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Microgrid optimal dispatching has become one of the core issues of microgrid energy management and integrated control, which
is of great significance to reduce energy consumption and environmental pollution. As a natural heuristic algorithm, the butterfly
optimization algorithm (BOA) has the advantages of simple adjustment parameters and fast convergence speed. It is widely used
to solve nonlinear programming problems. However, BOA is easy to fall into local optimization and poor convergence accuracy.
+erefore, an improved butterfly optimization algorithm (IBOA) based on skew tent chaotic map, Cauchy mutation, and simplex
method is proposed, and compared with particle swarm optimization (PSO), whale optimization algorithm (WOA), sparrow
search algorithm (SSA), and BOA, the results show that the IBOA has high convergence speed and optimization accuracy. Finally,
the IBOA is used to solve the optimization model. +e simulation results show that the IBOA can effectively reduce the power
consumption cost of the system, promote the effective utilization of renewable energy, and improve the operation stability of the
microgrid cluster system.

1. Introduction

Nonrenewable energy plays a crucial role as the main energy
in production and life. However, due to the overexploitation
of nonrenewable energy, a series of problems caused by the
use of nonrenewable energy is gradually expanding, en-
dangering the ecological environment of the natural world,
and the development and utilization of renewable energy
such as wind energy and solar energy are becoming more
and more important. With the development of renewable
energy and energy storage batteries, the microgrid cluster
system consisting of multiple microgrids can make effective
use of renewable energy and has good development pros-
pects [1–4]. +e microgrid cluster system is an extension of
themicrogrid system. Compared with a single microgrid, the
interconnected operation of multiple microgrids not only
improves the reliability of the power supply but also plays an
important role in reducing power economic costs and en-
vironmental protection. Microgrid optimal dispatch prob-
lem is generally multi-objective optimization. Due to the

random fluctuation of distributed energy, the microgrid
optimal dispatch problem has become a nonlinear, multi-
constrained, multivariable combinatorial optimization
problem [5–8]. For traditional algorithms, it is usually hard
to find a feasible or optimal solution. In recent years, bio-
mimetic-inspired intelligent optimization algorithms have
become increasingly important in solving the optimal dis-
patch problem of the microgrid [9, 10]. Popular algorithms
such as PSO [11, 12], genetic algorithm (GA) [13, 14], and
ant colony optimization (ACO) [15] have better global
optimization ability and robustness.

At present, many scholars have done a lot of research on
the optimal dispatch of the microgrid. Miao et al. [16]
proposed a cost-benefit model for analyzing the scale of
microgrid energy storage system (ESS), which is solved by
the gray wolf optimization (GWO). +e superiority of in-
telligent optimization algorithms in solving microgrid op-
timal dispatch problems was verified, but the convergence
speed of GWO was slow when solving the model. Alireza
et al. [17] proposed an off-grid microgrid model consisting
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of photovoltaics (PV), wind turbine (WT), micro-turbine
(MT), ESS, and gas boiler (GB), which took the annual total
cost as the objective function and was solved by evolutionary
particle swarm optimization (E-PSO). Compared with other
intelligent algorithms, the results showed that E-PSO has
better searching ability than other algorithms, but it may fall
into local optimum when solving high-dimensional non-
linear programming problems. In Reference [18], the op-
timal size of the ESS in the microgrid was analyzed and
solved by PSO, GA, and flower pollination algorithm (FPA).
Although the optimal solution was obtained, the initial al-
gorithms are prone to falling into the local optimization
problem, and a more accurate value can be obtained by
improving the algorithm. In Reference [19], an optimal
system configurationmodel for determining a reliable power
supply system was proposed and solved using the grass-
hopper optimization algorithm (GOA). +e results showed
that the GOA outperformed the cuckoo search (CS) and
PSO in terms of searching ability, but that there is still room
for improvement. Abhilipsa et al. [20] proposed a microgrid
bidding strategy model in an uncontrolled environment and
solved it using an improved whale optimization algorithm
(IWOA). Compared with WOA, PSO, and bat algorithm
(BA), although the overall economic cost has been opti-
mized, the impact of environmental costs has not been taken
into account. Zahraoui et al. [21] determined the optimal
generation capacity of distributed power with the objective
of the lowest total generation cost and solved it using a
memory-based gravitational search algorithm (MBGSA).
Compared with GSA, artificial bee colony (ABC), GA, and
PSO, the cost of generating electricity has been reduced, but
the environmental costs of distributed power sources have
not been taken into account. Soheil et al. [22] used the levy-
flight moth-flame optimization algorithm (LMFOA) to solve
the problem with the objective of minimizing the life cost of
internal equipment and the transaction cost of electricity in
the microgrid. Compared with MFOA, hybrid genetic al-
gorithm and particle swarm algorithm, and ACO, the su-
periority of the improved algorithm was verified, but only a
single microgrid system was considered, and the microgrid
group system composed of multiple microgrids was not
considered. Morteza et al. [23] proposed a model to de-
termine the optimal size of the ESS with the lowest total cost
as the objective, solved it by convex optimization, and
compared it with GA and PSO. +e power interaction in
grid-connected situations was not considered, although the
lowest total cost was obtained.

