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Maximizing the return on electric vehicle charging station (EVCS) operation helps to expand the EVCS, thus expanding the EV
(electric vehicle) stock and better addressing climate change. However, in the face of dynamic regulation scenarios with large
data, multiple variables, and low time scales, the existing regulation strategies aiming at maximizing EVCS returns many times
fail to meet the demand. To handle increasingly complex regulation scenarios, a deep reinforcement learning algorithm (DRL)
based on the improved twin delayed deep deterministic policy gradient (TD3) is used to construct basic energy management
strategies in this paper. To enable the strategy to be more suitable for the goal of real-time energy regulation strategy, we used
Tompson sampling strategy to improve TD3’s exploration noise sampling strategy, which greatly accelerated the initial
convergence of TD3 during training. Also, we use marginalised importance sampling to calculate the Q-return function for
TD3, which ensures that the constructed strategies are more likely to learn high-value experiences while having higher
robustness. It is shown in numerical experiments that the charging station management strategy (CSMS) based on the modifed
TD3 obtains the fastest convergence speed and the highest robustness and achieves the largest operational returns compared to
the CSMS constructed using deep deterministic policy gradient (DDPG), actor-critic using Kronecker-factored trust region
(ACKTR), trust region policy optimization (TRPO), proximal policy optimization (PPO), soft actor-critic (SAC), and the
original TD3.

1. Introduction

A well-designed energy management strategy for electric
vehicle charging station (EVCS) can not only balance the
peak charge and discharge of electric vehicles (EVs), reduce
the idle rate of charging posts at charging stations, and ease
trafc congestion during peak periods [1]; It can also expand
the operating returns of charging stations, attract more
companies to enter the operating market, form healthy
competition, and accelerate the construction of smart and
connected cities. Our research aims to develop a real-time
regulation strategy to maximize the return of EV charging
station operators in a certain area with photovoltaic (PV)
and grid as power reserves and regulated by dynamic
electricity price while satisfying the load demand of EVs in

the area through the regulation of energy management
strategy (EMS).

In the research area of energy management strategies for
EV charging stations, most studies tend to build energy
management strategies by adapting the planning and op-
eration of EV charging stations. In Paper [2], an EMS is
formed by combining approximate dynamic planning
(ADP) and evolutionary algorithms (EA) to extend the
battery life and reduce the communication requirements of
the control system. In literature [3], the service quality
constraint decision model for EVCS is frst formulated using
network evolution theory based on network evolution,
followed by a game energy interaction based on the equi-
libriummodel of the supply function (SFE), established as an
optimization problem with equilibrium constraints, and
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fnally solved by a hybrid optimization algorithm based on
diferential evolution and interior point method. A novel
multistage stochastic structure for parking lot aggregators
(PLAs) is proposed in [4] to manage the fexibility of PEVs,
providing functional fexibility to the power market and
meeting the needs of intermittent power systems with high
penetration rates. A two-stage stochastic planning is applied
to model a hybrid charging station consisting of an elec-
trolyzer, fuel cell, and hydrogen storage integrated with a
photovoltaic system in paper [5], and a linear risk-con-
strained planning strategy is proposed to reduce the
scheduling risk based on a framework that enables EV
charging station operators to utilize the energy storage ca-
pacity of n-Grids for resource scheduling to maximize their
returns from energy and storage product purchases is de-
veloped in literature [6].

However, previous research on energy management
strategies for EVCSs has been limited to approaches based
on fxed models. Tis type of fxed-model-based research
approach requires the construction of a system model
considering a wide enough range of infuencing factors,
including the meteorological conditions of the area where
the charging station is located, the spatio-temporal model of
the trafc network, the psychological behavior portrait of EV
users, the charging and discharging loads of EVs, the gen-
eration and tarif forecasts of renewable energy generation,
and the capacity and lifetime of the energy storage system.
Te detailed modeling of these environmental infuences
requires a considerable amount of work, while the granu-
larity of the model is strongly correlated with the efec-
tiveness of the modulation strategy, and most training data
collection and research would violate user privacy. Fur-
thermore, due to the great diferences in the EV and en-
vironment user groups in diferent regions, a fxed model
management strategy does not have good generalizability
and often needs to rewrite a large number of environmental
conditions and recalculate them when generalizing the
application model. At the same time, too many variables that
infuence these models make the calculation time increase
signifcantly with the growth of added variables, which re-
duces the speed of regulation of charging station manage-
ment strategies and is detrimental to the economics of
charging station operators.

Terefore, model-free energy management strategies
based on reinforcement learning (RL) are becoming in-
creasingly popular. RL-based energy management strategies
do not rely on large amounts of data, and each modulated
action relies only on the experience learned by the intelli-
gence in previously constructed environments. In literature
[7], using a RL-based scheduling strategy to regulate electric
vehicles to address the uncertainty of electricity supply and
demand, the RL-based regulation strategy can reduce the
energy cost by 22.05%, 22.57%, and 19.33%, respectively,
compared to the regulation strategies based on genetic al-
gorithm, particle swarm optimization, and artifcial fsh
swarm algorithm. In literature [8], a Markov decision
process (MDP) formulation with a scalable state represen-
tation independent of the number of charging stations is
proposed based on the RL framework, followed by ftting Q

iterations using the batch RL algorithm to generate a
charging strategy that reduces the charging cost of charging
stations by 37% compared to previous methods. In literature
[9], a feature-based linear function approximator is pro-
posed to improve the state value function and further im-
prove the efciency and generalization ability of the RL
algorithm, and the strategy signifcantly extends the proft
and reduces the peak load of the grid in the numerical case.
In literature [10], an online reinforcement learning model is
developed based on a combination of adaptive heuristic
criticism and the recursive least squares algorithm to im-
prove the stability of charging stations and increase the total
revenue of charging stations. Te simulation results show
that the efectiveness of the proposed solution in terms of
utility power savings and charging station proftability is
signifcantly improved. In literature [11], by building a
Markov decision process model to characterize the time
series of uncertainty and then using RL techniques based on
deep deterministic policy gradients (DDPG) to analyze the
impact of uncertainty on the charging strategy, the proposed
charging strategy maximizes the return to the distribution
system operator while satisfying all physical constraints.
Tese works demonstrate the strong potential of RL as an
emerging approach in the EMS feld.

