturing potential animals
(rabbits) in the group in search of food. (e starting pop-
ulation here is supposed to be a crowd of hawks (solving
optimization problems) trying to hunt the target rabbit with
seven killing strategies from different directions. First, the
leader hawk attempts to attack the prey. If the animal cannot
be grabbed due to prey dynamism and escape behavior,
switching tactics are performed to attack the escaped prey

until another group will hit the escaped prey until caught.
(e key benefit of this tactic is that birds can chase pointed
rabbits through the confusion and exhaustion of fleeing
prey. (erefore, HHO indicates the exploration and ex-
ploitation stages, which are described in Figure 2 [33–35].

Step 1: Exploration Phase. (e perch of the leader hawks is
determined by the location of family members and prey.(is
is expressed as a mathematical equation for the change in
distance between the hawks and the prey, as defined in the
following equation:

Z(j + 1) �
Zrand(j) − r1 Zrand(j) − 2r2Z(j)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, p0 ≥ 0.5,

Zrabbit(j) − Zm(j) − r3 LB + r4(UB − LB)( 􏼁, p0 < 0.5,

⎧⎨

⎩

(35)

where Z(j + 1) is the updating vector of the Hawk’s position
at the j+ 1 iteration, Zr(j) is the position of the prey, Z(j) is
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the position vector of the hawks at the jth iteration,
r1, r2, r3, r4, andp0 are random numbers between 0 and 1,
LB and UB are the lower and upper bounds of variables, and
Zra(j) and Zm(j) are the initial population assumed
randomly.

(e average position of each hawk is defined in the
following equation:

Zi+1(j) �
1
N

􏽘

N

i�1
Zi(j), (36)

where Zi(j) is the present location of hawks, Zi+1(j) is the
updated location, and the total number of hawks is repre-
sented by N.

Step 2 During the exploration phase, the hawks attempt to
locate and hit the prey. Due to this, there may be substantial
alternate withinside the energy (Ee) of the prey and it is given
in the following equation:

Escaping Energy, Ee � 2Eeo 1 −
t0

Γ0
􏼠 􏼡, (37)

where t0 is the present iteration, Γ0 is the maximum iteration
count, and the starting energy (Eeo) varies randomly be-
tween − 1 and 1 at each iteration. Ee ≥ 1 shows prey’s leaping
behavior and the hawks are searching for prey in different
location, and Ee < 1 suggests that the prey turns into
exhausted.

Step 3 Exploitation Phase. At this point, the prey is attacked
using a variety of strategies. When the prey is successfully
fleeing from hawks, the probability of escaping is depicted as
er, and when er < 0.5 and er ≥ 0.5, the prey is successfully and
unsuccessful escaped, respectively. If the prey escaped when
er ≥ 0.5, |Ee|< 0.5 and er ≥ 0.5, |Ee|≥ 0.5, then a hard siege
and soft siege occurs, respectively.

Step 4 Soft Siege (SS). Here, the rabbit possesses energy and
attempts to escape by leaping and the hawks surround it
softly, which is shown in the following equation:

Z(j + 1) � ΔZ(j) − E IZrabbit(j) − Z(j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

ΔZ(j) � Zrabbit(j) − Z(j).
(38)

(e random jump of the rabbit is given by I � 2(1 − r5),
where ΔZ(j) is the difference between the position of con-
secutive iteration and r5 is the number n between 0 and 1.

Step 5 Hard Siege (HS). Here, the prey is completely
exhausted and the hawks encircle it hardly. Equation (45) is
used to update the positions, as shown in the following
equation:

X(j + 1) � Xrabbit(j) − Ee|ΔX(j)|. (39)

Step 6 Soft Siege with Consecutive Quick Dives. (e rabbit
still has energy and attempts to flee, which is depicted as
|Ee|≥ 0.5 and er < 0.5; therefore, a soft siege is necessary

before the hawks’ surprise pounce. (is is a more intelligent
step than the one before it. (e Levy flight (LF) idea was
developed here for progressive quick dives of hawks to
execute a soft siege, with the hawks evaluating the prey’s next
move using the following equation:

Y � Zrabbit(j) − E IZrabbit(j) − Zm(j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (40)

Despite many efforts, the hawks evaluate each of their
motions to the previous dive to decide whether it was a
successful dive. It executes an uneven, sudden, and quick
dive to reach the prey animal if the dive is not reasonable.
We suppose the hawks dive based on LF-based patterns and
use the following rule:

H � Y + S × LF(M), (41)

where M is the dimension of the problem and S is the
random vector of size 1× M.

