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+is study proposes a block-based multicut Benders decomposition algorithm to solve the co-planning of transmission expansion
and energy storage problem in a bi-level approach. +e proposal breaks the chronological representative period into multiple
subperiods blocks. +is division makes it possible to use parallel computation methods to solve each block simultaneously,
reducing the simulation time, which allows the use of a more extensive time window to model the variability of random variables
of the system, such as wind and load. In the proposed algorithm, the master problem defines the State of Charge (SoC) of the
energy storage devices between the blocks and the investment in transmission and energy storage devices. To demonstrate the
effectiveness of the proposed method, different sizes of representative periods are evaluated in three test systems: Garver 6-bus,
IEEE-RTS 24-bus, and IEEE-118 188-bus. +e tests compare the performance of the proposed block-based multicut Benders
decomposition algorithm with the usual approach applied in the literature considering Benders decomposition and the complete
problem formulated as a Mixed-Integer Linear Programming (MILP) problem.

1. Introduction

1.1. Motivation. +e specialized literature presents tech-
niques to solve the Transmission Expansion Problem (PET)
considering storage devices in the transmission network
with time windows limited to operating days or weeks [1–9].
+is problem occurs because of the need to reduce the size of
the optimization problem to make it computationally viable.
Models limited to operating days or weeks may be accurate
for battery-powered Energy Storage Devices, which typically
have a low power-to-energy ratio and can be charged and
discharged cyclically within a day. However, other storage
technologies such as pumped reservoirs can present much
more complex operational characteristics, requiring evalu-
ating their operation throughout the operational year. Some
works discuss the need to consider all scenarios of an op-
erative year [10–12].

Although all proposals in the literature can be modified
to consider the entire operating year [10, 13] instead of

representative days, the computational cost increases a lot
due to the need to represent the power balance constraint
considering the transmission network for the entire plan-
ning horizon [14] by using, for instance, linear programming
or metaheuristics formulations [15]. To avoid this problem,
in the present work, this representation of the transmission
network is done in a distributed way through the Benders
decomposition and parallel computation. +us, computers
with several processing cores can solve linear programming
problems for each operating period in a simultaneous
manner.

Table 1 presents a summary of the main characteristics of
the most recent publications that have proposed method-
ologies for solving transmission and storage devices co-
planning that consider the energy balance constraint, which
causes temporal coupling between the representative pe-
riods. Two types of investment in storage devices were
identified in the evaluated models: continuous (C) or binary
(B). +e investments formulated in binary form allow the
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allocation of storage devices with pre-established power and
energy capacities values. On the other hand, investments
formulated with continuous variables optimize the power
and energy capacities of storage devices installed precisely.
In this sense, we highlight the use of a mixed formulation in
[7], where the investment in a storage device is defined by
binary variables, assigning a fixed cost, while continuous
variables with variable costs define the power and energy
capacities.

Regarding the planning horizon, only two references
modeled it dynamically (D) while the vast majority of
publications considered only the end of the horizon, that is,
in a static approach (S). +e evaluated works considered
three types of technologies: BESS (Battery Energy Storage
Systems), CAES (Compressed Air Energy Systems), and
PHES (Pumped Hydro Energy Storage). Reference [4]
considers these three types and models the investment in
storage devices with binary variables, which facilitates the
modeling of the different technologies in a single analysis.
+ree papers considered Unit Commitment (UC) con-
straints from the review, and only one study considered the
calculation of reliability indexes, which points out potential
advances in co-planning formulations of transmission and
storage devices.

Regarding the representative period used to evaluate
storage devices’ chronological operation and consider the
historical behavior of generation and load, most studies used
a 24-hour time window. Only [5, 8] consider larger windows,
of 48 and 120 hours, respectively. Larger windows are a
practical bottleneck of the formulations found in the liter-
ature since they generate programming problems that de-
mand much computational memory, making them hard to
be solved. In these formulations, the entire mathematical
modeling of the transmission network needs to be replicated
for each hour of the time window, being these replicas linked
by energy balance constraints related to the State of Charge
(SoC) of storage devices. From Table 1, it is possible to
identify the need to propose a formulation capable of
considering larger time windows efficiently. +us, the
present work contributes by presenting an innovative
mathematical formulation that allows temporal decoupling
of the energy balance constraints, enabling the fast and
simultaneous solution of the operation subproblems for

every representative period in a distributed manner, re-
ducing the simulation time and memory usage.

Other studies in specialized literature that are important
to the discussion of the present proposal consider trans-
mission investment and the presence of storage, but without
the possibility of investment in storage devices, or co-
planning of generation and storage devices, as detailed in
Section 1.2.