However, some inherent drawbacks of RL make it still
difcult to apply to charging station energy management
strategies, especially the large number of states that makes it
difcult to simulate traditional RL in a way that gives each
variable a corresponding action. Terefore, deep rein-
forcement learning (DRL) that leverages the powerful
representational power of neural networks to ft Q-tables or
direct ftting strategies to solve the problem of oversized
state-action spaces or continuous state-action spaces is
developed [12], DRL has become an efective and important
approach for developing model-free and real-time man-
agement strategies for hybrid electric vehicles (HEVs) and
Plug-in hybrid electric vehicles (PHEVs) [13]. A new multi-
intelligence DRL approach is proposed in literature [14],
which can compute scheduling solutions for multiple
electric vehicles charging stations in a distributed manner
while processing dynamic data that changes in real-time. In
literature [15], Q-learning is combined with deep neural
networks to propose a dual deep Q-network (DQN) model
to controlling charging and discharging actions under the
constraints of hourly available tarifs, and experimental
results show a signifcant increase in proftability compared
to conventional charging schemes for electric vehicles. In
literature [16], to minimize the operating cost of business
storage systems (BSS), the DDPG algorithm belonging to
DRL is used to control multiple charging piles simulta-
neously, and a BSS model is proposed to determine the
optimal real-time charging and discharging power of the
charging piles, which reduces the operating cost of BSS. In
paper [17], a modifed long- and short-term memory
(LSTM) neural network is used as a representation layer to
extract temporal features of the tarif signal, followed by a
DDPG algorithm to solve the MDP class problem, which
signifcantly reduces the cost of the payment. In literature
[18], Gaussian noise is added to the output of the actor
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network to prevent the agent from adhering to a nonoptimal
policy, and the sparse reward limitation is addressed by
using two replay bufers to meet the user’s demand for
battery energy and reduce charging costs. In literature [19], a
cloud-based multiobjective EMS is explored using a hybrid
architecture with DDPG that improves the thermal safety of
electrical equipment while minimizing system energy losses
and aging costs.

Although most DDPG-based EVCSs have performed
well in research in related felds, some drawbacks inherent
in the DDPG algorithm can still cause some impacts in
practical applications. DDPG evolved from the DQN se-
ries. Although the dual critic architecture of double deep
Q-network (DDQN) is used to calculate the Q-value, there
is still a case of overestimating the Q-value in practice,
which makes the algorithm converge too early or fails to
fnd the optimal policy. When the Q-network is continu-
ously updated, the actor may act according to the previous
state to reach the expected maximum Q value, but after the
Q-network is updated, the expected Q value is found to be
wrong, but the wrong Q value has already guided the actor
to choose the wrong action at the next moment. Te twin
delayed deep deterministic policy gradient (TD3) [20]
algorithm based on DDPG uses three techniques, clipped
double-q learning, delayed policy updates, and target
policy smoothing, to improve and optimize the above
problem, so the more well-performing TD3 algorithm is
widely used in related felds. A diferentiated pricing
mechanism for multiservice PEV charging infrastructure
(EVCI) is developed in literature [21] using the TD3 al-
gorithm, which adaptively adjusts the service pricing of
multiservice EVCI to maximize charging facility utilization
while ensuring higher service quality satisfaction. In lit-
erature [22] a scheduling policy is constructed using TD3
and then the trained policy is deployed online to execute
multiple actions simultaneously for coordinating the
scheduling of mobile energy storage systems (MESS) and
the integrated services of microgrid resource scheduling. In
literature [23], an algorithm based on TD3 trajectory de-
sign for time minimization tasks (TD3-TDCTM) is pro-
posed, which enables the shortest path for the UAV-IoT
interaction process. In literature [24], a smart EMS for
HEV is formulated using TD3 and a local controller based
on heuristic rules (LC) is embedded in the DRL loop to
eliminate l unreasonable torque distribution considering
the characteristics of the components of the powertrain,
after which a hybrid empirical replay (HER) method based
on the hybrid empirical bufer (MEB) is proposed. Com-
pared to other DRL-based EMS systems, the improved TD3
EMS system achieves the best fuel optimality, the fastest
convergence speed, and the highest robustness under
diferent operating conditions. In literature [25], a TD3-
EMS for hybrid electrically driven rail vehicles is proposed
that achieves a favorable balance between battery charging
and discharging while minimizing hydrogen consumption
and fuel cell aging costs and slows down fuel cell
degradation.

Figure 1 shows the architecture of the actual operating
environment of the DRLmanagement strategy based on the

modifed TD3 composition, which consists of a CSMS
strategy generation center and multiple distributed EVCSs
with PV systems and ESSs. In this regulation model, the
distributed EVCSs collect local data and perform pre-
processing, after which the data are fed into the strategy
generation center in real-time. Te strategy center uses the
improved TD3-based algorithm to construct a manage-
ment strategy based on the principle of maximizing returns
while satisfying the load demand of each charging station in
the region, and the management strategy outputs the
amount of electricity purchased by each EV charging
station on the grid, the amount of electricity used by each
PV system actions of EVCS and regulation actions of
energy storage of EVCS, and all distributed EVCS in the
area of these actions.

Tis study embodies an improved TD3-based CSMS.
Compared with existing studies, this present paper en-
compasses four perspectives that may possibly contribute to
relevant research:

Te system integrates several functions, including shear
double-q learning of critics, delayed policy updates, and
smooth regularization of target policies, resulting in a CSMS
based on TD3. To the authors’ knowledge, this is one of the
pioneering works on charging station management policy
formulation for EVCS based on the TD3 algorithm.

To speed up the initial convergence of the management
strategy at training, the initial exploration noise is deter-
mined using Tompson sampling-based sampling for the
selection of the initial exploration strategy action, which
results in a substantial increase in the initial convergence
speed of the strategy.