In summary, most of the research on optimal dispatch of
microgrids still stays at the level of a single microgrid. +e
microgrid cluster system composed of multiple microgrids
can make up for the insufficiencies of fluctuation, indi-
rectness, and randomness of distributed power supply, ef-
fectively improve the stability of the system, and reduce the
rate of light and wind abandonment, so the optimal dispatch
research on microgrid cluster is particularly important. In
this study, a microgrid cluster system model composed of
three microgrids is constructed, which considers the gen-
eration cost, equipment operation and maintenance cost,
ESS operation cost, energy transaction cost, and

environmental cost of the power generation unit, and uses
IBOA to simulate and solve the model. To improve the
searchability of the algorithm, a skew tent chaotic map is
used to improve population diversity, and then, the Cauchy
mutation is used in the search process to change the location
information of butterflies, expand the search space, and
finally use the simplex method to improve the poor indi-
viduals in the location update process. As a result, the
microgrid cluster’s optimum dispatch may be solved more
efficiently.

2. Economic Dispatching Model of
Microgrid Cluster

2.1. Microgrid Cluster System Structure. +e microgrid
cluster is composed of several microgrids, each of which is
an individual, including PV, WT, diesel generator (DG),
MT, ESS, and load. +e interaction between the microgrid
cluster and the distribution network is carried out through
the information interaction center, as shown in Figure 1.

2.2. Objective Function. +e objective function is to mini-
mize the operating cost and environmental cost of the
microgrid cluster.+e operating cost includes the generation
cost of controllable distributed generating units, the oper-
ation and maintenance cost of generating equipment, the
operation cost of ESS, and the transaction cost of electricity.
+e environmental cost is the penalty cost for pollutant gases
(CO2, SO2, and NOx), and the objective function is to
maximize the overall benefits of the microgrid cluster. +e
specific objective functions can be represented as follows:

C � C1 + C2, (1)
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where Ck is the cost factor for handling K-type pollutants,
and there are three main pollutants (CO2, SO2, and NOx).

2.2.1. Cost of Diesel Generator. +e cost of DG is related to
fuel consumption and can be expressed as follows:

C
DG
i (t) � α P

DG
i (t) 

2
+ βP

DG
i (t) + c, (4)

where α, β, and c are the fuel consumption cost factors of the
DG. Typically, α� 0.001, β� 0.18, and c � 6 [24].

2.2.2. Cost of Micro-Turbine. +e cost of MT is related to gas
consumption and can be represented as follows:
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C
MT
i (t) �

Cnl

L
×

P
MT
i (t)

ηMT
i (t)

, (5)

where Cnl is the price of natural gas, L is the low calorific
value of natural gas, PMT

i is the power of MT, and ηMT
i is the

power generation efficiency of MT [25]. Typically, Cnl � 2.5
CNY/m3 and L� 9.7KWh/m3.