1.2. Related Works. +e recent massive share of non-con-
trollable renewable sources, such as solar and wind power,
and the need to reduce greenhouse gas emissions in energy
matrices, have resulted in efforts to reduce the curtailment of
renewable power due to transmission congestion [16].
Among such measures, the search for tools capable of
performing transmission system expansion planning along
with energy storage systems has grown in recent years. +e
works highlight that co-planning reduces the overall in-
vestment cost since energy storage systems improve the
usage of non-controllable generators by storing energy at
times of higher renewable power and lower demand and
using the stored energy at times of lower renewable avail-
ability and higher demand. Furthermore, if well allocated in
the network, storage devices can avoid congestion on
transmission lines. All these benefits reduce the required
investments in transmission lines.

In [17, 18], the co-planning of transmission and storage
devices is modeled as a Mixed-Integer Linear Programming
(MILP) problem. However, the papers do not consider the
energy balance and chronological scenarios, which reduces
the accuracy of the analyses as it ignores the dynamic be-
havior of demand and primary energy sources such as solar
and wind. In [9], co-planning is formulated as a MILP
problem, taking into account the energy balance constraint
and the N-1 security criterion.+e energy balance constraint
increases the size of the MILP problem since all constraints
related to system operation are replicated for every operating
period of the considered time horizon. +is issue limits the
time window length since the simulation time can become
intractable depending on the power system’s size. +is
problem is observed in all references presented in Table 1. As
already identified in the previous section, the present work

Table 1: Taxonomy of recent publications that propose methodologies for solving co-planning of transmission and storage devices.

Reference Year Storage device investiment Time window Planning horizon Technology UC Reliability
1 2017 C 24 h D BESS ✓ 7

2 2018 B 24 h S PHES 7 7

3 2018 C 24 h S BESS 7 7

4 2018 B 24 h D BESS, CAES, and PHES ✓ 7

5 2019 B 48 h S BESS 7 7

6 2019 C 24 h S BESS and PHES ✓ 7

7 2019 B and C 24 h S BESS 7 7

8 2020 C 120 h S BESS ✓ 7

9 2021 C 24 h S CAES 7 ✓
Proposal 2022 B 8760 h S BESS 7 7
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presents an innovative formulation that allows decoupling
the operation periods from the MILP problem.

In [12], six formulations were evaluated based on the
complexity of themodeling of the electrical system: temporal
resolution, operation flexibility, and uncertainties in fuel
prices. From the studies proposed for the co-planning of the
generation and storage devices, disregarding the transmis-
sion network, the authors conclude that the higher the
modeling complexity, the greater the benefits seen with the
inclusion of storage devices in the network since they
participate in maximizing the use of storage devices and in
the operation flexibility.+e study points out the importance
of including Unit Commitment (UC) constraints in the
expansion planning problem.

In [1], the authors propose dynamic co-planning of
transmission and storage that takes into account wind and
load scenarios across representative days in addition to
incorporating UC reserve requirements, optimizing size and
location of storage devices, and including modeling to
consider battery degradation throughout the dynamic
planning, with a 25-year planning horizon with 1-year
epochs. In [2], a hybrid solution method is proposed that
takes into account long-term uncertainties by using robust
sets and short-term uncertainties modeled via representative
days. Similarly, [5] proposes a stochastic and robust ap-
proach to the problem of co-planning transmission and
storage devices and models the time series via Bernstein
polynomials in order to consider a continuous time instead
of the conventional hourly representation. Similarly, [19]
uses Bernstein polynomials to demonstrate the advantages
of considering continuous time in optimizing the allocation
and sizing of fast-acting storage devices. It demonstrates
how these devices can assist the operation with their high
ramping capability. However, the study in [19] does not
consider transmission investments.

In [3], the authors formulate a co-planning methodology
using the Column-and-Constraint Generation method to
solve the MILP model taking into account marketing issues.
+e subproblem in [3] is modeled as a large linear pro-
gramming (LP) problem, demanding much computational
memory to represent long-time windows. On the other
hand, the present work proposes a newmethodology capable
of dividing this large LP into several LPs that can be solved in
an isolated and simultaneous way, with the possibility of
considering a one-year window without demanding rela-
tively large amounts of computational memory.

In [4], the authors use the Nested Benders decompo-
sition to solve the multi-stage co-planning of transmission
and storage devices to consider long-term uncertainties and
the investment in diverse types of storage technologies and
transmission lines having different construction times. In
[6], the co-planning problem is modeled as a MILP solved
via Benders decomposition. +e authors consider the N-1
security criterion and evaluate the positive impact of in-
cluding storage devices in the scenarios under contingency.