A new way of calculating Q values was used to improve
TD3, using marginalised importance sampling (MIS) to
calculate Q values, making the selection of Q values more
reasonable, avoiding the actor network from picking to the
next highest point during the action, and increasing the
stability increase of CSMS.

Te performance of the improved TD3 is comprehen-
sively compared with the original TD3, DDPG, trust region
policy optimization (TRPO), proximal policy optimization
(PPO), actor-critic using Kronecker-factored trust region
(ACKTR), and soft actor-critic (SAC), and then a DRl-based
CSMS is constructed in the same environment and com-
paratively analyzed to clarify the advantages of the CSMS
constructed based on the improved TD3 in terms of con-
vergence speed, robustness, and returns.

Te remainder of the paper is structured as follows: in
Section 2, the structure of a distributed EVCS containing a
PV system, an energy storage system, a data acquisition
system is briefy described, and a detailed cost constraint
model is calculated for the construction of the CSMS.
Section 3 describes the system design of the CSMS based on
the improved TD3 and the improved training convergence
speed bymeans of a new calculationmethod withTompson
sampling and determined Q-values. In Section 4, numerical
experiments are conducted on the CSMS based on the
improved TD3 and a comparison with six other DRL-based
CSMSs is presented. Section 5 summarises the conclusions
obtained in the study.
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2. Modeling of EVCS

To increase the return to regional charging operators and to
increase the local consumption rate of PV, we propose a
regional EV charging station energy management frame-
work called twin delayed real-time management strategies
(TDRMS), in which a modifed TD3 algorithm is used to
construct charging station management strategies to control
the power purchase actions and energy management actions
of multiple EVCSs in the region. In the TDRMS, the op-
eration fow consists of the following two phases. In the frst
stage, each distributed independent charging station collects
the condition information of its location and sends it to the
dispatch center.Te condition information includes weather
conditions, grid power purchase price, PV generation
forecast, charging postidle rate, charging station storage
energy, EV charging power, and EV charging load forecast.
In the second stage, the dispatching center takes all the
information collected from each distributed charging sta-
tion, merges the real-time power sales price of the grid as the
environmental conditions for DRL strategy training, gen-
erates the management strategy for each distributed
charging station using the improved TD3 algorithm, and
distributes the strategy to each distributed charging station.

Te DRL-based CSMS is theoretically model-free and
has minimal dependence on data. Terefore, for the DRL
problem, an explicit and accurate construction of the en-
vironment state where the agent is trained is extremely
necessary, and an accurate environment model can make the
generated policies closer to realistic application scenarios. In
this section, a distributed smart EV charging station con-
trolled by a real-time grid tarif and containing a PV system

is modeled in terms of both energy management and op-
erating cost.

2.1. Modeling of Energy Flows. In the framework established
in this study, the operating environment model of EVCS in
the region is shown in Figure 1, where the energy fow
process mainly consists of purchasing power from the grid,
the PV system of CS responding to the load demand of EV
owners, and the CS storing energy and responding to the
load demand of EV owners at a specifc time. Te energy
fow model in the whole region is divided into two cate-
gories, the stored energy model and the transmitted energy
model, and their models are constructed separately and
input as state variables in DRL.

In the regulation strategy of this study, the group of EVs
that are undergoing control is divided into fve categories,
such as battery electrical vehicle (BEV), HEV, PHEV, ex-
tended-range electric vehicles (EREV), and fuel cell electric
vehicle (FCEV), as shown in Table 1.

In the operational framework established in this study,
the primary power for each EVCS comes from the grid
under dynamic pricing, and the supplementary power comes
from the PV system equipped with each EVCS. Each dis-
tributed charging station has an independent energy man-
agement system, which is responsible for recording the real-
time energy demand in the area, later forecasting the
charging load of EV users in the area, and recording and
regulating the charging station’s energy storage system after
receiving the regulation strategy. Te method for accurate
prediction of the charging load demand of EV users and
power generation of the PV system has been done in our
previous work [26], so here the power generation of the PV
system and charging load demand of EV users are assumed
as the dynamic variables for accurate prediction.

Here, the sum of the charging load predictions for
EVCSs is EEV

t � [EEV
1, t , EEV

2,t , . . . EEV
n,t ], EEV

i,t denotes the electric
vehicle charging load predicted by distributed charging
station i at moment t. Te total forecasted electricity pro-
duction of PV systems with EVCSs is
EPV

t � [EPV
1, t , EPV

2,t , . . . EPV
n,t ], EPV

i,t denotes the PV generation of
the charging station at themoment t predicted by distributed
charging station i. Te total fxed consumption load of
EVCSs is EFixed

t � [EFixed
1, t , EFixed

2,t , . . . EFixed
n,t ], EFixed

i,t denotes the
fxed load electricity consumption of charging station i at
moment t. Te sum of all charging station unrealized
charging load at moment t for EVCSs is
EEV,uf

t � [EEV,uf
1, t , EEV,uf

2,t , . . . EEV,uf
n,t ], EEV,uf

i,t denotes the
amount of unfulflled charging load at the charging station of
distributed charging station i at moment t. EEV,total

i,t denotes
the sum of the predicted energy demand of distributed
charging station i at moment t and the previously unfulflled
energy demand of electric vehicles. Meanwhile, it is also
necessary to represent the power stored in each distributed
EVCS. Te sum of the stored power of EVCSs is SOEt �

[SOE1,t, SOEi,t, . . . , SOEi,t], SOEi,t denotes the amount of
power stored at distributed charging station i at moment t.
Tere are two parts of losses in the operation of the energy
storage system, namely charging losses and discharging

...

...

Figure 1: Framework for a charging station management strategy
for regional operators with multiple charging stations.
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losses, which are mainly infuenced by the cycle efciency η.
Te losses of the energy storage system also need to be
accounted for in the state variables, which are calculated as
follows:

Eec,t � 􏽘
N

i�1
η × E

G
i,t,

Eedc,t � 􏽘

N

i�1

E
EV,total
i,t

η
.

