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A new hybrid decomposition-based multiobjective evolutionary algorithm is proposed for optimal power flow (OPF) including
wind and solar generation uncertainty. (is study recommends a novel constraint-handling method, which adaptively adds the
penalty function and eliminates the parameter dependency on penalty function evaluation. (e summation-based sorting and
improved diversified selection methods are utilized to enhance the diversity of multiobjective optimization algorithms. (e OPF
problem is modeled as a multiobjective optimization problem with four objectives such as minimizing (i) total fuel cost (TC)
including the cost of renewable energy source (RES), (ii) total emission (TE), (iii) active power loss (APL), and (iv) voltage
magnitude deviation (VMD). (e impact of RESs such as wind and solar energy sources on integration is considered in optimal
power flow cost analysis. (e costs of RESs are considered in the OPF problem to minimize the overall cost so that the impact of
intermittence and uncertainty of renewable sources is studied in terms of cost and operation wise. (e uncertainty of wind and
solar energy sources is described using probability distribution functions (PDFs) such asWeibull and lognormal distributions.(e
efficiency of the algorithm is tested on IEEE 30-, IEEE 57-, and IEEE 118-bus systems for all possible conditions of renewable
sources using Monte Carlo simulations.

1. Introduction

In recent times, RES penetration has drastically increased in
the power system. (e penetration of RESs has introduced
many challenges to the power system. (e intermittent
nature of RESs makes the system more complex in terms of
operation and control. (e uncertain nature of RESs is
required to be accurately modeled to examine the dynamic
functioning of the power system. Due to its unpredictable
nature, protection schemes need to be updated for operating
the power system in a secure region. In a power system, the
main aim is to operate it with optimal cost and simulta-
neously satisfy the operating and security constraints. (e
OPF determines the optimal control settings by the satis-
fying system and security constraints to economically
operate.

A significant amount of research has been carried out in
the domain of OPF with the incorporation of RESs in the
power system using both deterministic and meta-heuristic
optimization algorithms. (e gradient method is proposed
[1] to develop the dynamic OPF to include wind farms
without considering the costs of wind power. For solving the
OPF model in the presence of a wind plant, the authors [2]
used the Newton method and interior-point methods. (e
uncertain nature of wind power has been estimated and is
added to the overall cost function. However, deterministic
methods are problem-specific, exhibit poor convergence
characteristics, and are stuck at local optima points.
Moreover, these methods are unable to solve real-world
optimization issues. To overcome the drawbacks of deter-
ministic methods, meta-heuristic methods have been
introduced.
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In [3], the authors used the SHADE algorithm with the
SF method for arriving at the solution to OPF with RESs.
Similarly, in [4–8] the authors proposed several meta-
heuristic optimization methods for solving OPF with RESs.
However, these are formulated as single-objective optimi-
zation problems. In the real world, the OPF problem is
multiobjective and the trade-off between multiple objects
gives better optimal conditions for operation.

In [9], the authors introduced a modified JAYA al-
gorithm for solving the MOOPF problem incorporating
RESs with four different objectives. In this study, the
authors transformed multiple objectives into a single
objective problem with price and weights. Similarly, in
[10–12] the authors proposed a weighted sum-based
MOOPF problem with various objectives. (e weighted
sum-based methods are simple in combining multi-
objectives into a single objective with suitable weights.
However, this approach heavily depends on the weights
that are assigned to each objective value, and these, in turn,
affect the optimal solution. Moreover, the weighted sum-
based methods fail to obtain the best-compromised so-
lution when needed.

In [13], the authors concentrated on the analysis of the
MOOPF solution with RESs using the hybrid DE and SOS
algorithms, which have been tested under different operating
conditions. Similarly, in [14–16] the authors used the
nondominated sorting (NDS) technique to pick the best
solutions for parents in an elitist fashion. When the dom-
inant solutions are removed from the population, the ef-
fective exploration capability will be lost. Besides this, the
nondominated sorting selection is challenging and time-
consuming. Moreover, the constraints are handled using the
penalty factor method, which is inefficient.

In OPF, constraints play a key role to obtain feasible
optimal solutions. (e constraint-handling techniques used
in optimization techniques are divided into two categories;
(i) generic methods and (ii) specific methods. (e generic
methods are penalty function-based methods. (ese are
simple and mostly used in optimization algorithms as they
do not demand additional changes in the algorithm. When a
constraint violation occurs, a penalty is added to its fitness.
However, these methods may not provide satisfactory results
for all types of constraints. On the other hand, specific
constraint-handling methods can be applied to convex re-
gion problems and large variable problems. (e cutting
plane method and gradient method are the commonly used
methods to handle specific constraints [17, 18]. However, the
drawback of specific methods is that, as the number of
variables increases, the computing time also increases. (e
performance of both methods depends on fine-tuning dif-
ferent parameters of constraint handling, which also affects
the fitness value.

(e conventional generators are subjected to different
costs as they run on fuel. RESs such as wind and solar do not
require any fuel. (erefore, fuel costs are not considered for
wind and solar power generation. In the case of wind and
solar generations owned by anyone other than ISO, direct
cost needs to be added to the total cost, which is in the form
of maintenance costs and renewal charges [19]. (e direct

prices are agreed by ISO to pay for the scheduled wind and
solar energy. Direct prices have not been addressed in most
of the literature.

(e above literature review reveals the following:

(i) Most of the authors designed the OPF problem as
single-objective optimization. In real time, multiple
objectives play a key role in the economic viability of
the power system.

(ii) (e weighted sum-based methods depend on
weights assigned to each objective, and it affects the
optimal solution.

(iii) In most of the literature, the Pareto dominance
method is used, and in the Pareto dominance
method, nondominated sorting (NDS) technique to
select the best solutions is used, which improves the
diversity and convergence. When all the dominant
solutions have been removed, the diversity of the
population is lost. NDS selection is complex and
time-consuming.

(iv) (e constraints are handled using the penalty factor
method, a specific method that is inefficient, due to
parameter dependency.

(v) In calculating the uncertainty cost of RESs, only
overestimation and underestimation costs are
considered, while the direct cost is neglected.

In this study, a new hybrid MOEA based on decom-
position and summation of normalized objectives with an
improved diversified selection method is used for the
MOOPF problem. An SF strategy is employed to tackle
various constraints (i.e., equality and inequality) of the
MOOPF problem.