(e levy flight function (LF) can be demonstrated, as
shown in the following equation:

LF(z) � 0.01 ×
μ × ζ

|υ|
(1/δ)

∴ζ �
τ(1 + δ) × sin(πδ/2)

τ(1 + δ/2) × δ × 2(δ− 1/2)
􏼠 􏼡

1/δ

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (42)

Here, μ and υ are accidental values in the range (0, 1) and δ is
a constant supposed to be equal to 1.5. As a result, in the soft
siege phase, the final updating rule for the hawk’s position is
defined in the following equation:

Z(j + 1) �
Y f(Y)<f(Z(j)),

H f(H)<f(Z(j)),
􏼨 (43)

where Y and H are calculated using equations (40) and (41).

Step 7 Hard Siege with Continuous Quick Dives. In this
situation |Ee|< 0.5, the prey animal loses energy and be-
comes fatigued. (e hawks then employ a hard siege to close
the distance between them and the prey, allowing them to
kill the prey. (e case updating rule is shown as follows:

Z(j + 1) �
Yf(Y)<f(Z(j)),

Hf(H)<f(Z(j)),
􏼨 (44)

Y � Zrabbit(j) − E IZrabbit(j) − Zm(j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (45)

H � Y + S × LF(M). (46)

Y in equation (45) and H in equation (46) are the next
positions for the new iteration until the prey is killed. (e
proposed approach is shown (Figure 4) in the form of HHO
pseudocode [33].

A regulatory constraint (boundary) optimization
problem can be used to describe the proposed frequency
regulation problem. (e optimum gains of NNO-SOSMC
are explored, and by applying HHO, an integral time ab-
solute error (ITAE)-based objective function is defined in
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equation (47). ITAE-based objective function is chosen for
parameter optimization as it concurrently improves both
transient and steady-state performance. Moreover, to carry
out an unbiased comparative study, an identical objective
function as defined in [36] is chosen in this work and defined
in equation (47).

Similar objective function defined in [36] has been de-
liberated in equation (47). (e optimized parameters of
NNO-SOSMC are R, C, andΥ. Performing an empirical
study, the above-said controller parameter boundary ranges
are set as α1 ∈ [0.01, 4], α2 ∈ [0.01, 4],
c1 ∈ [0.01, 2] and c2 ∈ [0.01, 1]. To carry out the simulation,
maximum iteration and population size are considered 100
and 25, respectively.(e control settings are listed in Table 2.

J � 􏽚
t

0
Δfi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Δfj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ΔPtieij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕tdt. (47)

(e simulation outputs of the proposed optimization
technique (HHO) are compared with other well-known
optimization methods, as given in the next section.

5. Simulation Results

(e control performance of NNO-based SOSMC under the
LFC framework has been assessed for two- and four-area
interconnected power systems. (e robustness of the ap-
plied/suggested nonlinear controller against system uncer-
tainties has been evaluated by assuming four different
operating scenarios. Initially, the practicability of developed
NNO in estimating system disturbance without SMC/
SOSMC was studied for test system 1. To perform the
simulation, the load perturbations in the areas are assumed
to ΔPd1 � 0.08p.u, ΔPd2 � 0.06p.u.

Figure 5(a) shows the load disturbance profile applied to
area 1. (e estimated output of NNO is also
(ΔPd1 � 0.08p.u) plotted on the same figure for better
comparison. It is worth noting that NNO efficiently esti-
mates the actual load profile within 0.6 sec, which establish
the proficiency of the developed NNO. (e frequency de-
viation (FD) and tie-line power deviation (T-LPD) of
studied test system 1 with/without NNO are depicted in
Figures 5(b) and 5(c), respectively. (e estimation error is
given in Figure 5(b).

To measure the effectiveness of the developed control
strategy, the system dynamics have been measured con-
sidering the following simulation environments:

Case 1. A step load perturbations are applied to the test
system 1 in the presence of GRC nonlinearity and an ex-
tensive comparative study is performed with HHO and other
well-known optimization methods.

Case 2. A multiple load perturbation is applied simulta-
neously to test system 1 and dynamic performance of system
compare with the proposed HHO-NNO-SOSMC and NN-
ISMC [26] controller.