(1)

2.2. Modeling of Costing. To maximize the return for re-
gional charging station operators, it is equally important to
model all costs involved in the operation process when
building an agent’s training environment. P

grid
t denotes the

dynamic electricity price of the grid at time t, PPV
t denotes

the price per unit of electricity saved by the PV system at
moment t under the dynamic tarif. Te access to photo-
voltaic systems and the regulation of energy storage in
charging stations reduces the carbon emissions to the en-
vironment and saves the treatment costs of traditional power
generation methods, thus generating environmental benefts
PEn

t , which are calculated as follows:

P
En
t � Ppoll · 􏽘

N

i�1
E
PV
i,t , (2)

where Ppoll is the cost of treatment required per unit of
electricity generated by conventional power generation
methods for a fxed value of pollutants. Te life of the energy
storage system decreases as the number of charges and
discharges increases, so the net annual value (NAV) over the
life cycle of energy storage and the cost of loss of energy
storage per unit need to be calculated. At the same time, the
life decay of the energy storage system brings additional

costs of system overhaul, system maintenance, and energy
storage system replacement during the operating cycle. Te
energy storage cost model is analyzed using the full life cycle,
and its calculation formula is shown as follows:

CRE � CSE 􏽘

KR

kr�1

(1 − α)
krr

1 + ic( 􏼁
krl

,

KR �
N

L
− 1,

CFCSNPV � CIC + CRE + 􏽘
n

j�1

CIS,j

(1 + i)
j

+
Cend

(1 + i)
n,

CFCSNAV � CFCSNPV
i(1 + i)

N

(1 + i)
N

− 1
,

(3)

CRE is the replacement cost of energy storage batteries; α is
the percentage of annual decrease in battery cost; KR is the
number of battery replacements; CSE is the unit cost of the
battery. N is the battery energy storage plant operating
cycle; ic is the discount on the cost of purchasing the
battery; L is the energy storage battery replacement cycle;
CIC a is the fxed investment cost of the energy storage
plant, including the personnel cost, equipment input cost,
charging station construction cost, etc., during the op-
eration life cycle; CIS,j is the overhaul cost in year j; i is the
discount rate. Cend is the disposal cost of the energy
storage system at the end of life. CFCSNPV is the whole-life
net present value (NPV) of EVCS, which is the sum of the
present value of the net cash fows occurring in each year
of the entire calculation period discounted by a pre-
determined or a set discount rate to the start of the in-
vestment program, respectively and can refect the
proftability of EVCS; CFCSNAV is the net annual value of
the whole-life cycle of EVCS, which is the equivalent
annual value converted from the equivalent net cash fow
during the calculation period of the project with a certain
base rate of return and can determine whether the EVCS
under this scenario has investment value [27]. It is also
necessary to calculate the operating return of EVCS power
sales, which is shown in the following formula:

CRETURN � E
EV,total
t P

sell
i,t + P

En
t − E

EV,total
t + E

Fixed
t + SOEt − E

PV
i,t􏼐 􏼑P

grid
t . (4)

Te meaning of the variables is the same as
described in the previous section, and the CSMS based
on the modifed TD3 is trained with the goal of

maximizing CRETURN by judging the value of CFCSNAV for
feasibility analysis and fnding the CSMS that maximizes
CRETURN.

Table 1: Classifcation of electric vehicles.

Classifcation Description Included/not included in the model
Typical EV I BEV Included
Typical EV II HEV Included
Typical EV III PHEV Included
Typical EV IV EREV Included
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3. Methodology on Framework Design of Td3-
Based CSMS

3.1. Preliminary Formulation of TD-3 Based CSMS

3.1.1. Brief Review of DDPG. DDPG is a modifed form of
deterministic policy gradient algorithm, which combines

DPG and DQN in DRL [28]. Te loss function of DQN is
shown as follows:

Li θi( 􏼁 � E s,a,r,s′( ) ∼ U(D) r + cmax
a′

Q s′, a′; θ−
i( 􏼁 − Q s, a; θi( 􏼁􏼠 􏼡

2
⎡⎣ ⎤⎦. (5)

When fnding the action with the maximum value, it is
almost impossible to fnd the action with the maximum
value if the action space is very large, or even if the action in
the space of consecutive actions needs to be solved [29]. Even
if the continuous space is discretized to fnd the approximate
solution, only a very low solution efciency is obtained [30].
But in DPG policy gradient does not have the above-
mentioned maximization operation, avoiding this problem,
and the formula is shown as follows:

∇θμJ ≈ Est ∼ ρβ ∇θμQ s, a|θQ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌s�st,a�μ st|θ
μk

( 􏼁
􏼢 􏼣

� Est ∼ ρβ ∇aQ s, a|θQ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌s�st,a�μ st( )
∇θμμ s|θμ( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌s�st

􏼢 􏼣.

(6)

In DQN, fnding the next action to take is probabilis-
tically distributed, so the action with the highest value must
be found when updating the Q-value [31]. In contrast to
DQN, DPG uses a deterministic policy, thus avoiding the
operation of fnding value-maximizing actions [32]. Con-
sequently, DDPG combines the advantages of DQN and
DPG and uses the two tricks used by the neural network in
DQN to ft theQ values in DPG, turning theQ values in DPG
into a neural network as well. In addition to combining the
advantages of DQN and DPG, DDPG also adds three ad-
ditional tricks for optimizing the learning process.

First, DDPG adopts a soft-mode network parameter
update method, in which the parameters in the target net are
updated at each step, but only a small portion of them are
updated proportionally, thus greatly improving the stability
of the learning process, expressed in the following equation:

θQ′←τθQ +(1 − τ)θQ′,

θμ′←τθμ +(1 − τ)θμ′.
(7)

Due to the hyperparameter τ≪ 1, the target network
changes slowly and smoothly, which improves the stability
of training. Here, the Q-value is learned by the bellman
equation in the DQN with the following equation:

Q′(s, a) � E r(s, a) + cQ′ s′, a′( 􏼁􏼂 􏼃. (8)

DDPG introduces batch normalization (BN) to solve the
problem that diferent inputs have diferent magnitudes of
units and data ranges for their features. Bn belongs to global
adjustment, which linearly transforms the inputs of each

layer and can restrict the parameters to run on diferent
batches to a certain extent to prevent the gradient direction
from competing into the vicious competition. Bn’s will
introduce mini information of other samples within the
batch, resulting in predicting an independent sample with
other sample information equivalent to the canonical term,
making the loss surface smoother and easier to fnd the
optimal solution. It is equivalent to one independent sample
prediction that can look at multiple samples, and the learned
features are more generalized.