(emajor contributions of the research work include the
following:

(1) Proposing a novel MOEA based on decomposition
and summation of normalized objectives with im-
proved diversified selection for the MOOPF
problem.

(2) Integrating RESs like wind and solar power plants
with conventional OPF to consider the impact of the
uncertain nature of these sources.

(3) Modeling the uncertain nature of wind and solar
power plants using PDF and calculating the un-
certain cost using Monte Carlo simulations.

(4) Multiobjective OPF (MOOPF) with TC, TE, APL,
and VMD as four objectives.

(5) Utilizing an efficient constraint-handling technique
(CHT) called the superiority of feasible solution (SF)
to tackle complex constraints in MOOPF problems.

(e study is structured as follows: Section 2 presents a
wind and solar uncertainty modeling. Section 3 describes the
problem formulation of MOOPF with RES. Section 4
presents the framework of the proposed algorithm. In
Section 5, simulation case studies are discussed and con-
clusions are made in Section 6.
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2. Wind and Solar Power Uncertainty Modeling

(e wind speed at a given geographical area is most likely
distributed according to Weibull distributions. Mathemat-
ically, the Weibull PDF is written as follows:

f(v) �
k

c
 

v

c
 

(k−1)

(e)
(− v/c)k

, 0< v<∞. (1)

(e PDFs for two different shape and scale factors are
given in [20]. (e relationship between wind speed and
power generation is as follows:
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(e probability for the linear part of the wind speed is
given by the following:
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where Weibull PDF parameters k� 2 and c� 10. (e wind
speeds vin � 3m/sec, vout � 25m/sec, and vr � 16m/sec.

Similarly, the power output of a solar energy system is a
factor of solar irradiance (Gs) and it likely follows the
lognormal distribution [21]. (e PDF for the lognormal
distribution is as follows:
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���
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2σ2
  forGs > 0. (6)

(e PV unit’s solar irradiance to energy generation is
[22]as follows:
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where lognormal PDF parameters μ� 6 and σ � 0.6. (e
standard solar irradiance (Gstd)� 800W/m2, and particular
irradiation point (Rc)� 120W/m2.

3. Problem Formulation with Renewable
Energy Sources

In this study, a wind generator and solar generator are
located at two different buses in the test system. Since wind
and solar powers are intermittent, the Monte Carlo simu-
lations are used to account for uncertainty and to calculate
the uncertainty cost. (e estimated price for the intermit-
tency of wind and solar power is reflected in three ways:
direct price, reserve price, and penalty price. Whenever
power is underestimated, extra unusable power is wasted;
however, in practical power system applications, such power
can be saved in an energy storage system and thus counted as
the reserve price. (e price of overestimating power that is
lower than the scheduled power is considered a penalty price
in the case of overestimation.

3.1. Direct Price Calculation of Wind and Solar Power Plants.
In contrast to conventional generators, wind and solar
power generators do not require any fuel. When an ISO
owns wind/PV facilities, the direct fuel cost may not occur
except if the ISO intends to allocate any compensation for
setting up or charging it as a renewal cost and repair work
[22]. When private agencies own wind/PV plants, however,
ISO proportionally pays for the agreed-upon scheduled
power.

(e direct price associated with jth wind plants is as
follows:

Cw,j Pws,j  � gjPws,j. (8)

Similarly, the direct price of kth PV plant is as follows:

Cs,k Pss,k  � hkPss,k. (9)

3.2.UncertaintyPriceCalculationof theWindandSolarPower
Plants. If the actual output power of the wind farm is lower
than the predicted value, to ensure a constant supply of
electricity to the consumers, the operator requires some
spinning reserve. It is called the overestimation of power
from unreliable sources. (e cost incurred to maintain the
spinning reserve is known as the reserve cost [23].

(e reserve price of the jth wind plant is as follows:

CRw,j Pws,j − Pwav,j  � KRw,j Pws,j − Pwav,j 

� KRw,j 
Pws,j

0
Pws,j − pw,j fw pw,j dpw,j.

(10)

In contrast to the overestimation scenario, when the
actual power output of wind exceeds the predicted output,
the surplus power generated by WT cannot be used and is
wasted. (is is called the underestimation of power from
uncertain sources. In this case, ISO must pay a penalty for
excess power.
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(e penalty price of the jth wind plant is as follows:

CPw,j Pwav,j − Pws,j  � KPw,j Pwav,j − Pws,j 

� KPw,j 
Pwr,j

Pws,j

pw,j − Pws,j fw pw,j dpw,j.
(11)

In the same way as the wind plant, the PV plant also has
intermittency in power output.(e reserve and penalty price
equations for PV plants are described as follows [24].

Reserve price for kth PV plant is as follows:

CRs,k Pss,k − Psav,k  � KRs,k Pss,k − Psav,k 

� KRs,k∗fs Psav,k<Pss,k 

∗ Pss,k − E Psav,k<Pss,k  .

(12)

(e penalty price for a kth PV plant is as follows:

CPs,k Psav,k − Pss,k  � KPs,k Psav,k − Pss,k 

� KPs,k ∗fs Psav,k >Pss,k 

∗ E Psav,k >Pss,k  − Pss,k ,

(13)

where the direct, penalty, and reserve price coefficients of
wind and PV plants are 1.6, 1.5, and 3, respectively.

3.3. Objective Functions. (eMOOPF problem assumed the
minimization of four objectives: (i) TC, (ii) TE, (iii) APL,
and (iv) VMD. (e objectives can be described as follows:

fTC � 
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2
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j�1
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+ 
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2
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fVMD � 
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, (17)

where Vref � 1.0 p.u., i.e., reference voltage.

3.4. Constraints

3.4.1. Equality Constraints. (e overall demand and losses
throughout the system are equal to the total real and reactive
power delivered.

PGi
− PDi

− Vi 

NB

j�1
Vj Gij cos θij + Bij sin θij 

� 0 :: ∀i ∈ NB,

(18)

QGi
− QDi

− Vi 

NB

j�1
Vj Gij sin θij − Bij cos θij 

� 0 :: ∀i ∈ NB.