Case 3. A multiple load perturbation and wind power
perturbation are simultaneously applied to test system 1 and

dynamic performance of system is compared with the
proposed HHO-NNO-SOSMC and NN-ISMC controller.

Case 4. Lastly, the performance of controller is investigated
under the four-area NIPS (test system 2).

Case 5. In this case, two step load perturbations ΔPd1 �

0.015p.u, andΔPd2 � 0.01p.u at t� 5sec are applied si-
multaneously to the test system 1 in the presence of GRC
nonlinearity to carry out a fair comparison with the result of
reference [26]. (e optimized parameters of NNO-SOSMC
and minimum objective function value (ITAE) are com-
puted with different optimization techniques for a pop-
ulation size of 25 and 100 iterations, respectively. (e
convergence characteristic of HHO is obtained and is
compared with Figure 6(a). It is noteworthy from Figure 6(a)
that HHO attains the global minimum solution quickly and
gives the least minimum objective function value compared
to SSA, CSA, DE, and PSO.

(e dynamic performances of test system 1 using HHO-
tuned NN-SOSMC are illustrated in Figures 6(b)–6(d). (e
outputs obtained with PSO based PID, NN-ISMC [26], and
SSA/DE/CSA/PSO-tuned NNO-SOSMC are also plotted in
Figures 6(b)–6(d) to quantify the effectiveness control
methodology. Table 3 lists the time response measurements
of Figures 6(b)–6(d).

It is apparent from Table 3 and Figures 6(b)–6(d) that
HHO-tuned NNO-SOSMC yields better system outputs
than SSA, DE, CSA, and PSO-tuned NNO-SOSMC con-
trollers in terms of settling time and peak magnitude of
system oscillations. As a result, it is possible to conclude that
HHO is capable of obtaining improved near-optimal fre-
quency and power deviations for the investigated test sys-
tem. In the following investigation, HHO is only considered
to optimize the controller parameters. (e control effort of
the controllers is given in Figure 6(f), where NNO-SOSMC
shows less chattering in comparison to NN-ISMC [26].

Case 6. In this case, a multiple load perturbation given in
Figure 7(a) is applied simultaneously to two-area NIPS with
GRC and GDB nonlinearities. (e dynamic performance
NIPS after these perturbations is revealed in Figures 7(b)–
7(d). (e results show that the suggested HHO-NNO-
SOSMC effectively reduces frequency oscillations in this
scenario. Furthermore, the given controller provides a re-
sponse with the least amount of peak overshoot and un-
dershoot, as well as a short settling time. As a result, it is
possible to conclude that HHO-NNO-SOSMC is superior to
NN-ISMC [26]. (e control effort and NN output of the
controllers are shown in Figures 7(e) and 7(f), respectively.

Case 7. In this case, multiple load perturbation (Figure 7(a))
and wind power perturbation (Figure 8(a)) are simulta-
neously applied to NIPS. (e dynamic performance of NIPS
after these perturbations with HHO-NNO-SOSMC andNN-
ISMC controller is plotted in Figures 8(b)–8(d). (e fre-
quency deviation with HHO-NNO-SOSMC is quicker with
less undershoot and overshoot than with NN-ISMC, as
shown in Figures 8(b)–8(c). (e control effort and NN
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Table 2: Controller design parameter.

α1
0.289 0.629 0.301 0.152 0.02 0.063 0.031 0.0188 0.51 0 0 0 0
0.156 0.118 0.108 1.018 0.023 0.941 0.123 0.042 1.237 0 0 0 0
0 0 0 0 0 0 0 0 0 2.109 0.701 0.329 0.026

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

α2
1.023 1.941 0.743 0.414 0.566 0.181 0.0287 1.188 1.237 0 0 0 0
0.566 0.181 0.028 1.188 1.023 1.941 0.7431 0.412 1.237 0 0 0 0
0 0 0 0 0 0 0 0 0 3.089 0.801 0.429 0.026

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

c1 diag 0.1 0.2 1.01( 􏼁

c2 diag 0.12 0.22 0.01( 􏼁

Figure 4: Pseudocode of proposed HHO.
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Figure 5: (a) Actual and estimated disturbance. (b) Error in disturbance estimation. (c) FD in area 2. (d) T-LPD.
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Table 3: Comparison of transient analysis of NIPS with different optimization techniques.