Tus, the standard DDPG can be seen as an evolution of
DQN for handling control tasks with continuous action
spaces, especially for real-time control of a single target.
However, DDPG also has some inherent limitations that
need to be improved. As a deterministic policy, the tra-
jectory generated with a deterministic policy is always fxed
for a given state s and policy parameters, so the agent
cannot explore other trajectories or consider other states,
and the agent cannot fnd the optimal policy under many
missions.

Terefore, an of-policy learning approach was adopted,
using an actor-critic-based framework, where the actor
action strategy uses a stochastic strategy to ensure sufcient
exploration, and the critic evaluation strategy is determin-
istic, using a function approximation method to estimate the
value function, while noise is introduced in it to add
randomness.

3.1.2. EMS Based on the Improved TD3. All RL algorithms
based on Q-value learning have the problem of overesti-
mation for Q-values when maximizing Q-values including
noise [33]. As a result, DDPG may become more unstable
[34] in the face of complex control tasks, heavily dependent
on the hyperparameters searched for the task at hand, and
the generated model does not generalize well to the same
types of problems [35]. Te risk of overestimating the Q
value in the critical network in the DDPG algorithm can lead
to the accumulation of estimation errors as the training
process proceeds to make the intelligence fall into a local
optimum or sufer catastrophic oblivion [36]. Te emer-
gence of TD3 alleviates the problem of overestimation bias,
while TD3 shows a signifcant improvement in learning
speed and performance in complex continuous control
domains compared to DDPG [37].
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In the actor-critic framework of RL, parameter updates
of the strategy function are related to the valuation func-
tion’s estimate of the action value and always lead to an
overestimation bias. Tis theoretical overestimation of the
Q-value function that would occur also appears in the 2015
state-of-the-art (SOTA) algorithm DDPG [28]. In contrast
to standard Q-value learning, TD3 learns the strategy in
double Q-learning [38], choosing the lower value of the two
valuation networks as a way to mitigate the overestimation
bias for the value target. Te high variance of the valuation
makes the gradient of the strategy update noisy, which re-
duces the training speed of the model and afects the fnal
training quality. To minimize the error at each iteration of
the intelligence, TD3 proposes a strategy called delayed
policy updates. By updating the policy network less fre-
quently than the valuation network, TD3 reduces the esti-
mation error before performing policy updates, ensuring
that the TD-error becomes sufciently small. Eventually,
TD3 has faster training speed, better training results, and is
easier to implement in any simulation environment com-
pared to DDPG.

Terefore, in this article, the TD3 algorithm is selected as
the basis for building a distributed CSMS, and the network
architecture of the improved TD3 is shown in Figure 2.

First, TD3 uses two Q-value networks to calculate the
state value at the next moment, as shown in the following
equation:

y1 � r + cQθ2′ s′, θμ1(s)􏼐 􏼑,

y2 � r + cQθ1′ s′, θμ2(s)􏼐 􏼑.

⎧⎪⎨

⎪⎩
(9)

Although there is the possibility of both overestimation
and underestimation of Q values, the true value is usually
overestimated after adding noise for maximizing the esti-
mate, and even in some regions of the state space, the
overestimation is further exaggerated. Terefore, choosing
the smaller of the two estimates as the target Q value can
ofset the overestimation of the Q value and substitute it into
the bellman equation to calculate the TD error and loss
function, as follows:

y � r + cmin
i�1,2

Qθi
′ s′, θμ1(s)􏼐 􏼑,

Lki �
1

M
􏽘

M

j�1
yj − Qi sj, aj􏼐 􏼑􏼐 􏼑

2
.

(10)

Although this rule of selecting lower Q values for
updating may lead to underestimation bias for the standard
Q-learning method, the underestimated actions are not
propagated explicitly through the update of the strategy.
Tus, the error is substantially reduced compared to the
previous update rule that would lead to a constant accu-
mulation of overestimation bias.

Secondly, a target network is established as a depth
function approximator. Deep neural networks require
multiple gradient updates to converge and ft the target,
while updating using the target network provides a stable
target, thus allowing the network to ft a larger range of

training data. Te update frequency of the strategy network
is set lower than that of the valuation network to ensure that
the delayed update of the strategy is performed only after the
value error has been minimized before the strategy is
updated. An adequate delayed update strategy limits re-
peated updates by critics and uses a lower variance when
performing Q-value estimation, so the quality of strategy
updates becomes higher, substantially increasing stability
when training actors:

θi
′←τθi +(1 − τ)θi

′. (11)

Finally, the use of a regularization strategy for smoothing
the selection of the target strategy can make the Q values
selected for the pre-estimation more stable. In a practical
application, a noise needs to be added to the range of the
originalQ-value calculation, and the range values around the
estimatedQ-value are used to merge the originalQ-value for
the pre-estimation calculation:

􏽥a ∼ θμ(s) + 􏽢θ(l),
􏽢θ(l) ∼ clip W xl( 􏼁N(0, 􏽥σ), −c, c( 􏼁. (12)

3.2. Improvement of Actor Noise. Also as a deterministic
policy gradient algorithm, TD3 adds many unique hyper-
parameters compared to DDPG, which makes the training
process more controllable and also increases the training
speed and stability of the generated model. Terefore, the
selection strategy of hyperparameters becomes more im-
portant in infuencing the change of model performance.