(19)

3.4.2. Inequality Constraints. Generator constraints

P
min
TGi ≤PTGi ≤P

max
TGi ;∀i ∈ NTG, (20)

P
min
WGi ≤PWGi ≤P

max
WGi;∀i ∈ NWG, (21)

P
min
SGi ≤PSGi ≤P

max
SGi ;∀i ∈ NSG, (22)

Q
min
TGi ≤QTGi ≤Q

max
TGi ;∀i ∈ NTG, (23)

Q
min
WGi ≤QWGi ≤Q

max
WGi;∀i ∈ NWG, (24)

Q
min
SGi ≤QSGi ≤Q

max
SGi ;∀i ∈ NSG, (25)

V
min
Gi ≤VGi ≤V

max
Gi ;∀i ∈ NG. (26)
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Transformer constraints

T
min
k ≤Tk ≤T

max
k ;∀k ∈ NT. (27)

Shunt VAR compensator constraints

Q
min
ci ≤Qci ≤Q

max
ci ;∀i ∈ NC. (28)

Security constraints

V
min
Lp ≤VLp ≤V

max
Lp ;∀p ∈ NL, (29)

Slq ≤ S
max
lq ;∀q ∈ nl. (30)

Two equality constraints (equations (18) and (19)) are
automatically satisfied when the power flow converges to an
optimal solution.(e generator buses’ real power (excluding
slack bus), transformer tap ratios, voltage limits, and shunt
compensator ranges are considered as control variables that
are self-limiting. (e remaining inequality constraints
require constraint-handling techniques.

In OPF, generator reactive power capacities are sig-
nificant. In the case of thermal generators, the ranges are
considered as in [25, 26]. In recent years, WTs with
complete reactive power capability have become com-
mercially viable [27]. Enercon FACTS-WT can deliver
reactive power in the range of -0.4p.u.to 0.5p.u. (e neg-
ative sign signifies the generator’s ability to absorb. Rooftop
solar PV is designed as load buses with zero reactive power.
However, because utility-based solar PVs have converters
built-in, full generator modeling is required due to the
converters’ dynamic behavior [28]. In this study, the re-
active power capabilities of solar PV are assessed between
−0.4p.u and 0.5p.u.

3.5. Superiority of Feasible Solution (SF) Method. (e most
commonly used constraint-handling technique is the pen-
alty functionmethod.When a constraint violation occurs, its
solution is penalized. Owing to its simplicity and ease of
operation, the outcome of this method is strongly contingent
on the penalty factor, which is to be chosen using trial and
error, going to cause the fitness value to deteriorate. (is
study deployed a new CHT called the SF technique [29],
which does not require any penalty coefficient.

Since MOOPF is a constrained optimization problem, it
requires a better-constrained handling method. In this
study, the SF technique [29] was employed to solve the
MOOPF problem with RESs. (e steps followed when
comparing two solutions are as follows:

(1) While comparing two nonfeasible solutions, the
solution having the smallest constraint violation is
selected.

(2) When two feasible solutions are compared, the one
with a better fitness solution is selected.

(3) When a feasible solution is compared to a non-
feasible solution, the feasible solution is selected.

By incorporating these three rules into the proposed al-
gorithm to solve the MOOPF problem, two situations arise,
the first of which is when the population size is lower than the
number of feasible solutions, and the second method is to
ignore nonfeasible solutions.(e use of the summation-based
method is to select feasible solutions if the number of feasible
solutions is greater than the population size.

4. Proposed Algorithm

(e MOEAs are normally modeled to handle different
conflicting goals, such as maximizing the spread of solutions
along the Pareto front (i.e., diversity) and minimizing the
distance between the solutions along the Pareto front (i.e.,
convergence) [30]. (e trade-off between convergence and
diversity is important to choose the best solution among the
obtained solutions. (erefore, to attain a balance between
exploration and exploitation in this study, a new method is
proposed.

In this study, a summation of normalized objective
values (SNOVs) with improved diversified selection
(IDS) is proposed and integrated with the multiobjective
evolution algorithm based on the decomposition
(MOEA/D) [31] method to solve the MOOPF problem
with RES. (e MOEA/D method decomposes the mul-
tiobjective optimization problem into several single
scalar optimization problems and optimizes them all at
the same time using weight vectors. (e weight vectors’
distance is used to create neighborhoods. In every pop-
ulation evolution, information from the neighborhood is
used to find a solution. (e nondominated sorting used in
MOEA/D is complex and time-consuming. Some useful
information may be lost if the dominant solutions are
completely discarded. In addition, diversity may be lost
during the search process and lead to local optima. To
overcome these problems, the summation of normalized
objective values with IDS [32] is employed in this study
instead of nondominated sorting selection to get uni-
formly distributed Pareto front and improved conver-
gence characteristics.

A new constraint-handling strategy called the superiority
of feasible solution (SF) method is employed to handle the
various constraints (i.e., equality and inequality) of the
MOOPF problem.(e proposed algorithm utilizes the fuzzy
method to get the best-compromised values. (e outcomes
of the proposed method are compared with popular
methods like MOEA/D [33], NSGA-II [34], and MOPSO
[35] for different cases.

(e pseudocode of the proposed method is as follows:

Step 1. Initialization:Generate the initial population (Pt) of
size N. Using SSA [36], generate uniformly distributed
weights, and the number of weight vectors is defined as
follows:

N(D, M) �
D + M − 1

M − 1
  forD> 0. (31)
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Step 2. Run the load flow and evaluate the fitness values of
the selected objective functions and total constraint
violations.

Step 3. Using angle criteria [37], locate neighbors with the
smallest angles for each weight vector. (e following is an
example of the angle criteria:

tan θ �
d2

d1
, (32)

where d1 � (‖wT
i wj‖/‖wj‖), d2 � ‖wi − d1(wj/‖wj‖)‖,

i, j � 1, 2, . . . , N, and i≠ j, θ� angle between d1 and d2.

Step 4. Evaluate the smaller objective values to form the
present ideal point.

Step 5. Evaluate the larger objective values to form the
present nadir point.

Step 6. Reproduction: Angle criteria are used to choose N

pairs of mating parents. A set of mating parents is picked
with a probability of δ each weight.

Step 7. To generate the new population (Qt), use two-point
crossover and mutation.