2.2.3. Maintenance Cost of Power Generation Equipment.
+e power generation equipment will cause some loss
during operation, which can be expressed as follows:

C
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2.2.4. Operation Cost of Energy Storage System. Due to the
randomness and fluctuation of distributed power supply, the
ESS discharges when the power generation is insufficient,
charges when the power generation is sufficient, and pro-
duces a certain loss when charging and discharging, which
can be expressed as follows:

C
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i (t) �

C
cost
i

P
R
i T

×
di 1 + di( 

li

1 + di( 
li − 1

P
ESS
i (t). (7)

2.2.5. Transaction Cost of Electricity. +ere are costs in-
curred when themicrogrid trades with themicrogrid and the
microgrid trades with the distribution network, which can
be expressed as follows:

C
ET
i (t) � P

mg
i (t)δmg

i (t) + P
grid
i (t)δgridi (t), (8)

where P
mg
i and P

grid
i are positive when purchasing electricity

and negative when selling electricity.

2.3. Constraints. When optimizing the microgrid cluster
system, the following constraints need to be considered.

2.3.1. Power Balance Constraint. +is constraint is for the total
power of the microgrid cluster system and plays an important
role in optimal dispatch, which can be expressed as follows:

P
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+ P
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(9)

2.3.2. Power Generation Equipment Constraints. +is re-
striction is mainly derived from the physical constraints of
the power generation equipment and can be expressed as
follows:

R
DG
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DG
i,upΔt, (10)

R
MT
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MT
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MT
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2.3.3. Energy Storage System Constraints. +e energy storage
systems can improve the stability of microgrid cluster, and
the constraints can be expressed as follows:

(1) Charge state constraint

SOCmin
i ≤ SOC(t)≤ SOCmax

i . (12)

(2) Power constraints for charging and discharging
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i ,

P
ch
i (t) × P
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(13)

3. Proposed Enhancements for Butterfly
Optimization Algorithm

3.1. Butterfly Optimization Algorithm. +e BOA is a natural
heuristic algorithm proposed for the feeding behavior of
butterflies. In BOA, all butterflies attract each other by emitting
some fragrance. Each butterfly moves randomly or toward the
best butterflies and emits more fragrance [26]. +e size of the
butterfly aroma is a function of the physical intensity of the
stimulus, and the formula can be expressed as follows:

f � cI
α
, (14)

where f is the aroma size of butterflies, c is the sensory
modality, I is the stimulation intensity, and α is the power
exponent with a range of [0,1].

+e location update formula for the global search phase
can be expressed as follows:

x
t+1
i � x

t
i + r

2
× g
∗

− x
t
i  × fi, (15)

where xt
i is the position vector of the ith butterfly in the tth

iteration, r is the random number between [0,1], g∗ is the
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Grid
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Figure 1: Microgrid cluster diagram.
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current optimal solution, and fi is the aroma size of the ith
butterfly.

+e location update formula for the local search phase
can be expressed as follows:

x
t+1
i � x

t
i + r

2
× x

t
j − x

t
k  − x

t
i  × fi, (16)

where xt
j and xt

k refer to the position vectors of the jth and
kth individuals randomly selected from within the pop-
ulation in the tth iteration, respectively.

Global and local searches occur when a butterfly is
searching for food and are determined by setting the switch
probability p.

3.2. Improved Butterfly Optimization Algorithm

3.2.1. Chaotic Map Initialization Population. Chaotic se-
quences generated by chaotic mapping have the advantages
of randomness, traversal, non-repeatability, etc. In the op-
timization field, they are often used to generate the initial
position of the population, which can effectively improve the
diversity of the population. Here, the skew tent chaotic
mapping is used to initialize butterfly population, and its
definition can be expressed as follows:

xn+1 �

xn

α
, xn < α,

1 − xn

1 − α
, xn ≥ α,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where α is a random number from 0 to 1.

3.2.2. Cauchy Variation. +e Cauchy density function is
similar to the Gauss density function, but the Cauchy dis-
tribution has a higher two-wing probability characteristic, a
wider distribution range than the random numbers gener-
ated by the Gauss distribution, which effectively improves
the global searchability of the algorithm and makes it easy to
jump out of the local optimum [27].+e Cauchy distribution
function can be expressed as follows:

Ft(x) �
1
2

+
1
π
arctan

x

t
 , (18)

where t is a proportional function and has a positive value.
+e Cauchy operator is introduced in the global search

and local search to mutate individual locations, which makes
it easier for the algorithm to jump out of the local optimal
value and improve the accuracy of the algorithm.