Te exploration noise is a hyperparameter unique to the
TD3 algorithm and is used to adjust the variance of the noise
attached to TD3’s exploration actions during the exploration
process. TD3 explores the action space in such a way that it is
easy to explore the boundary actions in the space. Inmost RL
task scenarios, the optimal strategy exists in the boundary
actions, and TD3 often shows good training speed in such
application scenarios. In the exploration, TD3 frst adjusts
the output tensor in the strategy network to (−1, +1) after the
activation function and afterwards adds a noise parameter to
the action that can be adjusted directly by exploring the
noise variance after the clip, fnally performs another clip
operation on the action to adjust it to the interval (−1, +1) for
performance. However, the selection of noise values has a
greater impact on the actions between clip to (−1, +1) after
increasing noise. Too small noise variance makes it difcult
to explore suitable boundary actions during exploration and
leads to inefcient exploration actions, increasing the
training time of the model, reducing the speed of modu-
lation, and making it more difcult to explore suitable ac-
tions during exploration. Excessive noise variance causes the
exploration activities to be extremely biased towards the
boundary action, which may reduce the diversity of strategy
selection and the generalization performance of the model in
application scenarios of diferent missions.

In this article, Tompson sampling is used to optimize
the process of selecting the exploration noise variance.
Tompson sampling is a natural stochastic Bayesian algo-
rithm that is easy to implement and generalize and is not
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prone to fall into early wrong decisions during training,
making it more competitive with other sampling methods
that are currently more advanced but has fewer relevant
applications and research [39]. Tompson sampling is
sampled based on the beta probability distribution, which is
a rare family of continuous probability distributions among
common distributions that take values on a fnite interval
[40], and it contains two positive parameters, called shape
parameters, generally denoted by α and β. Te probability
density function of the beta distribution has the following
form [41]:

f(x; α, β) �
1

B(α, β)
x
α−1

(1 − x)
β−1

. (13)

Controlled by two parameters, α, and β, the beta dis-
tribution can well describe various events that occur in the
interval (0, 1) and the probability of success of the event. In
this article, we use Tompson sampling for exploring the
noise variance applicable parameters are set on a 0.1 scale,
and the two parameters α and β are the number of times
selected and the number of times not selected, respectively.
Te beta distribution is generated for all available pa-
rameters based on the initial input values of α and β. Te
parameter with the best efect is selected as the current
option, and then the parameters α and β are adjusted to a

smaller fraction to further generate the beta distribution for
the parameter, and the process is repeated iteratively. Te
fnal exploration noise variance that is most applicable to
the current task is derived after Tompson sampling and
used to clip on the exploration action to speed up the initial
convergence of TD3.

3.3. Selection of More Stable Q Values. Te phenomenon of
Q-value overftting is prevalent in determining policy gra-
dient algorithms. A regularization strategy is introduced in
TD3 for smoothing the target strategy by mimicking similar
actions should have similar value (SARSA), and the training
process is modifed to explicitly refect this connection:

y � r + Eϵ Qθ′ s′, πϕ′ s′( 􏼁 + ϵ􏼐 􏼑􏽨 􏽩. (14)

TD3 makes the valuation smoother by estimating the
action values by bootstrapping. In practice, by adding a small
variance of noise to the target strategy and updating the
action expectation in small batches on average, the valuation
of the next action is made more accurate by combining all
the optional valuations around the estimated initial valua-
tion when estimating the value:

y � r + cQθ′ s′, πϕ′ s′( 􏼁 + ϵ􏼐 􏼑, ϵ ∼ clip(N(0, σ), −c, c). (15)
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Target Critic 1

Target Critic 2
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Noise
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Target Actor

A*

Noise

minQy r+γ i=1,2 θi´
(St+1,a)

θi´ τθi + (1-τ) θi´ (critic)

1
Nμ J (μ) = ∑ ΔΔ

aQθ i (S t , a) μ θμ ( st)

Δ

θμ ( st)a =

ˆ Beta (αj+ k , βj + n – k )θ (j)
~

ˆ clip (W (x1)θ (l)
~

τμi + (1-τ) μ' (actor)μ'

(0, σ ), –c,c)~

˜

Figure 2: Te architecture of the improved TD3.
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When updated multiple times, this computational
process approximates using a small fraction of the values
near the valuation point to estimate the return function at
the next moment, which makes the estimated value more
accurate and avoids suboptimal returns in the fetching
space. But it also makes the strategy noise variance signif-
icantly afects the valuation range of the valuation point, too
large strategy noise variance makes the valuation point range
too large, including too many return function values,
making the estimated value distorted. Too small a strategy
noise variance makes the range of valuation points too small,
too few return function values will make the calculation of
the estimated return function inaccurate, but still easy to fall
into the local optimal strategy.Terefore, to avoid the impact
of too small or too large strategy noise variance, the Q-value
expectation function is calculated using marginal impor-
tance sampling.

MIS is an importance sampling method used for non-
policy assessments [42] in which the payof function Q is
assessed by reweighting the rewards for resampling subse-
quent actions from the data
D � (s, a, r, s′)􏼈 􏼉 ∼ p(s′|s, a)dD(s, a). Here, dD is an arbi-
trary distribution that does not require some specifc
behavioural strategy to generate. Te improved payof
function Q by MIS is shown as follows:

Q(π) � E(s,a)∼dD ,r(s,a)

d
π
(s, a)

d
D

(s, a)
r(s, a)􏼢 􏼣. (16)

Te goal of the MIS method is to use the data in D to
resample the data according to the weight
w(s, a) ≈ (dπ(s, a)/dD(s, a)). MIS difers from traditional
importance-based sampling methods in that the ratios apply
to individual transitions rather than complete trajectories,
which can reduce the variance of long or infnite level
problems.Te redefnition of the training payof function for
TD3 using MIS allows the training strategy to estimate the
action payof at the next moment more accurately and to
take smoother values in the Q-value space, enhancing the
robustness of the output moderation strategy.

3.4. SystemDesign of ImprovedTD3-BasedCSMS. TeCSMS
based on the boosted TD3 constructed in this paper has
three features (1) SOTA algorithm TD3 is used to construct
the DRL-based CSMS. (2) Tompson sampling is used to
optimize the exploration noise sampling strategy of DRL,
which makes the training initial convergence of the strategy
faster. (3) Te calculation of the Q-return function is op-
timized using MIS, which makes the robustness of the
strategy improved. Te system fow chart of the improved
TD3-based CSMS is shown in Figure 3, and its pseudocode is
attached in Table 2.