In [7], co-planning is solved by considering robust steps via
column-and-constraint generation algorithm. +e authors
consider binary variables to model storage devices’ charging/
discharging status, resulting in a MILP problem with a
massive number of binary variables.

In [8], a MILP is formulated to model a co-planning
problem of storage devices, thyristor-controlled series
compensators (TCSC), and transmission facilities consid-
ering a linearized AC network that allows representing the
reactive supply by TCSC. +e model is solved with Benders
decomposition. In [20], representative days are used to
model wind behavior and to study the relationship between
GENCOs and TSO in the co-optimization problem between
generation, transmission, and storage devices. In [21], the
authors solve a co-planning problem to determine the op-
timal capacity of an energy storage device coupled to the
wind farm and the capacity of the transmission system that
connects the farm to the grid. +e analysis is performed
considering the point of view of a GENCO, which considers
the market perspective and generation uncertainties taking
into account scenarios through multicut Benders
decomposition.

1.3. Paper Contributions. +is study presents a novel for-
mulation to solve the co-planning of transmission expansion
and storage devices, allowing the decoupling of the planning
horizon into several smaller subproblems that can be solved
using parallel computing techniques. In addition, the pro-
posed approach effectively solves the co-planning problem
considering a time window of 8760 hours. A stop criterion is
proposed to reduce the methodology’s simulation time. +is
study includes the analysis of performance in three systems:
the 6-bus Garver test system is used to show the impact of
increasing the time window in the co-planning problem; the
24-bus IEEE-RTS test system results show the impact of the
proposed stop criterion; the IEEE-118 system is used to
demonstrate the advantages of considering the parallel
computation and evaluates the proposal performance in the
face of a time window of 52 weeks in hourly resolution.

1.4. Paper Organization. +is study is organized as follows:
in Section 2, the mathematical formulation of co-planning of
transmission and energy storage expansion is presented as a
MILP problem; in Section 3, the proposed decomposition
method is detailed; in Section 4, the results obtained from
the proposed methodology are presented and discussed;
Section 5 concludes the paper.

2. Mathematical Formulation ofCo-Planningof
Transmission and Energy Storage Expansion

+e mathematical formulation of co-planning of trans-
mission line and energy storage can be described by the
optimization problem (1)–(18).
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+e objective function (1) aims to minimize the in-
vestment costs in transmission lines and storage devices as
well as the generation costs. +e charge/discharge cost (cyy)

is set as a small value only to avoid the simultaneous
charging and discharging of storage device y and the use
of binary variables to define its operational state. +e
penalty pen is used to avoid the use of slack variables
introduced to improve the problem convergence process.
+e set of decision variables ξ is presented in (2), which
the variables are represented by a multidimensional array
containing all variables of the problem. +e active power
balance in bus b is formulated in (3). +e active power
flow in existent and candidate lines are, respectively,
calculated in (4) and (5). +e variable fk, s is positive if the
active power flow flows from bus ki to kj, which are the
terminal buses of line k. +e reduced disjunctive model
[22] is applied in (5) in order to reduce the computa-
tional time of solving the MILP problem by reducing the
number of binary variables in comparison to the dis-
junctive model proposed in [23]. +e energy balance is
modeled in (6) and the SoC level difference between the
scenarios s and s + 1 is dependent on the duration of
scenario s. +e energy capabilities for existent and
candidate storage devices are respectively defined in (7)
and (8). +e generation capacity of generator g in sce-
nario s is defined in (9), where the maximum active
power generation pgg is reduced by the availability factor
δg,s which can be used to model the variability of wind
and solar generation or the availability of fuels in non-
renewable generators. In (9), the renewable spillage is
allowed and is calculated when a renewable generator
does not deliver all the available active power, i. e., when
pgg,s <pgg · δg,s. +e bounds for charging/discharging
for the existent and candidate storage devices are re-
spectively defined in (10) and (11). +e power flow limits
in existent and candidate lines are respectively expressed
in (12) and (13). Constraint (14) limits the slack variable.
In (15), the SoC level of each storage device is fixed for
scenarios 1 and ns+1 where ns is the number of scenarios.
It must be stressed that the energy balance is valid for all
scenarios, and there are ns+1 SoC levels for each storage
device, but with first and last SoC levels are fixed by a
user-defined value, which is important to guarantee that,
even for a one-scenario analysis, the energy balance is
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well modeled. In (16) and (17), the investment in storage
devices are limited to a maximum value and set as an
integer value. Finally, in (18), the investment in trans-
mission is set as a binary variable.

As proposed in [24, 25], it is applied (19) to calculate the
disjunctive parameter Mk for candidate line k.