+e location of the global search phase is updated as
follows:

x
t+1
i � x

t
i + r

2
× g
∗

− x
t
i  × fi × Cauchy(0, 1). (19)

+e location of the local search phase is updated as
follows:

x
t+1
i � x

t
i + r

2
× x

t
j − x

t
k  − x

t
i  × fi × Cauchy(0, 1). (20)

3.2.3. Simplex Method. +e advantages of the simplex
method include a simple principle, small computation, quick
convergence, and strong local searchability. It can effectively
improve the local development ability and search accuracy of
BOA. +e simplex method entails creating n+ 1 vertex
polyhedrons in n-dimensional space, calculating and com-
paring the fitness values of each vertex, and determining the
best, second best, and worst points. By reflection, expansion,
contraction, and other strategies, a better advantage is ob-
tained, and a new polyhedron is formed, iterating and
approaching the optimal point gradually. +e steps can be
expressed as follows:

Step 1: calculate the fitness values of all vertices, rank
the individual fitness values, and determine the optimal
point x1, the secondary advantage x2, and the worst
point x3.
Step 2: calculates the center point of the optimal point
x1 and the secondary advantage x2, which is counted as
x4.
Step 3: reflect the worst point x3 to get the reflection
point, which is recorded as x5 and can be expressed as
follows:

x5 � x4 + α x4 − x3( , (21)

where α is the reflection coefficient in the formula and
the value is 1.
Step 4: if f(x5)< f(x1), the reflection direction is correct,
the expansion operation is performed, and the ex-
pansion point is obtained, which is recorded as x6 and
can be expressed as follows:

x6 � x4 + β x5 − x4( , (22)

where β is the expansion factor and the value is 1.5.
If f(x6)< f(x1), the worst point x3 is replaced by the
expansion point x6; otherwise, the worst point x3 is
replaced by the reflection point x5.
Step 5: if f(x5)>f(x1), the reflection direction is incor-
rect. Compression is performed to get the compression
point, which is recorded as x7 and can be expressed as
follows:

x7 � x4 + c x3 − x4( , (23)

where c is the compression factor and the value is 0.5.
If f(x7)< f(x3), the worst point x3 is replaced by the
compression point x7.
Step 6: if f(x1) <f(x5)< f(x3), a contraction operation is
performed to get the contraction point, which is
recorded as x8 and can be expressed as follows:

x8 � x4 − ε x3 − x4( , (24)

where ε is the shrinkage factor and the value is 0.5.
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If f(x8)< f(x3), the worst point x3 is replaced by the
shrinking point x8. Otherwise, the worst point x3 is replaced
by the reflection point x5.

3.2.4. IBOA Steps. In summary, the IBOA steps presented in
this study can be expressed as follows:

Step 1: initialize parameters, using skew tent chaotic
map to set population location;
Step 2: calculate the fitness value and record the initial
extreme value;
Step 3: calculate the individual aroma size of each
butterfly;
Step 4: perform global and local searches using for-
mulas (19) and 20);
Step 5: improve the poor individuals by the simplex
method;
Step 6: update the individual and global optimal so-
lution of the butterfly;
Step 7: determine whether the algorithm has reached
the maximum number of iterations and whether it has
reached the end of the algorithm; otherwise, return to
Step 3.

4. Test Function and Analysis

4.1. Parameter Settings. +e 14 test functions are compared
among PSO, WOA, SSA, BOA, and IBOA. +e initial
population size of all algorithms is set to 100, the number of
iterations is 1000, each algorithm runs independently 30
times, and all simulations are completed on MATLAB
2019b. +e algorithm parameter settings are shown in
Table 1.