Step 8. (e new population is formed by combining the
original population (Pt) with the newly generated pop-
ulation (Qt).

Step 9. For each objective and solution, calculate the nor-
malized objective values.

Step 10. By adding all of the normalized objective values for
each solution, obtain the sum of the normalized objective
values [32].

For m� 1 to M,
Calculate the max andmin objectives of the mth objective

and find its range.
Normalize the mth objective values using the expression:

fm
′ (x) �

fm(x) − fmin

fmax − fmin
. (33)

End.
For i � 1 to N.
Add up all normalized objectives to get a unique value.
End.

Step 11. Calculate the Euclidean space between all of the
solutions and the reference point.

Step 12. Set a stopping point for the individual with the
shortest path to the original point.

Step 13. Divide the objective range into 100 bins, and scan
all bins till you reach the stopping point. (e solution having
the least summation value will be picked to enter into the
preferential set for each scanned bin.

Step 14. (e solutions are dominated by stopping points,
and also the individuals who were not selected will be sent to
the backup set.

Step 15. Apply the fuzzy min-max method [38] to get the
best-compromised values.

5. Simulation Results

In this study, to tackle the MOOPF problem including wind
and photovoltaic uncertainties, the proposed method,
MOEA/D [33], NSGA-II [34], and MOPSO [35] are dem-
onstrated on IEEE 30-, IEEE 57-, and IEEE 118-bus power
systems. It is implemented in MATLAB R2016a and runs on
an i3 processor with 4GB RAM.

In general, more than two objectives are treated as a
multiobjective optimization (MOO) problem. While formu-
lating the MOO problem, the objectives are chosen such that
the objectives conflict with each other. (e conflict between
objectives depends on the correlation among the objectives.
Different objectives will have different degrees of correlation
among the combination of objectives. To formulate the
combination of objectives, four different objective functions
are considered, which are as follows: (i) TC, (ii) TE, (iii) APL,
and (iv) VMD. A total of ten different case studies are con-
sidered on three standard test systems to test the efficiency of
the proposed method for the MOOPF problem. (e various
case studies considered in this study are given in Table 1.

Numerous trials with various control parameters were
conducted, and the best findings obtained are summarized
in this study. (e parameters chosen for each method are
listed in Table 2.

5.1. Modified IEEE 30-Bus System. (e IEEE 30-bus power
system has 6 thermal generators placed at buses 1, 2, 5, 8, 11,
and 13 (# 1 generator as a slack generator), 41 lines. In this
study, 4 off-nominal transformers are considered between
lines 6–10, 6–9, 4–12, and 27–28, and 9 shunt VAR com-
pensators are placed at the buses.(e whole real and reactive
power demand on the system is 238.40MW and
126.20MVAR, respectively. In addition to the above thermal
generators, one wind generator and one solar generator are
added to buses 22 and 25, respectively. Detailed information
about the test system is provided in [39, 40].

Table 1: Various case studies considered in this study.

Case name Test system TC TE APL VMD
Case-1

IEEE 30-bus

✓ ✓ — —
Case-2 ✓ — ✓ —
Case-3 ✓ ✓ ✓ —
Case-4 ✓ ✓ — ✓
Case-5 ✓ ✓ ✓ ✓
Case-6

IEEE 57-bus
✓ ✓ — —

Case-7 ✓ ✓ ✓ —
Case-8 ✓ ✓ ✓ ✓
Case-9 IEEE 118-bus ✓ — ✓ —
Case-10 ✓ — ✓ ✓
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5.1.1. Case-1: Simultaneously Minimize TC and TE. In this
case, TC and TE are the objectives considered to simulta-
neously minimize. (e optimal decision variables obtained
by the suggested method are included in Table 3. (e best-
compromised values that could be found using the proposed
algorithm have a TC of 794.0907$/h and a TE of 0.2166ton/
h, which is the lowest value compared with MOEA/D [33],
NSGA-II [34], and MOPSO [35] as shown in Table 4. (e
Pareto optimal fronts of all the methods are depicted in
Figure 1.

5.1.2. Case-2: Simultaneously Minimize TC and APL. In this
case, TC and APL are the objectives considered to simul-
taneously minimize.(e optimal decision variables obtained
by the suggested method are included in Table 3. (e best-
compromised values that could be found using the proposed
algorithm have a TC of 798.6845$/h and an APL of
3.9899MW, which is the lowest value compared with
MOEA/D [33], NSGA-II [34], and MOPSO [35] as shown in
Table 4. (e Pareto optimal fronts of all the methods are
depicted in Figure 2.

Table 2: Control parameters used in different methods.

S. No. Method Control parameters

1. Proposed method Population size (N)� 100, number of divisions made along with every object (D)� 12, neighborhood size
(T)� 20, crossover probability (Pc)� 1.0, mutation probability (Pm)� 0.05, and number of iterations� 100.

2. MOEA/D [33] Population size (N)� 100, number of divisions made along with every object (D)� 12, neighborhood size
(T)� 20, crossover probability (Pc)� 1.0, mutation probability (Pm)� 0.05, and number of iterations� 100.

3. NSGA-II [34] Population size (N)� 100, crossover probability (Pc)� 0.8, No. of iterations� 100, andmutation probability
(Pm)� 0.01.

4. MOPSO [35] Population size (N)� 100, C1�C2� 2, W� 0.5, and number of iterations� 100.

Table 3: IEEE 30-bus system: best-compromised values obtained by the proposed method for Case-1 to Case-5.

S. no. Control variables Control variables at bus/line
Limits

Case-1 Case-2 Case-3 Case-4 Case-5
Min Max

1.

Power (MW)

2 20 80 49.3631 43.5939 49.7998 49.9396 49.9289
2. 5 15 50 26.7537 30.5688 36.3853 25.7456 41.2671
3. 8 10 35 27.5324 27.0078 30.5428 24.1533 29.4956
4. 11 10 30 18.8816 20.4392 25.7521 22.0017 21.0325
5. 13 12 40 23.9297 21.8609 27.6149 23.8890 27.9709
6. 22 0 50 31.2931 33.0888 29.7074 32.1679 32.2785
7. 25 0 50 35.4439 29.3993 31.1763 33.7683 28.2922
8.