Controllers
Δf1 Δf2 ΔPtie J

Settling time (s) Undershoot Settling time (s) Undershoot Settling time (s) Undershoot

NN-ISMC [26] 9.646 0.0115 8.266 0.0073 8.62 0.0036 —
PSO-PID 9.91 0.010 10.52 0.003 10.02 0.028 0.55
HHO-NN-SOSMC 6.615 0.0105 7.598 0.0066 8.14 0.003 0.02
PSO-NN-SOSMC 10.212 0.0121 9.812 0.0067 10.12 0.0032 0.10
DE-NN-SOSMC 9.241 0.0131 10.12 0.0078 9.51 0.0033 0.08
CSA-NN-SOSMC 10.121 0.0142 9.89 0.0082 8.22 0.0040 0.42
SSA-NN-SOSMC 9.452 0.0122 7.621 0.0081 8.51 0.003 0.05
Bold faces show best results.
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output of the controllers are given in Figures 8(e) and 8(f),
respectively.

Case 8. (e performance of controller is investigated
under the four-area IPS, as shown in Figure 9. In this case,
multiple load perturbation (Figure 7(a)) in area 1 and area
2 and random wind power perturbation (Figure 8(a)) in

area 1 are simultaneously applied to 4-area IPS. (e dy-
namic performance of 4-area NIPS after these perturba-
tions is plotted in Figures 10(a)–10(b). (e obtained
results of HHO-NN-SOSMC controller are compared
reported work [26] to demonstrate the superiority of the
HHO-NN-SOSMC controller. It is revealed from
Figures 10(a)–10(b) that frequency deviation with HHO-

O
ut

pu
t o

f N
N

s

5020 30 4010 600
Time (s)

10 20 30 40 50 600

10 20 30 40 50 600
0

0.1

0.2

0

0.2

0.4

0
0.1
0.2

Estimated uncertainity in area 1
Estimated uncertainity in area 2
Estimated wind power pertutrbation in area 1

(e)
C

on
tro

l i
np

ut
s

-0.02

0

0.02

-0.01
0

0.01

0

1

2

10 20 30 40 50 700 60
Time (s)

5020 30 4010 60 700

10 20 30 40 50 60 700

u1

u2

uw

(f )

Figure 8: (a) Wind power disturbance pattern. (b) FD in area 1. (c) FD in area 2. (d) T-LPD. (e) Output of NN. (f ) Control inputs.
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NNO-SOSMC reaches the steady-state level with mini-
mum undershoot and significantly faster as compared to
other controllers.

6. Conclusion

(is study presents the neural network observer (NNO)-
based resilient frequency controller for nonlinear inter-
connected power systems. An NNO is developed to estimate
unmodelled system dynamics and exogenous disturbances.
An optimized second-order sliding mode control (SOSMC),
augmented with the estimated output of NNO, is applied to
regulate frequency outputs of the studied power systems
against unknown and uncertain plant disturbances. (e

design parameters of SOSMC are obtained using Harris hawk
optimization and compared with other well-known optimi-
zation techniques to measure its tuning competence. Simu-
lation results infer that HHO-NNO-SOSMC has minimum
integral time absolute error value (0.02) and settling time
(6.615 s) compared to other control techniques for Case 1. It
also attenuates the chattering better than NNO-based integral
SMC. In addition, the disturbance rejection ability and robust
stability degree of the developed closed-loop control system
improve significantly with the proposed controller.

In the future, the controller performance will be evaluated
considering communication delay in the system. Further-
more, advanced SMC’s variants may be developed to further
reduce chattering while maintaining a closed-loop stability.
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ΔP � ΔPd1 ΔPd2 Pg Tr􏽨 􏽩
T
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T
.

(A.2)

A. Wind Aerodynamic Parameters

ρ� 1.3 kg/m3, Ab � 8505m2, λopt � 8.68, θ� 1°, c1 � 0.5,
c2 � 115,, c3 � 0.38,, c4 � 5,, c5 � 21, c6 � 0.007.

B. Coupling Shaft

Jt � 4.29 s, Jg � 0.9 s, Bt � Bg � 0, Bsh � 1.5 pu, τg � 0.1,
Ksh � 296.7 pu, Ng � 20, Pwbase

� 3.6MW.
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