Mk � 2θck, ∀k ∈ K
C

. (19)

3. Proposed Benders Decomposition-
Based Approach

+is section presents the proposed decomposition approach
based on the multicut Benders’ decomposition method. +e
method is applied to divide the MILP problem presented in
Section 2 in several subproblems. As the problem considers
storage devices, it also considers temporal aspects, which couple
the subproblems represented by scenarios by using the energy
balance constraint, formulated in (6). In order to decouple the
subproblems and efficiently solve the whole problem, a block-
based structure is proposed for the planning horizon to define
when each problem variable is solved in the iterative approach
based on the Benders’ decomposition method as detailed in
Section 3.1.

3.1. Block-Based Planning Horizon. Figure 1 presents the
scenarios (represented by squares) of the representative period
grouped into nbl blocks (subperiods of the planning horizon). In
the proposed structure, there are three types of scenarios
(represented in Figure 1 by different colors) depending on how
the SoC of the storage devices is defined in the proposed
decomposed formulation:

(i) Yellow Squares. +ey are the first and the last SoC of
storage devices on the planning horizon. +ese
values are the user-defined values of SoC∗y,s for the
storage device y at the scenario s as formulated in
constraint (15).

(ii) Purple Squares. +ey represent the scenarios that
belong only to block bl. For these scenarios, the SoC
variables are calculated in the correspondent sub-
problem bl.

(iii) Green Squares. +ey represent the scenarios shared
by two adjacent blocks. +e SoC variables are cal-
culated in the Master Problem and formulated as

fixed variables in the two correspondent subprob-
lems for these scenarios, which guarantees the
continuity of SoC in the representative period as a
whole and allows to extract the Lagrange multipliers
related to the SoCs variables at the first and last
scenarios of each block.

Figure 1 presents the representative period divided into nbl

blocks of scenarios. +e index wbl is equivalent to the first
scenario of the block Sbl, which ends in the scenariowbl+1 − 1 as
defined in (20).+us, wbl and wbl+1 are the frontier scenarios of
block bl whose SoC levels of storage devices are defined by the
master problem and imposed as fixed values for the subproblem
bl.+e set of all frontier scenarios Γ is defined in (21) and the set
of frontier scenarios Γbl for block bl is defined in (22). +e
relationship between frontier scenarios and scenario indexes is
expressed in (23), where nsbl is the number of scenarios in block
bl and ns0 is defined as equal to 1. It is important to notice that
the last frontier scenario wnbl+1 is equivalent to the scenario
nsnbl+1 which is a scenario index only used to fix the SoC level of
storage device y at the specified value SoC∗y,ns+1 as defined in (15)
at the end of planning horizon.

Sbl � wbl, wbl + 1, wbl + 2, . . . , wbl+1 , (20)

Γ � w1, w2, . . . , wbl, . . . , wnbl, wnbl+1 , (21)

Γbl � wbl, wbl+1 , (22)

wbl � 
bl− 1

bl�0
nsbl. (23)

3.2. Master Problem. +e master problem is defined in
(24)–(29) and it is responsible for defining the SoC of storage
devices between each block of representative scenarios and
the investment in transmission lines and storage devices.
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αs ≥ 0. (29)

+e objective function in (24) aims to minimize the
investment in transmission lines and storage devices. +e set
of decision variables of the master problem is expressed in
(25). In (26)-(27) are imposed auxiliary constraints to the
master problem in order to improve the convergence of the
method. +ese constraints limit the SoC values defined for
all frontier scenarios at feasible levels that each subproblem
solution can achieve. +us, the distance between the SoC
levels in each storage device to a given Γbl needs to be less to

its maximum charging/discharging capacity during all block
duration. +e set of Benders’ cuts is formulated in (28).
Finally, αs is set as a non-negative variable in (29).

3.3. Subproblems. +e subproblems are responsible for
evaluating the power system’s operational condition for a
subperiod of the planning horizon. +e subproblem related
to the block bl is formulated as follows:

C
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where SoC[v]
y,s � SoC∗y,s for s � 1, ns + 1{ }

+e objective function (30) aims to minimize the op-
erational cost of generators by defining the dispatch of
generation and use of storage devices along the subperiod
defined by the block bl. +e constraints (31)–(33) impose the
decisions calculated by the master problem at iteration v.

3.4. Convergence Criteria. Two convergence criteria are
evaluated in this paper as following.

3.4.1. Traditional Benders Decomposition Convergence
Criterion. At each iteration v the algorithm computes an
upper bound value of the objective function of the original
problem with (34) and a lower bound value with (35). If
(Z[v]

up − Z
[v]
dn )/Z[v]

up was less than a convergence criteria, e. g.,

0.001, stop the iterative approach.