4.2. Test Function. +e 14 benchmark test functions are
selected for simulation analysis. +e test function infor-
mation is described in Table 2:

4.3. Algorithmic Test and Performance Comparison. +e test
results are described in Table 3.

+e convergence curve is shown in Figure 2.
From the above results, IBOA is better than other

algorithms in search accuracy and convergence speed,
among which IBOA performs well in single-mode test
functions f1∼f5, can directly find the optimal value in f1∼f4
test functions, and has the highest search accuracy in f5
test functions compared with other algorithms. In the

multimodal test functions f6∼f11, IBOA still has a high
optimization ability, in which the optimal values can be
directly found in the test functions f7 and f9, and the
convergence speed is faster than other algorithms. IBOA,
BOA, and SSA search capabilities are almost the same in f8
test functions, but IBOA has the advantage of faster
convergence. In f10 and f11 test functions, IBOA has the
highest accuracy and stability. In the fixed dimension test
function f12∼f14, each algorithm has excellent perfor-
mance. In f12 and f14 test functions, all algorithms can
quickly find the optimal value. In f13, the optimization
accuracy of IBOA and SSA is higher than that of other
algorithms, and the convergence speed is faster. +rough
comparative experiments, IBOA solves the problem that
BOA is easy to fall into local optimum and has poor
convergence accuracy.

5. Simulation Results and Discussion

+ree interconnected microgrids (MG1, MG2, and MG3)
are selected for simulation analysis, in which a single
microgrid is mainly composed of the PV,WT, DG, MT, ESS,
and load. When dealing with microgrids, the multipower
supplier preferentially supplies power to the one with more
power shortages to improve overall economic benefits, and
the calculation period is one day.

5.1. Case Parameters. Figure 3 shows the power generation
of PV and MT and the load diagram required by the
microgrid. Table 4 shows the power generation unit pa-
rameter, Table 5 demonstrates the environmental pollution
parameter, Table 6 is the time-sharing electricity price table,
and Table 7 illustrates the ESS parameter.

5.2. Result Analysis. Figure 4 shows the power output dia-
gram of each power generation device based on the mini-
mum total cost of the microgrid cluster under the island
model. Figure 5 shows the power output diagram of each
power generation device under the condition of grid con-
nection. ESS discharge is preferred when PV and WTpower
generation is insufficient. When ESS reaches the lower
discharge limit, the other power generation equipment with
lower total cost takes precedence. +e positive output value
of ESS indicates discharge, while the negative output value
indicates charge. +e positive output values for the
microgrid and the distribution network indicate the pur-
chase of electricity, while the negative output values indicate
the sale of electricity.

Table 1: Parameters of the algorithms.

Algorithm Parameter settings
PSO Acceleration coefficients c1 � c2 � 2, inertia weight ω� 0.6
WOA Coefficient vector a� [2, 0], logarithmic spiral shape constant b� 1
SSA Discoverers PD� 20%, security threshold ST� 0.8, investigators SD� 10%
BOA Sensory modality c� 0.01, power exponent α� 0.1, switch probability p� 0.6
IBOA Sensory modality c� 0.01, power exponent α� 0.1
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Table 3: Test results of different functions.

Function Algorithm Best Avg Std

f1

PSO 1.8539E – 140 2.2126E− 124 3.1259E – 124
WOA 1.2693E – 201 3.8570E− 195 0.0000E+ 00
SSA 0.0000E+ 00 0.0000E + 00 0.0000E+ 00
BOA 4.2696E – 105 1.4164E− 103 1.8100E – 103
IBOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

f2

PSO 5.0631E – 70 1.3820E− 61 1.9544E – 61
WOA 1.9255E− 119 4.3549E− 112 6.1533E – 112
SSA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
BOA 3.9626E− 77 1.7330E− 76 1.8012E – 76
IBOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

f3

PSO 6.9869E− 01 8.7387E− 01 2.1321E – 01
WOA 2.5717E+ 03 4.0816E+ 03 1.1156E+ 03
SSA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
BOA 8.9991E− 105 4.0221E− 104 2.4291E – 104
IBOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

f4

PSO 1.0546E− 65 1.8886E− 61 2.6666E – 61
WOA 2.4586E+ 00 1.2221E+ 01 1.1671E+ 01
SSA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
BOA 3.3476E− 77 1.5992E− 76 1.3416E – 76
IBOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

