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With the integration of high proportional photovoltaics (PVs) into distribution networks, the superposition of uncertain output
power of PVs and stochastic load demand fluctuations have posed a serious challenge to voltage stability. In this paper, a
multitimescale decomposition-coordination-based voltage control method is proposed under the cloud-edge cooperative ar-
chitecture. .e distribution network is firstly decomposed into several subnetworks. In each subnetwork, the edge computing
device is equipped to realize the distributed control and provide external computing resources for the cloud center. .en, a
multitimescale control scheme containing the interval dispatch stage and the real-time time-window stage is proposed. In the
interval dispatch stage, a cloud-edge collaborative calculation strategy considering balanced resource allocation is well designed to
obtain the global optimal power flows and the corresponding reference operating points of the voltage control equipment.
Meanwhile, in the real-time time-window stage, a consensus-based voltage correction mechanism under the optimal power flow
boundary constraints is designed to avoid the voltage violations caused by unexcepted power fluctuations deviating from the
representative scenarios. Simulation results with the improved 33-bus and IEEE 123-bus systems have demonstrated the ef-
fectiveness of our proposed method.

1. Introduction

.e applications of photovoltaics (PVs) in distribution net-
works are an effective approach to deal with the carbon
emissions and pollution problems of traditional fossil fuels
[1, 2]. However, the uncertain PV outputs also have posed a
serious challenge to the voltage stability in highly penetrated
scenarios [3]. Due to comprehensively considering the time
characteristic differences of discrete and continuous voltage
control equipment, the multitimescale voltage control methods
usually have better global voltage control performance com-
pared with the traditional single timescale control methods,
which have attracted the attention of the researchers [4–6].

.e traditional multitimescale voltage control model and
method is centralized formed and implement at the cloud
control center. Zhang et al. [7] have proposed a centralized

robust optimal method with three timescales. .e on-load
tap changers (OLTCs) and capacitor banks (CBs) are
scheduled hourly, while the reference operating points of PV
inverters are set every 15min, and the real-time droop
control is conducted. Xu et al. [8] have proposed a cen-
tralized stochastic programming method considering the
simplified power fluctuation scenarios. To deal with the
voltage deviations caused by the short-term power fluctu-
ations deviating from the representative scenarios, a cen-
tralized double-timescale scheduling method for OLTCs,
CBs, and PVs has been conducted. To maintain the voltage
deviations within the allowable ranges, Alam et al. [9] have
designed a centralized ESS charging-discharging strategy
with the functions of long-timescale peak-load shifting and
short-timescale power supply and demand balance. More
similar works can be found in [10–14]. However, with the
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increase of PV penetration proportion and the expansion of
distribution network scale, the requirement of adequate
communication, computation, and data storage resources in
the centralized methods will lead to low solution efficiency
and complex control operation problems [15].

To overcome the shortcomings in centralized methods,
some researchers have proposed decentralized voltage
control methods [16–18]. By parting a distribution network
into serval subnetworks, the edge computing devices with
data storage, analysis, and communication capabilities are
equipped in each subnetwork to realize distributed and
localized voltage control. Chai et al. [19] have proposed a
two-stage deterministic voltage control strategy based on
network partition. In the long-timescale stage, the power
losses and voltage deviations are optimized based on the
alternative direction method of multipliers (ADMM), while
the short timescale autonomous optimization is adopted in
each subnetwork without considering the uncertain PV
output and load demand fluctuation. Li et al. [20] have
proposed a distributed adaptive robust voltage control
method to minimize power loss while keeping operating
constraints under uncertain power fluctuation scenarios.
However, the conservative robust optimization solutions
make the power flow boundaries among subnetworks
usually not optimal. Bazrafshan and Gatsis [21] have pro-
posed a power stochastic programming scheme to jointly
optimize the PV inverter outputs and programmable load
demands. A fine decentralized algorithm is developed via
ADMM that results in closed-form updates per bus and
scenario, rendering it not suitable to implement with a
limited number and performance of edge computing de-
vices. More similar works can be found in [22–25]. However,
there may exist frequent interregional power exchanges
during the decentralized voltage control process, which may
cause the suboptimal operations of distribution networks. In
addition, in the existing distributed methods, the influences
of limited computing resources of edge-side devices on the
solving efficiency of the voltage control optimization models
have not been considered. In a real distribution network, the
edge-side devices should undertake some other applications
(e.g., load frequency control [26], power forecasting [27],
distribution network, and multimicrogrid joint optimization
[28]) except for voltage control.