Z
[v]
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[v]
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s∈Γ
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s + 
s∈Sbl

C
[bl,v]
sp , (34)

Z
[v]
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[v]
mp. (35)

where α[v]
s is the calculated value for αs from the optimal

solution of master problem at iteration v.

3.4.2. Proposed Convergence Criterion. Since the master
problem in the proposed decomposition approach is re-
sponsible for investing and allocating the SoCs in the storage
devices, a longer iterative process is needed to converge the
traditional Benders decomposition convergence criterion.
After defining a good expansion alternative, with no load
shedding, the Benders decomposition searches for an op-
timal operational condition for all time windows, which can
be hard to achieve. +us, as demonstrated in the result
section, it is proposed to stop the Benders decomposition
when an expansion alternative without load shedding is
found.

+e result obtained with this proposed convergence
criterion is sub-optimal. However, it can be improved by

ω1 ω1 + 1 ω1 + 2 ω1 + 3 ω2 – 1 ω2 ω2 + 1 ω3 – 1 ω3

S1 S2 S3

Sbl Sbl+1 Snbl–1 Snbl

ωbl ωbl + 1 ωbl+1 ωbl+1 + 1 ωnlb + 1 ωnbl+1 – 1 ωnbl+1ωnlb – 1ωbl+1 – 1 ωnbl

… … …

… … … … …

…

Figure 1: Arrangement of the scenarios in nbl blocks.
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performing an a posteriori simulation with the investment
variables fixed at the solution values, reducing the com-
plexity of the problem drastically since master problems
became an LP problem.

4. Results

+is section presents the results obtained for the proposed
methodology. In Section 4.1, it is considered the modified 6-
bus Garver test system [26] to demonstrate the sensitivity of
the decomposition method to variations in the number of
blocks. In Section 4.2, the co-planning is evaluated in the
modified 24-bus IEEE-RTS test system [27] to demonstrate
the performance of the proposed methodology and to dis-
cuss the convergence criterion. In Section 4.3, the modified
IEEE 118-bus test system [28] is used to demonstrate the
capacity of the proposed method to solve medium-size
systems and the advantages of using parallel computation.

Two historical series were used to represent the hourly
variability of the demand and wind. +e data for the series
and themodified versions of the test systems are presented in
[29]. +e investment cost for all transmission lines is $2
million by a mile. It was considered a subsidized cost of 16$/
kW (power capacity) and 24$/KWh (energy capacity) for
storage devices. As detailed in [30], the investment costs
were annualized considering an interest rate of 5%, a lifetime
of 60 years for the transmission lines [3], and 20 years for the
storage devices [21]. It was considered an operational cost of
54.26$/MWh for non-renewable generators, and renewable
ones have no operational cost.

All analyses in this section consider the reduction of
search space by applying the construction phase of the
Greedy Randomized Adaptive Search Procedure (GRASP)
heuristic method detailed in [31]. +us, to measure the
effectiveness of the proposed approach, for every branch
with installed lines by the GRASP, the MILP solver and the
proposed methodology consider 4, 3, and 3 candidate lines
respectively for the Garver, IEEE-RTS, and IEEE-118
systems.

+e methodology was implemented in the MATLAB®numerical computing environment. +e CPU times refer to
an AMD Ryzen™ 5 2400G processor with 3.6GHz of clock
speed. MILP and LP problems were respectively solved with
cplexmilp and cplexlp algorithms of CPLEX 12.9.0 (Copy-
right© IBM Corp.) optimization package under the op-
portunistic parallel optimization method with up to 4
threads. +e parallelism was implemented with the asyn-
chronous parallel programming features of the Parallel
Computing Toolbox of MATLAB®.

4.1. 6-Bus Modified Garver Test System. +is subsection
presents the results obtained with the 6-bus modified Garver
test system. For the Garver system, it was considered the
32nd week of the historical series, the week that the peak load
of the series occurs. +us, six simulation cases were per-
formed considering the MILP formulation and the
decomposed formulation for six different numbers of blocks.
For the simulations, a tolerance of gap for the bounds of

Benders decomposition was set to 0.001. +e results are
presented in Table 2.

+e results show that for the Garver system, a minimal
test system, the complete formulation (simulation case
MILP-1) performs the simulation in only 3 seconds, while
the fastest case for the proposed decompositionmethod took
41 seconds. It was expected for a small size problem since the
solver can efficiently deal with a small number of constraints
and variables. For the simulation case D-5, the computa-
tional time was more significant, and the number of itera-
tions was the smallest, which occurs since the high number
of blocks grows fast the size of the master problem, reducing
the efficiency of the decomposed method. Similar behavior
can be noted in the simulation case D-1, the unique block
insert only one Benders’ cut by iteration, demanding more
iterations to converge the problem with causes more
computational time to solve the problem. +us, the better
way is to choose a given number of blocks that balance
between the size of subproblems and the size of the master
problem. +is aspect will be discussed in the subsequent
section.