4. Results and Discussions

To evaluate the global optimality of the CSMS based on the
improved TD3, in the following sections, we select TD3,
DDPG, PPO, TRPO, ACKTR, and SAC to construct the
CSMS with the improved TD3 and compare them. First, the

convergence speed of the CSMS based on the improved TD3
and other DRL-based CSMSs at the early stage of training is
compared. Secondly, the stability of the CSMS after im-
proving the Q-value return function using MIS is evaluated.
Finally, the impact of the improved TD3-based CSMS and
other DRL-based CSMSs on operator returns is compared.

4.1. Simulation Environment Setup. Te structure of the
operation area environment faced by the regulation policies
constructed based on TD3, DDPG, PPO, TRPO, ACKTR,
and SAC with the DRL of the modifed TD3 is shown in
Figure 1. In this operation regulation area, multiple charging
stations are managed by the policies generated by one op-
eration dispatch center. All DRL-based CSMSs need to be
trained with the goal of maximizing operational returns by
considering load demand, grid tarif, and PV generation.Te
main constraint of all EVCS comes from the grid-controlled
real-time tarif, and the real-time tarif information comes
from ComEd [43] at 19th February 2022, and the real-time
tarif curve is shown in Figure 4.

Te load demand at each individual EV charging station
in the region varies slightly from day to day, and the training
of the DRL-based CSMS is regulated by the next instanta-
neous predicted load value, so accurate ultrashort-term EV
charging load demand prediction is critical. Te ultrashort-
term prediction of EV charging load in a single EV charging
station has been done in previous work [26], and Figure 5
shows the actual EV charging load values compared with the
predicted values, which are entered as variables in the
training process of the DRL-based CSMS strategy.

Each individual EV charging station in the region has a
photovoltaic power generation system that is connected to
the charging station’s system, and this power is supplied
directly to EV users or fed into energy storage as needed.
Photovoltaic power generation is highly infuenced by the
climate, so the power generated by PV has a large fuctu-
ation. Te 24 hour PV power generation in real time is
shown in Figure 6.

4.2. Initial Convergence Rate of Improved TD3-Based CSMS.
Te initial convergence speed is an important metric to
evaluate the performance of a regulation strategy. In prac-
tical regulation scenarios, a strategy that can reach con-
vergence faster can save a lot of training costs and also
support faster regulation scales. As described in Section
3.1.2, TD3 has three main improvements, among which, the
exploration noise variance is a unique hyperparameter of
TD3. Diferent noise variances control the range of actions
performed by the actor by generating diferent noises, which
allows the intelligence to explore more ranges of action
values and approach the optimal boundary actions faster,
making the regulation strategy reach convergence faster. We
use Tompson sampling to select the most suitable explo-
ration noise variance, then load the generated exploration
noise on the actor for spatial action exploration, and
compare the initial convergence speed of the improved TD3
with TD3, DDPG, PPO, TRPO, ACKTR, and SAC, and the
results are shown in Figure 7.
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It can be observed from the initial convergence speed graph
that DDPG, ACKTR, TRPO, and PPO clearly pull apart from
TD3 and SAC by a large margin when the same training
objective is to maximize operational returns, with the CSMS
composed of the modifed TD3 having the fastest convergence
speed among all CSMS because it fnds the most suitable
exploration noise variance earlier and has a larger and fuller
exploration range for the action space in the early training.

4.3. Robustness of the Improved TD3-Based CSMS. For DRL
strategies, not only the convergence speed of the strategy is a
very important metric, but also the mean episode length of the

strategy during the iterative process. Te smaller the mean
episode length, the smaller the combination of episodes re-
quired for the strategy to converge near the convergence limit,
and the faster the agent can fnd the best strategy, thus in-
creasing the payof. In the scenario of practical management
strategy application, the smaller the mean episode length, the
higher the robustness of the strategy, and the larger the payof
that the strategy can achieve.

From Figure 8, we can observe that the mean episode
length of each DRL strategy decreases signifcantly during
the initial training process. Te CSMS constructed by
DDPG, SAC, and PPO has a large fuctuation of the mean
episode length during the iterative process, and cannot
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Target Critic 1

Target Critic 2

Critic 1
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Noise
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...

...

minQy r+γ
i=1,2 θi´

(St+1, a)

θi´ τθi + (1-τ) θi´ (critic)

1

N
μ J (μ) = ∑ ΔΔ

aQθ1
(St , a) μ θμ ( st)

Δ

θμ ( st)a =

ˆ Beta (αj+ k, βj + n – k)θ(j)
~

τμi + (1-τ) μ' (actor)μ'

ˆ clip (W (x1)θ (l)
~ (0, σ ), –c,c)~

˜

Figure 3: Management framework for CSMS based on the improved TD3.

Table 2: Pseudocode of proposed Improved TD3 algorithm.

Pseudocode of improved TD3 algorithm for sales price and energy scheduling

1
Initialization critic network with Qθ1, Qθ2, and actor network θμ with random parameters θ1, θ2, μ

Initialization target networks θ1′←θ1, θ2′←θ2, μ′←μ
Initialize replay bufer B and beta parameter (αj, βj)

2 for t1 � 1:T (time step of exploring cycle) do
3 Select a random noise 􏽢θ(j) ∼ Beta(αj + k, βj + n − k) for action exploration
4 get initial states: EEV

t , EPV
t , EEV,uf

t , SOEt, P
grid
t

5 for t2 � 1:T (time step of training cycle) do
6 Select action with exploration noise a ∼ θμ(s) + 􏽢θ(j)

7 Execute action a observe rewards rt and new states st+1
8 Store transition (st, a, rt, st+1) in B

9 Sample mini-batch of N transitions from B

10 􏽥a ∼ θμ(s) + 􏽢θ(l), 􏽢θ(l) ∼ clip(W(xl)N(0, 􏽥σ), −c, c)

11 y←r + cmini�1,2Qθi
′(st+1, 􏽥a)

12 Update critics θi←argminθi
N− 1 􏽐 (y − Qθi

(st, a))2

13 If t mod d then
14 Update the actor policy by the deterministic policy gradient:
15 ∇μJ(μ) � (1/N) 􏽐∇aQθ1(st, a)|a�θμ(st)

∇μθμ(st)

16 Update target networks: θi
′←τθi + (1 − τ)θi

′(critic)
17 μ′←τμi + (1 − τ)μ′(actor)
18 end if
19 end for
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guarantee good stability.Te CSMS constructed by ACKTR
has an obvious convergence trend, and the mean episode
length decreases continuously with the iterative process,
but the global convergence speed of this strategy is slow.
Te global convergence speed and the fnal convergence

limit of TD3 and the improved TD3 both show obvious
advantages, whereas the CSMS composed based on the
improved TD3 has a smaller mean episode length and
higher robustness.