f5

PSO 3.1796E− 05 3.4680E− 05 3.8048E – 06
WOA 5.5907E− 05 2.0529E− 04 1.3767E – 04
SSA 3.2522E− 05 6.8277E− 05 2.8181E – 05
BOA 2.3071E− 06 5.9118E− 06 2.7000E – 06
IBOA 1.6265E− 09 6.1461E− 08 4.2729E – 08

f6

PSO −4.1898E+ 02 −4.1898E+ 02 0.0000E+ 00
WOA −1.2569E+ 04 −1.2206E+ 04 3.7103E+ 02
SSA −8.5591E+ 03 −7.9744E+ 03 5.1050E+ 02
BOA −2.9617E+ 03 −2.6778E+ 03 2.1900E+ 02
IBOA −2.1306E+ 04 −1.8067E+ 04 2.4580E+ 03

f7

PSO 2.9000E+ 02 2.9000E+ 02 0.0000E+ 00
WOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
SSA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
BOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
IBOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

f8

PSO 1.6844E+ 00 1.6844E+ 00 0.0000E+ 00
WOA 4.4409E− 15 4.4409E− 15 0.0000E+ 00
SSA 8.8818E− 16 8.8818E− 16 0.0000E+ 00
BOA 8.8818E− 16 8.8818E− 16 0.0000E+ 00
IBOA 8.8818E− 16 8.8818E− 16 0.0000E+ 00

f9

PSO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
WOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
SSA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
BOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
IBOA 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

f10

PSO 6.3961E− 01 6.3961E− 01 0.0000E+ 00
WOA 2.1848E− 06 3.6203E− 06 1.0209E – 06
SSA 1.8393E− 18 6.8229E− 17 1.0761E – 16
BOA 3.6084E− 01 5.6215E− 01 1.4293E – 01
IBOA 1.5705E− 32 1.5705E− 32 0.0000E+ 00

f11

PSO 1.1309E+ 00 1.1309E+ 00 0.0000E+ 00
WOA 1.1053E− 03 8.3458E− 03 5.1198E – 03
SSA 6.2205E− 17 1.7189E− 16 2.0162E – 16
BOA 2.4563E+ 00 2.8107E+ 00 2.5060E – 01
IBOA 1.3498E− 32 1.3498E− 32 0.0000E+ 00

f12

PSO 9.9800E− 01 9.9800E− 01 0.0000E+ 00
WOA 9.9800E− 01 9.9800E− 01 0.0000E+ 00
SSA 9.9800E− 01 9.9800E− 01 0.0000E+ 00
BOA 1.0014E+ 00 1.6017E+ 00 4.3285E – 01
IBOA 9.9800E− 01 9.9800E− 01 0.0000E+ 00
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Table 3: Continued.

Function Algorithm Best Avg Std

f13

PSO 1.4596E− 02 1.4596E− 02 0.0000E+ 00
WOA 3.0757E− 04 7.5286E− 04 3.7988E – 04
SSA 3.0749E− 04 3.0749E− 04 0.0000E+ 00
BOA 3.5300E− 04 4.0181E− 04 4.0973E – 05
IBOA 3.0749E− 04 3.0749E− 04 0.0000E+ 00

f14

PSO 3.0000E+ 00 3.0000E+ 00 0.0000E+ 00
WOA 3.0000E+ 00 3.0000E+ 00 0.0000E+ 00
SSA 3.0000E+ 00 3.0000E+ 00 0.0000E+ 00
BOA 3.0000E+ 00 3.0000E+ 00 0.0000E+ 00
IBOA 3.0000E+ 00 3.0000E+ 00 0.0000E+ 00
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Figure 2: Continued.
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Figure 2: Continued.

International Transactions on Electrical Energy Systems 9



5.2.1. Economic Dispatch in the Island Model. Since the
microgrid cluster is not connected to the distribution net-
work in the island model, DG is used as the emergency
power supply to provide the amount of electricity needed
and remove the power constraint of DG to meet the power
balance of the microgrid. +e output of specific power
generation equipment is shown in Figure 4.