4.2. 24-Bus Modified IEEE-RTS Test System. For the IEEE-
RTS system, it was considered the weeks 30 to 33 of the
historical series, totaling a representative period of 762
hours. In this section, three simulation cases are performed,
and the results are presented in Table 3. +e simulation case
D-6 considers a tolerance of 0.001 for the gap between the
bounds of Benders’ decomposition, while case D-7 modifies
the stop criterion of Benders’ decomposition to return the
first solution without load shedding. +e cases D-6 and D-7
consider seven blocks of 96 hours each. In Table 3, the
number of iterations and computational time for simulation
case D-7 regards the values spent at the search of the first
expansion alternative without load shedding, followed by the
values spent at the “a posteriori” simulation to optimize the
operational cost as detailed in Section 3.4.

For simulation case D-7, considering the proposed stop
criterion, the decomposition method achieved a similar
result with 26% of the total computational time compared to
simulation D-6. It can be seen that the “a posteriori” op-
erational problem took only 15 seconds and added six it-
erations of problems.+e a posteriori simulation reduced the
operational cost from 185.59M$ to 185.30M$. +ose results
show that the modified stop criterion can be used to obtain
sub-optimal solutions with a shorter simulation time.
However, even for the 24-bus IEEE-RTS considering four
weeks of the historical series, the complete formulation,
simulation case MILP-2, showed to be a better option since
this simulation was 6.3 faster than simulation case D-6 and
1.7 faster than simulation case D-7.

4.3. 118-Bus Modified IEEE-118 Test System. +is section
discusses the results of the proposed methodology with a
medium-size test system, the 118-bus IEEE-118. +us, six
simulation cases were performed:
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(i) Cases MILP-3 and D-8 consider the same four
weeks used in Section 4.2.

(ii) Cases MILP-4 and D-9 increase the problem size by
doubling the representative period considering
from week 27 to 34.

(iii) For simulation cases MILP-5 and D-10, it was
considered 52 weeks in hourly resolution, i.e., a time
window of 8736 hours. +e representative period in
D-10 was divided into 26 blocks of 336 hours each.

D-8 and D-9 consider, respectively, 7 and 14 blocks of
96 hours and the modified stop criterion described in
Section 4.2. For simulation cases D-8, D-9, and D-10, the
number of iterations regards the number of iterations of
the simulation case plus the number of iterations of the a
posteriori operational problem. Also, the computational
times are referent for both simulations as discussed in
Section 3.4.

+e results are presented in Table 4. It can be seen that
for larger systems, the proposed decomposition method
reduces the computational time. For simulation cases
considering four weeks, D-8 was 1.6 times faster and ob-
tained the same solution asMILP-3. By doubling the number
of weeks, MILP-4 increased the computational time by 3.9
times (4.6 hours) in comparison to MILP-3, while D-9 in-
creased only 1.5 times (25.2minutes) in comparison to D-8.
However, the D-9 achieved a sub-optimal solution, 0.2%
more expensive than MILP-4. As expected, it may occur by
using the modified stop criterion.

Regarding the simulation cases MILP-5 and D-10, it can
be observed that the computational time for solving the co-

planning problem (D-10) was only 1.88 times greater than
the simulation case D-9. It must be emphasized that sim-
ulation case D-10 has a time window 6.5 times greater than
D-9. Moreover, the whole MILP problem cannot be solved
using the CPLEX solver in the personal computer used in all
tests. In other words, the increase in system size and
complexity can still be achieved by using the proposed
methodology.

+e computational times presented for D-8, D-9 and
D-10 consider the parallel computing of the subprob-
lems, an advantage of considering the decomposition
approach. Parallel computing strongly depends on the
machine that runs the code, but it is easy to configure the
nodes of computation by running a few iterations and
measuring the performance obtained for different
numbers of computation cores. +e machine used for the
tests has 4 computation cores and 8 threads, implying
that up to 8 subproblems could be solved simultaneously.
+e performance of CPLEX solvers is improved by using
the default opportunistic parallel mode,which was ad-
justed to up to 4 threads for cplexlp solver, the D-8 and
D-9, was set to be solved with 2 parallel cores of pro-
cessing, and the D-10 with 3 cores. In order to exemplify,
the computation times to solve all subproblems of
simulation cases D-9, D-9, and D-10 for the 5 first it-
erations are presented in Table 5.