Voltage (p.u)

1 0.95 1.1 1.0427 1.0496 1.0476 1.0301 1.0212
9. 2 0.95 1.1 1.0354 1.0392 1.0387 1.0245 1.0147
10. 5 0.95 1.1 1.0008 1.0131 1.0174 1.0154 1.0011
11. 8 0.95 1.1 1.0113 1.0285 1.0346 0.9869 0.9972
12. 11 0.95 1.1 1.0126 1.0260 1.0020 1.0104 1.0070
13. 13 0.95 1.1 1.0297 1.0171 1.0148 1.0165 1.0098
14. 22 0.95 1.1 1.0303 1.0256 1.0174 1.0030 1.0067
15. 25 0.95 1.1 1.0386 1.0422 1.0267 1.0190 1.0212
16.

Tap ratio

11 0.9 1.1 1.0144 1.0257 0.9974 1.0143 1.0220
17. 12 0.9 1.1 1.0319 1.0350 1.0238 1.0051 0.9908
18. 15 0.9 1.1 1.0044 0.9896 0.9943 0.9677 0.9719
19. 36 0.9 1.1 0.9880 0.9955 1.0249 0.9660 0.9721
20.

Shunt VAR compensator (MVAR)

10 0 5 3.1425 1.9772 2.0710 3.0865 2.7684
21. 12 0. 5 1.9108 2.5250 3.7790 1.9405 1.6628
22. 15 0 5 1.8903 2.5177 2.1385 2.9160 3.9393
23. 17 0 5 2.4423 2.9065 3.1406 2.9999 2.5418
24. 20 0 5 2.2654 2.7249 2.4215 3.6789 2.9067
25. 21 0 5 2.3629 1.3956 2.2982 2.1017 1.7645
26. 23 0 5 2.9082 2.7610 2.8149 1.9246 1.6307
27. 24 0 5 2.3035 2.9588 2.2973 1.9558 3.3332
28. 29 0 5 2.7370 2.6593 2.4329 2.9911 2.3346
1. TC ($/h) - - - 794.0907 798.6845 838.0936 799.7882 851.9069
2 TE (ton/h) - - - 0.2166 - 0.2049 0.2172 0.2057
3. APL (MW) - - - - 3.9899 3.2506 - 3.1972
4. VMD (p.u.) - - - - - - 0.0902 0.1038
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Table 4: IEEE 30-bus system: comparison of the proposed method withMOEA/D [33], NSGA-II [34], andMOPSO [35] for Case-1 to Case-
5.

Case name Objective functions Proposed method MOEA/D [33] NSGA-II [34] MOPSO [35]

Case-1 TC ($/h) 794.0907 794.2012 794.4894 794.1736
TE (ton/h) 0.2166 0.2170 0.2171 0.2203

Case-2 TC ($/h) 798.6845 798.9000 805.4298 816.1819
APL (MW) 3.9899 4.0790 4.0319 4.2422

Case-3
TC ($/h) 838.0936 840.0000 848.6240 870.9164
TE (ton/h) 0.2048 0.2043 0.2062 0.2198
APL (MW) 3.2506 3.7170 3.3119 4.1321

Case-4
TC ($/h) 799.7880 801.7412 800.9397 831.3916
TE (ton/h) 0.2172 0.2164 0.2173 0.2386
VMD (p.u.) 0.0902 0.1271 0.1229 0.1434

Case-5

TC ($/h) 851.9069 855.4589 858.7833 862.8927
TE (ton/h) 0.2057 0.2101 0.2137 0.2540
APL (MW) 3.1972 3.1997 3.2025 3.4352
VMD (p.u.) 0.1038 0.1912 0.2635 0.4925
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Figure 1: Case-1: IEEE 30-bus system Pareto optimal fronts.
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Figure 4: Case-4: IEEE 30-bus system Pareto optimal fronts.
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5.1.3. Case-3: Simultaneously Minimize TC, TE, and APL.
In this case, TC, TE, and APL are the objectives con-
sidered to simultaneously minimize. (e optimal decision
variables obtained by the suggested method are included
in Table 3. (e best-compromised values that could be
found using the proposed algorithm have a TC of
838.0936 $/h, a TE of 0.2049ton/h, and an APL of
3.2506MW, which is the lowest value compared with
MOEA/D [33], NSGA-II [34], and MOPSO [35] as shown
in Table 4.(e Pareto optimal fronts of all the methods are
depicted in Figure 3.

5.1.4. Case-4: Simultaneously Minimize TC, TE, and VMD.
In this case, TC, TE, and VMD are the objectives con-
sidered to simultaneously minimize. (e optimal

decision variables obtained by the suggested method are
included in Table 3. (e best-compromised values that
could be found using the proposed algorithm have a TC
of 799.7880$/h, a TE of 0.2172ton/h, and a VMD of
0.0902p.u., which is the lowest value compared with
MOEA/D [33], NSGA-II [34], and MOPSO [35] as shown
in Table 4. (e Pareto optimal fronts of all the methods
are depicted in Figure 4.

5.1.5. Case-5: Simultaneously Minimize TC, TE, APL, and
VMD. In this case, TC, TE, APL, and VMD are the ob-
jectives considered to be simultaneously minimized. (e
optimal decision variables obtained by the suggestedmethod
are included in Table 3. (e best-compromised values that
could be found using the proposed algorithm have a TC of

Table 5: IEEE 57-bus system: best-compromised values obtained by the proposed method for Case-6 to Case-8.

S. no. Control variables Control variables at bus/line
Limits

Case-6 Case-7 Case-8
Min Max

1.

Power (MW)

2 0 100 98.1298 67.1046 74.8586
2. 3 0 140 69.4063 55.0118 64.1958
3. 6 0 100 70.9842 98.4255 52.0615
4. 8 0 550 329.0458 306.7587 315.7318
5. 9 0 100 72.7441 99.3728 98.8024
6. 12 0 410 315.2646 341.6928 378.7730
7. 45 0 80 79.6017 79.9551 79.8243
8. 46 0 80 79.8919 79.9311 79.5757
9.

Voltage (p.u.)