Microgrid 3 is taken as an example, in 00:00–01:00, 05:
00–08:00, and 20:00–24:00 time periods, the power gener-
ation is insufficient, and the amount of electricity lacking is
first compensated by ESS, and after reaching the upper limit
of ESS discharge, it is supplied by emergency power DG. In
02:00–04:00 and 09:00–19:00 periods, the power generation
is sufficient and is charged to ESS, and after reaching the

charge limit, the remaining electricity is sold to the power-
deficit microgrid. Surplus power is sold to microgrid 2 in 03:
00–04:00 time frame and microgrid 1 in 12:00–19:00 time
frame. +e microgrid cluster in the island model does not
have the support of the distribution network, and DG is a
high demand for itself as an emergency power supply.

5.2.2. Economic Dispatch in the Grid-Connected Model.
+e device output of the microgrid cluster in the grid-
connected model is shown in Figure 5.

Microgrid 3 is taken as an example, in 00:00–01:00, 05:
00–09:00, and 19:00–24:00 periods, the power generation
is insufficient, and ESS discharge is given priority. When
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Figure 2: Function convergence diagram. (a) Convergence diagram of f1. (b) Convergence diagram of f2. (c) Convergence diagram of f3.
(d) Convergence diagram of f4. (e) Convergence diagram of f5. (f ) Convergence diagram of f6. (g) Convergence diagram of f7. (h)
Convergence diagram of f8. (i) Convergence diagram of f9. (j) Convergence diagram of f10. (k) Convergence diagram of f11. (l) Convergence
diagram of f12. (m) Convergence diagram of f13. (n) Convergence diagram of f14.
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Figure 3: MG renewable energy and load forecasting. (a) MG1 prediction diagram. (b) MG2 prediction diagram. (c) MG3 prediction
diagram.

Table 4: Parameters of power generation unit.

Equipment Upper generation limit (kW) Lower generation limit (kW) Climb rate (kW/h) Maintenance factor(CNY/kWh)
PV1 160 0 — 0.03
PV2 200 0 — 0.06
PV3 240 0 — 0.08
WT1 180 0 — 0.04
WT2 230 0 — 0.08
WT3 260 0 — 0.10
DG1 50 0 30 0.088
DG2 70 0 30 0.093
DG3 90 0 30 0.108
MT1 120 15 10 0.083
MT2 100 10 10 0.075
MT3 80 10 10 0.0648
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Table 5: Pollution discharge factors and costs.

Type Governance cost/(CNY/kg)
Pollutant discharge factor/(g/kWh)

PV WT DG Grid MT
CO2 0.21 0 0 651 890 750
SO2 14.85 0 0 0.218 1.92 0.041
NOx 62.53 0 0 6.23 1.65 0.26

Table 6: Hourly electricity price.

Transaction form Time interval Distribution network MG1 MG2 MG3

Sell electricity

Peak time 09:00–12:00 0.83 0.51 0.62 0.5818:00–23:00

Normal time 07:00–09:00 0.60 0.46 0.56 0.5212:00–18:00

Valley time 00:00–07:00 0.48 0.41 0.51 0.4323:00–24:00
Purchase electricity 00:00–24:00 0.40 — — —

Table 7: Parameter settings for energy storage system.

Parameter Value
Rated capacity/(kWh) 150
Maximum charge/discharge power/(kW) 50
Charge/discharge efficiency 0.9
Depreciation rate/(CNY/kW2) 0.005
Installation cost/(CNY) 120000
Maximum/small charge capacity/(kWh) 135/30
Service life/year 10
Initial capacity/(kWh) 75
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Figure 4: Continued.
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Figure 4: Equipment output in the island model. (a) MG1 equipment output diagram. (b) MG2 equipment output diagram. (c) MG3
equipment output diagram.
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Figure 5: Continued.
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ESS discharge reaches the upper limit, power purchase is
made to the microgrid and distribution network. Since
there is no excess power within the microgrid group in this
period, power purchase is made to the distribution net-
work to fill the shortage. In 02:00–04:00 and 10:00–18:00
periods, the power generation is sufficient, the excess
power is charged to ESS, and then the remaining power is
sold after reaching the maximum charge limit. Surplus
power is sold to microgrid 2 in 03:00–04:00 time frame and
microgrid 1 in 12:00–18:00 time frame. +e power

generation cost of MT is slightly lower than that of DG,
and the power generation process can bring some heat,
which can meet the resident’s need for hot water and
obtain additional benefits.