+e memory usage for solving the simulation cases of
IEEE-118 is presented in Table 6. For the simulation cases
considering the proposed decomposition method, Table 6
presents the memory usage of master problems at the first
iteration. It can be seen that the proposed methodology

Table 2: Simulation results for the 6-bus modified Garver test system.

Simulation
case

Solution
Technique

Number of
blocks

Hours by
block

Number of
iterations

Computational
time (s)

Added
lines

Added
storages Cost (M$)

MILP-1 cplexmilp — — — 3 2–6, 3–5,
4–6

3x (2), 7x
(4) 13.55

D-1 Benders 1 168 61 56 2–6, 3–5,
4–6

3x (2), 7x
(4) 13.55

D-2 Proposal 3 56 45 41 2–6, 3–5,
4–6

2x (2), 8x
(4) 13.55

D-3 Proposal 7 24 48 45 2x(2–6),
3–5 11x (4) 13.66

D-4 Proposal 42 4 34 45 2–6, 3–5,
4–6

2x (2), 8x
(4) 13.55

D-5 Proposal 168 1 28 85 2–6, 3–5,
4–6

3x (2), 7x
(4) 13.55

Table 3: Simulation results for 24-bus modified IEEE-RTS test system.

Simulation
case

Solution
technique

Number of
iterations

Computational time
(s)

Added
lines Added storages Ope Cost

(M$)
Inv Cost
(M$)

MILP-2 cplexmilp — 176 2x (7–8) 1x (5), 2x (6), 2x (14) 185.23 8.838
D-6 Proposal 332 1114 2x (7–8) 1x (5), 2x (6), 2x (14) 185.30 8.838

D-7 Proposal 97 + 6 294 + 15 2x (7–8) 1x (5), 2x (6), 1x (8),
1x (14) 185.30 8.838
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can reduce the memory usage in comparison to solving the
problem at once, as expected. As shown in Table 6, the
MILP-5 simulation case is formulated by a MILP problem
with more than 5.5 million variables, even considering the
simplified formulation of the co-planning presented in
this study. On the other hand, simulation D-10 (nu-
merically equivalent to MILP-5) has a relatively small
master problem and a set of subproblems with 103,852
variables.

An additional simulation case D-10∗ is presented in
Table 6, which is the same case D-10 but considering only
one block covering the 52 weeks. It can be seen that the
subproblem without the proposed methodology contains
a similar number of variables to the equivalent MILP
problem disregarding the integer variables. Besides re-
moving the integer variables reduces the problem’s
complexity, it continues to be a considerable size math-
ematical problem.

5. Conclusions

+is study presented a novel formulation to solve the co-
planning in transmission and storage devices with the

multicut Benders decomposition dividing the operational
problem into several blocks. +e proposal showed to reduce
the memory usage and the computational time to solve co-
planning problems considering several weeks of operation.

A convergence criterion was proposed to find sub-op-
timal expansion alternatives with a relatively short simu-
lation time. It has been shown that the block-based multicut
Benders decomposition can be faster with the use of parallel
computation. Using only 8 processing units, the personal
computer could solve the problem in 60% of the time spent
in a sequential simulation.

For future works, it is proposed to evaluate the per-
formance of the block-based multicut Benders decompo-
sition in more complex models with dynamic constraints
considering storage devices, generator ramping constraints,
hydrothermal systems operation scheduling, and pumped
storage hydropower.

Abbrivations

Sets
χ: +e set of decision variables of the complete MILP

problem

Table 6: Memory usage (in Mb) for MILP, master problem (MP) and one subproblem (SP) and the number of integer variables (NI) and
continuous variables for MILP (NC-MILP), master problem (NC-MP) and one subproblem (NC-SP).

Simulation case
Memory usage No. of variables

MILP MP SP NI NC-MILP NC-MP NC-SP
MILP-3 65,48 — — 20 426,052 — —
D-8 — 0.06 9.30 20 — 39 60,888
MILP-4 130.91 — — 20 852,100 — —
D-9 — 0.07 9.30 20 — 74 60,888
MILP-5 850.55 — — 20 5,538,628 — —
D-10 — 0.09 32.38 20 — 134 103,852
D-10∗ — 0.05 840.00 20 — 9 5,538,648

Table 5: Computational time (in seconds) to solve subproblems for simulation cases D-8, D-9 and D-10 by varying the number of
computational cores of parallel computing.

No. of cores
Case 1 2 3 4
D-8 77.4 55.4 48.5 48.9
D-9 138.0 97.3 87.8 85.1
D-10 2,376.8 1,211.7 1,035.6 998.1

Table 4: Simulation results for the 118-bus modified IEEE-118 test system.