1 0.95 1.1 1.0481 1.0296 1.0391
10. 2 0.95 1.1 1.0371 1.0246 1.0333
11. 3 0.95 1.1 1.0340 1.0227 1.0229
12. 6 0.95 1.1 1.0275 1.0185 1.0209
13. 8 0.95 1.1 1.0295 1.0162 1.0318
14. 9 0.95 1.1 1.0169 1.0099 1.0160
15. 12 0.95 1.1 1.0369 1.0268 1.0217
16. 45 0.95 1.1 1.0471 1.0498 1.0514
17. 46 0.95 1.1 1.0209 1.0372 1.0175
18.

Tap ratio

19 0.9 1.1 1.0154 1.0139 1.0056
19. 20 0.9 1.1 0.9945 1.0497 1.0367
20. 31 0.9 1.1 1.0183 1.0260 0.9955
21. 35 0.9 1.1 0.9938 1.0263 0.9876
22. 36 0.9 1.1 0.9601 0.9982 0.9821
23. 37 0.9 1.1 0.9943 1.0176 1.0321
24. 41 0.9 1.1 1.0225 0.9911 1.0155
25. 46 0.9 1.1 0.9889 0.9757 0.9456
26. 54 0.9 1.1 0.9999 0.9233 0.9049
27. 58 0.9 1.1 0.9814 0.9802 0.9613
28. 59 0.9 1.1 1.0108 0.9877 1.0070
29. 65 0.9 1.1 0.9914 0.9841 0.9967
30. 66 0.9 1.1 0.9748 0.9484 0.9140
31. 71 0.9 1.1 0.9703 0.9756 0.9547
32. 73 0.9 1.1 1.0158 0.9829 1.0058
33. 76 0.9 1.1 0.9691 0.9769 0.9649
34. 80 0.9 1.1 0.9908 0.9872 1.0199
35.

Shunt VAR compensator (MVAR)
18 0 20 9.1150 11.4035 11.0379

36. 25 0 20 9.8438 10.4059 8.2934
37. 53 0 20 11.2830 7.1925 7.7894
1. TC ($/h) - - - 36195.21 36096.69 36207.21
2. TE (ton/h) - - - 1.0182 1.0238 1.1383
3. APL (MW) - - - - 10.3303 9.9732
4. VMD (p.u.) - - - - - 0.6848
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851.9069$/h, a TE of 0.2057ton/h, APL of 3.1972MW, and
VMD of 0.1038p.u., which is the lowest value compared
with MOEA/D [33], NSGA-II [34], and MOPSO [35] as
shown in Table 4.

5.2. Modified IEEE 57-Bus System. To show the scalability of
the proposed algorithm, the IEEE 57-bus system is used for
solving the MOOPF problem. It contains 7 thermal gen-
erators placed at buses 1, 2, 3, 6, 8, 9, and 12 (# 1 generator as
a slack generator), 80 lines. In this study, 15 off-nominal
transformers are considered along with 3 shunt VAR
compensators. (e entire real and reactive power demand
on the system is 1250.80MW and 336.40MVAR, respec-
tively. In addition to the above thermal generators, one wind
generator and one solar unit are added at buses 45 and 46,
respectively. Detailed information about the test system is
provided in [39, 40].

5.2.1. Case-6: Simultaneously Minimize TC and TE. In this
case, TC and TE are the objectives that need to be simul-
taneously minimized. (e optimal decision variables ob-
tained by the suggested method are included in Table 5. (e

best compromise solution that could be found using the
proposed algorithm has a TC of 36195.21$/h and a TE of
1.0182ton/h, which is the lowest value compared with
MOEA/D [33], NSGA-II [34], and MOPSO [35] as shown in
Table 6. (e Pareto optimal fronts of all the methods are
depicted in Figure 5.

5.2.2. Case-7: Simultaneously Minimize TC, TE, and APL.
In this case, TC, TE, and APL are the objectives that need
simultaneous minimizing. (e optimal decision variables
obtained by the suggested method are included in Table 5.
(e best-compromised values that could be found using the
proposed algorithm have a TC of 36096.69$/h, a TE of
1.0238ton/h, and an APL of 10.3303MW, which is the
lowest value compared with MOEA/D [33], NSGA-II [34],
and MOPSO [35] as shown in Table 6. (e Pareto optimal
fronts of all the methods are depicted in Figure 6.

5.2.3. Case-8: Simultaneously Minimize TC, TE, APL, and
VMD. In this case, TC, TE, APL, and VMD are the ob-
jectives that need to be simultaneously minimized. (e
optimal decision variables obtained by the suggestedmethod
are included in Table 5. (e best-compromised values that

Table 6: IEEE 57-bus system: comparison of the proposed method withMOEA/D [33], NSGA-II [34], andMOPSO [35] for Case-6 to Case-
8.

Case name Objective functions Proposed method MOEA/D [33] NSGA-II [34] MOPSO [35]

Case-6 TC ($/h) 36195.21 36198.87 36399.10 36733.34
TE (ton/h) 1.0182 1.0271 1.0912 1.1145

Case-7
TC ($/h) 36096.69 36990.02 36363.70 39208.74
TE (ton/h) 1.0238 1.0782 1.1288 1.0890
APL (MW) 10.3303 10.7016 10.7953 11.0434

Case-8

TC ($/h) 36207.21 36317.56 36479.38 37321.91
TE (ton/h) 1.0916 1.1256 1.1382 1.2049
APL (MW) 9.9732 11.2487 11.3923 14.5232
VMD (p.u.) 0.6848 0.6954 0.8907 0.8323
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Figure 5: Case-6: IEEE 57-bus system Pareto optimal fronts.
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Table 7: IEEE 118-bus system: best-compromised values obtained by the proposed method for Case-9 to Case-10.