4.4. Operational Returns of the Improved TD3-Based CSMS.
CSMS is a typical continuous type regulation task with
multiple input states, and the addition of multiple input
states inevitably greatly afects the convergence perfor-
mance of DRL-based CSMS. In the actual operation of
CSMS, the most important goal is to maximize the op-
erational return, so it is extremely important for all DRL-
based CSMS to observe its average return per training as
the number of iterations increases until the fnal
convergence.
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It can be observed from Figure 9 that although the
average returns of all DRL-based CSMS continue to increase
with the number of iterations during the training process,
the initial convergence speed and the average returns of the
fnal convergence of PPO, TRPO, ACKTR, and DDPG are
signifcantly lower than those of SAC, TD3 and the im-
proved TD3. Te CSMS based on the improved TD3 out-
performs the CSMS based on other DRL algorithms in terms
of both initial convergence speed and returns to operators.
Te CSMS based on the improved TD3 also outperforms the
CSMS based on other DRL algorithms in terms of stability.

5. Conclusions

In this study, a CSMS based on an improved deterministic
policy gradient DRL algorithm TD3 composition for
managing multiple charging stations in an operation region
is proposed to make the maximum return for regional
charging station operators. First, a detailed model is built for
the regional operation scenario constructed by multiple
charging stations in terms of both energy fow and operation
cost, and the CSMS is constructed with the objective
function of maximizing the operation return after consid-
ering the EV load demand, PV generation, grid tarif, and
operation cost, etc. To accelerate the initial convergence
speed of the management strategy during training,
Tompson sampling is used to improve the selection
strategy of the exploration noise variance of the exploration
noise attached by the agent to the exploration action. After
that, considering the need for stability of the management
strategy in the actual operating environment, the calculation
of the Q-value return function is improved using MIS to
make the management strategy more stable in the conver-
gence phase. Compared with other CSMS based on DRL
algorithms, the improved TD3 shows a faster initial con-
vergence speed and higher global stability during training.
Meanwhile, the CSMS based on the improved TD3 has the
maximum payof.

For the return problem of management strategies for
charging station operators, the strategy constructed in this paper
considers a small area for application. Terefore, in order to
meet themanagement strategy requirements of charging station
operators on a larger scale, the structure of the large scale
management strategy can be further refned in the subsequent
research to distribute the CSMS over a large scale area to meet
the management requirements on a larger spatial scale.

Symbols and Abbreviations

EEV
t : Te sum of the charging load predictions for all

EVCSs
EEV

i,t : Te predicted value of energy demands from EV
users of EVCS i at time t

EPV
t : Te total forecasted electricity production of PV

systems with EVCSs
EPV

i,t : Te predicted value of the energy of PV system
connected to EVCS i at time t

EFixed
t : Te total fxed consumption load for all EVCSs to

maintain operation
EFixed

i,t : Te fxed load electricity consumption of
charging station i at moment t

EEV,uf
t : Te charging load unfulflled by the charging

station at time t
EEV,uf

i,t : Te charging load unfulflled by charging station i
at moment t

EEV,total
t : Te predicted and unsatisfed charging loads at all

charging stations at moment t
SOEt: Te sum of the stored power of EVCSs at moment t
SOEi,t: Te amount of power stored at distributed

charging station i at moment t
η: Efciency during charging and discharging of

EVCSs
Eec,t: Te charge of the energy storage system at

moment t after considering the cycle efciency
Eedc,t: Te discharge of the energy storage system at

moment t after considering the cycle efciency
SOCi,t: Power stored in the charging station i at time t
P
grid
t : Dynamic electricity price of the grid at time t

PPV
t : Te price per unit of electricity saved by the PV

system at moment t
PEn

t : Te savings in environmental management costs
through the use of clean energy

Ppoll: Treatment cost per unit of electricity generated to
be treated

CRE: Te replacement cost of energy storage batteries
α: Te percentage of annual decrease in battery cost
KR: Te number of battery replacements
ic: Te discount on the cost of purchasing the battery
CSE: Te unit cost of the battery
N: Te battery energy storage plant operating cycle
L: Te energy storage battery replacement cycle
CIC: Te fxed investment cost of the energy storage

plant
CIS, j: Te overhaul cost in year j
dr: Te discount rate
Cend: Te disposal cost of the energy storage system at

the end of life
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Figure 9: Comparison of average returns using seven diferent
DRL methods.
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CFCSNPV: Te whole-life net present value of EVCS
CFCSNAV: Te whole-life net annual value of EVCS
Psell

i,t : Selling price factor for EVCS i at time t
CRETURN: Te operating return of EVCS power sales
s′: State space variables
θμ1(s): Storage of action variables
y: Te value of the next moment
M: Te number of batches split
Qθi: Set of critic agents for EVCS
􏽥a: Te noise used for smoothing
ϵ: Te noise added to the target strategy
Qθ: Initial value of the critical network
dD: Distribution range of parameters
θμ: Set of actions agents for EVCS
􏽢θ(j): Random noise in his distribution
B: Te replay bufer of the training network
αj, βj: Shape parameters of the Beta distribution
􏽢θ(j): Random noise of action exploration
Rtotal

n,t : Te total reward for EVCS agent n at the time t.
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