5.3. Analysis of Optimization Results. +e result is shown in
Figure 6. PSO, WOA, SSA, BOA, and IBOA are used to
optimize the model, where Figure 6(a) is the economic cost
in the island model and Figure 6(b) is the economic cost in
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Figure 5: Equipment output in the grid-connected model. (a) MG1 equipment output diagram. (b) MG2 equipment output diagram.
(c) MG3 equipment output diagram.
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Figure 6: Algorithmic cost comparison. (a) Economic cost of the island model. (b) Economic cost of the grid-connected model.
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the grid-connected model. In the grid-connected model,
PSO cost is 4338.14 CNY, WOA cost is 4165.94 CNY, SSA
cost is 4046.61 CNY, BOA cost is 4105.38 CNY, and IBOA
cost is 3957.49 CNY. Among the costs of IBOA, the eco-
nomic cost is 3343.39 CNY, and the environmental pollution
cost is 614.11 CNY, and the economic cost includes the DG
cost of 466.51 CNY, the MT cost of 557.18 CNY, the
maintenance cost of PV andMTof 1421.20 CNY, the electric
energy transaction cost of 538.07 CNY, and the ESS
maintenance cost of 360.43 CNY. From the graph, IBOA is
better than other algorithms in convergence speed and
searchability.

6. Conclusions

+is research constructs a microgrid cluster system model
consisting of three single microgrids to solve the economic
optimization dispatch problem. +e information exchange
center facilitates information sharing between single
microgrids and between the microgrid cluster and the
distribution network, and the model is simulated and solved
by IBOA. To solve the problems of BOA falls into a local
optimum easily and poor convergence accuracy, the skew
tent chaotic map is used to initialize butterfly population, the
Cauchy mutation is used to expand the search space, and the
simplex method is used to improve the performance of the
algorithm for poor individuals. +e results of a comparison
of 14 test functions with PSO, WOA, SSA, and BOA show
that IBOA has significant advantages in terms of conver-
gence speed and optimization accuracy. Finally, the pro-
posed model is solved by simulation. Compared with other
algorithms, IBOA has the highest economic benefit. By
optimizing the microgrid cluster, the total operating cost is
decreased, the dependence of the microgrid cluster on the
distribution network is reduced effectively, and the devel-
opment and utilization of renewable energy are promoted.

List of Symbols and Abbreviations

PV: Photovoltaics
WT: Wind turbine
MT: Micro-turbine
ESS: Energy storage system
DG: Diesel generator
ET: Electricity transaction
EM: Equipment maintenance
C1: +e operating cost
C2: +e environmental pollution cost
cDGi and cMT

i : Generation cost of DG and MT
cEMi : Operation and maintenance cost of

PV and WT inside microgrid
cESSi : Operation cost of ESS
cETi : Electricity transaction cost
λDGk , λMT

k , and λgridk : Discharge factors of the K-type
pollutants produced by DG, MT, and
grid

PWT
i , PPV

i , PDG
i ,

PMT
i , and PESS

i :
Generated power ofWT, PV, DG,MT,
and ESS

kWT
i , kPV

i , kDG
i , and

kMT
i :

Maintenance cost factors of WT, PV,
DG, and MT

Ccost
i : Total investment cost of ESS

PR
i : Rated power of ESS

T: Annual running hours of ESS
di: Depreciation rate of ESS
li: Service life of ESS
P
mg
i : Power for power trading between

microgrids
P
grid
i : Power for power trading between the

microgrids and the distribution
network

δmg
i : Power price of microgrid
δgridi : Power price of the distribution

networks
Pload

i : Load size of the microgrid cluster
system

RDG
i,up, RDG

i,down: Up and down climb speed of DG
RMT

i,up and RMT
i,down: Up and down climb speed of MT

SOCmin
i and

SOCmax
i :

Minimum and maximum charges of
the ESS

Pch
i : Charge power of ESS

Pdis
i : Discharge power of ESS.
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