Variables Bus/line
Limits

Case-9 Case-10 Variables Bus/line Limits
Case-9 Case-10

min max min max

Power (MW)

1 0 100 31.118 52.020 31 0.95 1.1 1.0253 1.0169
4 0 100 21.400 41.520 32 0.95 1.1 1.0195 1.0030
6 0 100 42.530 40.834 34 0.95 1.1 0.9909 1.0094
8 0 100 28.556 26.448 36 0.95 1.1 1.0241 1.0067
10 0 550 273.35 245.999 40 0.95 1.1 1.0096 1.0118
12 0 185 86.663 95.235 42 0.95 1.1 1.0305 1.0113
15 0 100 43.268 37.779 46 0.95 1.1 1.0150 1.0221
18 0 100 99.997 45.659 49 0.95 1.1 1.0118 1.0055
19 0 100 35.781 55.328 54 0.95 1.1 1.0359 1.0023
24 0 100 64.585 35.747 55 0.95 1.1 1.0708 1.0239
25 0 320 182.60 90.928 56 0.95 1.1 1.0661 1.0256
26 0 414 0.000 162.842 59 0.95 1.1 1.0619 1.0271
27 0 100 24.090 46.656 61 0.95 1.1 1.1000 1.0175
31 0 107 22.783 25.781 62 0.95 1.1 1.0982 0.9985
32 0 100 62.386 37.325 65 0.95 1.1 1.0875 1.0049
34 0 100 43.187 40.202 66 0.95 1.1 1.0434 1.0099
36 0 100 100.00 54.841 69 0.95 1.1 1.0436 1.0280
40 0 100 88.192 64.417 70 0.95 1.1 1.0184 1.0096
42 0 100 83.016 49.460 72 0.95 1.1 1.0066 1.0062
46 0 119 19.417 44.338 73 0.95 1.1 1.0092 1.0190
49 0 304 138.66 140.370 74 0.95 1.1 1.0119 1.0264
54 0 148 59.984 98.543 76 0.95 1.1 1.0045 1.0089
55 0 100 74.764 52.457 77 0.95 1.1 1.0367 1.0170
56 0 100 59.627 46.8259 80 0.95 1.1 1.0229 1.0183
59 0 255 117.12 115.881 85 0.95 1.1 0.9985 1.0125
61 0 260 121.66 121.893 87 0.95 1.1 0.9617 1.0290
62 0 100 35.517 44.630 89 0.95 1.1 1.0269 1.0266
65 0 491 214.33 213.346 90 0.95 1.1 1.0321 1.0253
66 0 492 205.83 187.419 91 0.95 1.1 1.0209 1.0221
70 0 100 12.582 54.0066 92 0.95 1.1 1.0237 1.0056
72 0 100 12.141 40.751 99 0.95 1.1 1.0297 1.0222
73 0 100 55.579 50.455 100 0.95 1.1 1.0412 1.0206
74 0 100 14.137 42.021 103 0.95 1.1 1.0269 1.0326
76 0 100 75.678 37.592 104 0.95 1.1 1.0484 1.0319
77 0 100 82.194 42.539 105 0.95 1.1 1.0531 1.0203
80 0 577 256.72 270.903 107 0.95 1.1 1.0380 1.0324
85 0 100 42.579 42.382 110 0.95 1.1 1.0685 1.0243
87 0 104 0.000 19.159 111 0.95 1.1 1.0854 1.0296
89 0 707 257.13 216.783 112 0.95 1.1 1.0619 1.0349
90 0 100 97.811 36.604 113 0.95 1.1 1.0228 1.0236
91 0 100 8.436 52.187 116 0.95 1.1 1.0519 1.0073
92 0 100 45.760 43.249 64 0.95 1.1 1.0160 1.0149
99 0 100 23.885 40.178 65 0.95 1.1 1.0453 1.0229
100 0 352 113.62 150.771

Tap ratio

8 0.9 1.1 0.9897 1.0013
103 0 140 42.612 50.598 32 0.9 1.1 1.0611 1.0167
104 0 100 11.805 45.019 36 0.9 1.1 0.9508 0.9920
105 0 100 100.00 63.106 51 0.9 1.1 1.0001 0.9742
107 0 100 19.672 39.046 93 0.9 1.1 0.9995 1.0096
110 0 100 56.657 53.624 95 0.9 1.1 0.9000 1.0180
111 0 136 22.867 43.765 102 0.9 1.1 1.0099 1.0270
112 0 100 40.659 39.005 107 0.9 1.1 0.9262 0.9814
113 0 100 16.067 51.229 127 0.9 1.1 0.9770 0.9995
116 0 100 39.564 44.049

Shunt VAR compensator (MVAR)

34 0 25 6.1168 14.2885
64 0 100 99.998 74.484 44 0 25 14.0212 11.8200
65 0 100 99.998 61.143 45 0 25 24.0656 12.7371

Voltage (p.u.)

1 0.95 1.1 1.0554 1.0093 46 0 25 9.5124 15.7212
4 0.95 1.1 0.9500 1.0106 48 0 25 5.8489 14.8892
6 0.95 1.1 0.9753 1.0256 74 0 25 19.2222 10.8066
8 0.95 1.1 0.9585 1.0102 79 0 25 0.0000 15.8930
10 0.95 1.1 1.0381 1.0205 82 0 25 24.7411 13.8225
12 0.95 1.1 1.0502 1.0141 83 0 25 13.9104 11.6974
15 0.95 1.1 0.9529 1.0094 105 0 25 24.9944 13.5413
18 0.95 1.1 0.9960 1.0220 107 0 25 19.0262 15.0743
19 0.95 1.1 1.0077 1.0321 110 0 25 12.1782 11.1250
24 0.95 1.1 0.9956 1.0184
25 0.95 1.1 1.0117 1.0251 TC ($/h) - - - 132958.66 135774.93
26 0.95 1.1 1.0397 1.0227 APL (MW) - - - 31.2916 39.6333
27 0.95 1.1 1.0466 1.0121 VMD (p.u) - - - - 0.4299
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could be found using the proposed algorithm have a TC of
36207.21$/h, a TE of 1.0916ton/h, APL of 9.9732MW, and
VMD of 0.6848p.u., which is the lowest value compared
with MOEA/D [33], NSGA-II [34], and MOPSO [35] as
shown in Table 6.

5.3.Modified IEEE118-BusSystem. To show the scalability of
the proposed algorithm for a large-scale test system in
solving the MOOPF problem, the IEEE 118-bus system is
considered. It contains 54 thermal generators (# 69 gener-
ator as a slack generator) and 186 lines. In this study, 9 off-
nominal transformers and 12 shunt VAR compensators are
considered. (e sum of real and reactive power demand on
the system is 4242.00MW and 1439.00MVAR, respectively.
In addition to the above thermal generators, one wind
generator and one solar unit are added to buses 63 and 64,
respectively. Detailed information about the test system is
provided in [39, 40].