Simulation
case

Solution
technique

Number of
iterations

Computational time
(h) Added lines Added storages Ope. cost

(M$)
Inv. cost
(M$)

MILP-3 cplexmilp — 1.44 16–17,
19–34

2x (3), 1x (4),
1x (6) 273.74 28.60

D-8 Proposal 332 + 8 0.88 + 0.02 16–17,
19–34 2x (4), 2x (6) 273,80 28.60

MILP-4 cplexmilp — 5.60 16–17,
19–34

2x (3), 1x (4),
1x (6) 531.21 28.60

D-9 Proposal 221 + 6 1.29 + 0.03 8–5, 19–34 1x (3), 2x (6) 531.22 29.67
MILP-5 cplexmilp — — — — — —
D-10 Proposal 33 + 7 2.14 + 0.34 8–5, 19–34 1x (3), 2x (6) 1,994.07 35.57
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χmp: +e set of decision variables of the master problem
χsp: +e set of decision variables of the subproblem
B: +e set of buses
G: +e set of generators
Gb: +e set of generators connected to bus b

Y: +e set of storage devices
Yb: +e set of storage devices connected to bus b

YE
b : +e set of existent storage devices connected to bus b

YC
b : +e set of candidate storage devices connected to bus b

KE: +e set of existent lines
Kc: +e set of candidate lines
Kb: +e set of lines connected to bus b

S: +e set of scenarios
Sbl: +e set of scenarios of block bl

T: +e set of all frontier scenarios
Tb: +e set of frontier scenarios of block bl

Indexes
B: Bus
g: Generator
y: Storage device
k: Transmission line
s: Scenario
w: Frontier scenario
υ, κ: Benders’ iteration
Variables

IT
k : +e variable for investment in line k

IY
y : +e variable for investment in storage device y

pgg,s: +e active power generation of generator g,
scenario s

pych
y,s, psdi s

y,s : +e charging and discharging powers of
storage device y, scenario s

slb,s: A slack variable of the power balance of bus b,
scenario s

SoCy,s: +e state of charge of the storage device y,
scenario s

fk,s: +e active power flow in the circuit k, scenario
s

θki,s, θkj,s: +e nodal angles of terminal buses of circuit k,
ki (bus from) and kj (bus to)

αbl: +e master problem slack variable for the
Benders’ cuts obtained by the subproblem that
evaluates the block bl

λSoC
y,s : +e dual variable related to the fixed State of

Charge (SoC) of the storage device y, scenario
s

λY
k,bl: +e dual variable related to the investment in

storage device y at subproblem bl

λT
k,bl: +e dual variable related to the investment in

line k at subproblem bl

C[v]
mp: +e objective value of master problem at

iteration v

C[bl,v]
sp : +e objective value of subproblem bl at

iteration v

Z[v]
up : +e Benders’ decomposition algorithm upper

bound at iteration v

Z
[v]
dn : +e Benders’ decomposition algorithm lower

bound at iteration v

Parameters

CT
k : +e investment cost in line k

CY
y : +e investment cost in storage device y

cgg: +e generation cost of generator g

cyy: +e charging/discharging cost of storage device y

pen: +e penalty value for use of slack variables
Δs: +e duration of scenario s

Δbl: +e duration of block bl

db,s: +e active power demand in bus b and scenario s

ck: +e susceptance of line k (positive value)
Mk: +e disjunctive parameter for candidate line k

SoCy: +e energy capability of storage device y

SoC∗y,s: A user-defined value of the State of Charge (SoC) of
the storage device y, scenario s

pgg: +e active power capacity of generator g

δg,s: +e capacity of generation availability of generator
g, scenario s

pyy: +e charging/discharging capacity of storage
device y

fk: +e transmission active power capacity of line k

SoC[κ]
y,s : +e State of Charge (SoC) calculated by the master

problem at iteration κ of the storage device y,
scenario s

IY[κ]
y : +e investment decision calculated by the master

problem at iteration κ of the storage device y,
scenario s

I
T[κ]
k : +e investment decision calculated by the master

problem at iteration κ of the line k, scenario s

λSoC[κ]
y,s : +e dual variable related to the fixed State of Charge

(SoC) of the storage device y in scenario s obtained
at the optimum value of the subproblem bl,
iteration κ

λY[κ]
k,s : +e dual variable related to the investment in

storage device y in scenario s obtained at the
optimum value of the subproblem bl at iteration κ

λT[κ]
k,s : +e dual variable related to the investment in line k

in scenario s obtained at the optimum value of the
subproblem bl at iteration κ.

Data Availability

+e data that support the findings of this study
are available at https://drive.google.com/drive/folders/
171PXQ9WbM3PJ_57X2_nJ7Top7GVAcQIS.
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