5.3.1. Case-9: Simultaneously Minimize TC and APL. In this
case, TC and APL are the objectives that need to be si-
multaneously minimized. (e optimal decision variables
obtained by the suggested method are included in Table 7.
(e best compromise solution that could be found using the
proposed algorithm has a TC of 132958.66$/h and an APL
of 31.2916MW, which is the lowest value compared with
MOEA/D [33], NSGA-II [34], andMOPSO [35] as shown in
Table 8. (e Pareto optimal fronts of all the methods are
depicted in Figure 7.

5.3.2. Case-10: Simultaneously Minimize TC, APL, and
VMD. In this case, TC, APL, and VMD are the objectives
that need simultaneous minimizing. (e optimal decision
variables obtained by the suggested method are included in
Table 7. (e best compromise solution that could be ob-
tained using the proposed algorithm has a total cost of
135774.93$/h, APL of 39.6333MW, and VMD of
0.4299p.u., which is the lowest value compared to MOEA/D
[33], NSGA-II [34], and MOPSO [35] as shown in Table 8.
(e Pareto optimal fronts of all the methods are depicted in
Figure 8.

5.4. Computational Time. In this study, the MOOPF
problem was executed on a 2.00GHz, i3 processor, with a
4GB RAM computer.(e computational (CPU) times of the

proposed method, MOEA/D, NSGA-II, and MOPSO for all
the cases are given in Table 9.(e computational times of the
proposed method are significantly faster than those of other
studied methods for all cases. Hence, the proposed method
outperformed the other methods in terms of solution quality
and computing time.

Table 8: IEEE 118-bus systems: comparison of the proposed method with MOEA/D [33], NSGA-II [34], and MOPSO [35] for Case-9 to
Case-10.

Case name Objective functions Proposed method MOEA/D [33] NSGA-II [34] MOPSO [35]

Case-9 TC ($/h) 132958.66 133249.84 133837.90 134673.5
APL (MW) 31.2916 31.8104 31.8664 35.3868

Case-10
TC ($/h) 135774.93 135801.21 135912.8 136459.9

APL (MW) 39.6333 42.0412 45.6904 48.3446
VMD (p.u.) 0.4299 0.4523 0.5074 0.5878
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Figure 7: Case-9: IEEE 118-bus system Pareto optimal fronts.
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6. Conclusions

(is study proposes a solution to the MOOPF problem with
a combination of thermal, wind, and PV systems using
MOEA based on decomposition and summation of nor-
malized objectives with an improved diversified selection
method. (e method also deals with tackling various con-
straints in the MOOPF problem using the superiority of the
feasible solution (SF) technique. (e fuel costs of thermal
generators and uncertainty prices associated with wind and
PV energy systems are minimized along with carbon
emission, active power losses, and voltage magnitude de-
viation. Monte Carlo simulations were used to assess the
uncertainty of wind and solar power. Apart from the con-
ventional cost minimization, this study selects factors to
account for the uncertain price of available wind and solar
power. It depicts the OPF formulation along with factors
affecting wind and PV power’s intermittency. To show the
efficacy of the suggested method, simulations were per-
formed on the same test systems as with MOEA/D, NSGA-
II, and MOPSO algorithms. (e results show the superiority
of the proposed method compared to other methods. Hence,
the proposed method can be effectively used in operation
and control when wind and solar power generation are
included in the power system.

Abbreviations

k, c: Shape and scale factors, respectively
v: Wind speed (m/sec)
vin, vout, vr: Cut-in, cut-out, and rated wind speeds,

respectively
Gs: Solar irradiance
μ: Mean
σ: Standard deviation
Pwr, Psr: Rated power of wind and solar plants,

respectively
Pws, Pss: Scheduled power of wind and solar

plants, respectively
gj, hk: Direct price coefficients of jth a

windmill and kth solar plant,
respectively

Pwav,j, Psav,k: (e actual power output of jth

windmill and kth PV plant, respectively
KRw,j, KPw,j: Reserve and penalty price coefficients

of jth windmill, respectively
KRs,k, KPs,k: Reserve and penalty price coefficients

of kth PV plant, respectively
ai, bi, ci: ith Generator cost coefficients
NTG, NWG, and
NSG:

Number of thermal, wind, and solar
power plants, respectively

αi, βi, ci, ξi, λi: ith generator emission coefficients
Gij, Bij: Conductance and susceptance between

buses i and j

NB,NTG, NC,NPQ,
and NT:

Number of buses, thermal generators,
shunt VAR compensators, PQ buses,
and transformers, respectively

Pmin
Gi , Pmax

Gi : Min-max limits on ith generator real
power

Qmin
Gi , Qmax

Gi : Min-max limits on ith generator
reactive power

S, Smax: Apparent power flow and its maximum
limit, respectively

Tmin
k , Tmax

k : Min-max limits of kth transformer tap
positions

Vmin
i , Vmax

i : Min-max limits of ith bus voltages
θij: Voltage angle between buses i and j

PGi
, QGi

: Real and reactive power injection at ith

bus
PDi

, QDi
: Real and reactive power demand at ith

bus
w: Weight vector
nl: Number of lines
M: Number of objectives
fm
′ : Normalized mth objective

MOEA: Multiobjective evolutionary algorithm
MOOPF: Multiobjective optimal power flow
PV: Photovoltaic
WT: Wind turbine
ISO: Independent system operator
NSGA-II: Nondominated sorting genetic

algorithm-II
MOPSO: Multiobjective particle swarm

optimization.

Table 9: Comparison of CPU time (sec).

Case name Proposed method MOEA/D [33] NSGA-II [34] MOPSO [35]

IEEE 30-bus system

Case-1 845.19 1333.57 1615.12 1014.31
Case-2 853.92 1413.40 1460.24 1029.56
Case-3 856.94 1342.81 1700.27 1198.45
Case-4 915.49 1351.51 1500.08 1201.34
Case-5 1009.63 1372.80 1750.88 1279.83

IEEE 57-bus system
Case-6 1105.04 1672.55 1967.01 1401.21
Case-7 1146.21 1709.16 2046.42 1456.89
Case-8 1190.14 1887.68 2054.09 1523.47

IEEE 118-bus system Case-9 1535.33 2771.16 2946.30 1881.56
Case-10 1705.10 2833.67 3219.41 2015.64
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