In general, the traditional completely centralized or
decentralized control strategies are usually difficult to take
into account both high computational efficiency and global
optimality. In recent years, some scholars have introduced
the concept of cloud-edge collaborative (CEC) architecture
into distribution networks, such as power scheduling [29],
stability operation control [30], load forecasting [31], and
other applications. .e significant advantage of the CEC
architecture is that it uses the computing and analysis ca-
pabilities of edge-sides to provide distributed control and
participate in the collaborative optimization process with the
cloud-side control center to achieve efficient parallel solving
of complex applications. However, as far as we know, there is
still less work on distribution network voltage control under
CEC architecture. Inspired by this, a novel multitimescale
decomposition-coordination-based voltage control (DCVC)

method is proposed under CEC architecture, containing the
interval dispatch stage and real-time time-window stage..e
main contributions are as follows:

(i) In the interval dispatch stage, to determine the
optimal power flows and the corresponding optimal
reference operating points of voltage control
equipment under representative scenarios, the global
optimization algorithm based on ADMM is
designed. In addition, a CEC computing and com-
munication resource scheduling mechanism con-
sidering resource allocation imbalance is well
designed to guarantee satisfactory solving efficiency.

(ii) In the real-time time-window stage, to avoid the
violate violations caused by unexcepted power
fluctuations deviating from the representative sce-
narios, a consensus-based voltage correction
mechanism is developed under the optimal power
flow boundary constraints obtained by ADMM.
.erefore, the undesirable interregional power ex-
changes and the corresponding adverse effects on the
optimal power flows can be effectively avoided
compared with the traditional distributed schemes.

.e remainder of this paper is organized as follows.
Section 2 introduces the basic architecture of the
CEC-DCVC method. PV and ESS allocation strategy is
proposed in Section 3. Sections 4 and 5 give the mathe-
matical models as well as solving algorithms for two stages.
Case studies are conducted and discussed in Section 6. .e
conclusion is given in Section 7.

2. Basic Architecture of CEC-DCVC Method

As shown in Figure 1, in our proposed DCVC method, the
distribution network is firstly decomposed into a series of
subnetworks. .e edge computing devices with communi-
cation capabilities are equipped in each subnetwork to realize
distributed control and provide computing resources for the
cloud-side control center. To avoid suboptimal operating in
the overall network due to unexcepted interregional power
flows caused by the decentralized voltage control in sub-
networks, the ADMM deployed in the cloud and edge sides is
adopted to determine the optimal power flow boundaries
among different subnetworks. Specifically, the obtained re-
sults of ADMM contain power flow boundary between ar-
bitrary subnetwork a and b, which are given by πa,b, κa,b, and
κb,a as intermediate variables in cloud-side and edge-sides,
respectively, as shown in Figure 1. Generally, the different
kinds of voltage control equipment can be categorized into
discrete ones (e.g., OLTCs and CBs) and continuous ones
(e.g., ESSs and PVs). Under the decomposition-coordination
framework, a parallel solving scheme for the ADMM con-
sidering the computing source constraints is developed. .e
reference operating points of all the discrete voltage control
equipment in the distribution network are determined via
conducting the cloud-side ADMM subproblem, while the
reference operating points of continuous equipment in each
subnetwork are obtained via conducting the edge-side
ADMM subproblems. .e states in neighboring subnetworks
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required to solve the ADMM are exchanged as a copy form
through the communication network. When all the ADMM
subproblems are converged, the final optimal power flow
boundaries satisfy πa,b � κa,b � κb,a.

Further, the proposed DCVC voltage control method
contains the following two stages with different timescales,
as shown in Figure 2:

(i) Interval dispatch stage: according to the preset
representative power fluctuation scenarios, the tap
positions of discrete voltage equipment during the
hourly interval and the reference operating points of
continuous voltage equipment during the 15min
interval are determined by conducting the cloud and
edge-side ADMM subproblems, respectively.
Moreover, considering the influences of the com-
puting and communication capability differences
among the cloud-side control center and edge
computing devices on the ADMM subproblem

solving processes, a resource scheduling mechanism
is well designed in this stage.

(ii) Real-time time-window stage: the unexpected power
fluctuation deviating from the preset scenarios may
cause voltage violation risks. .erefore, a consensus-
based cluster correction scheme considering the
optimal power flow boundary constraints is devel-
oped and deployed in the edge computing devices to
realize real-time power regulations of the continuous
voltage control equipment.

3. PV and ESS Allocation Strategy

Allocating PVs and ESSs based on the appropriate distri-
bution network partition can reduce the whole network
power loss while ensuring the subnetwork control capability.
.erefore, this article innovatively builds a bilayer optimi-
zation model to achieve optimized allocation.
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Figure 1: Decomposition-coordination framework of the CEC-DCVC method.

International Transactions on Electrical Energy Systems 3



3.1. PV and ESS Allocation Bilayer Optimization Model.
.e inner objective is to maximize subnetwork voltage
control capability, as given in equation (1). .e ESS and PV
inverter constraints in each subnetwork are given in Ap-
pendix B equations (B.7)–(B.10). In addition, based on the
concept of electrical distance between arbitrary two buses
proposed by Chai [19], the lower and upper bounds of inside
and outside electrical coupling strength are formed, re-
spectively. Furthermore, the upper information propagation
delay bound constraint in the real-time time-window stage is
also sufficiently considered.
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(1)

where A is the set of subnetworks; Ba represents the bus set
of subnetwork a; he represents the ESS and PV control ability
to bus e in subnetwork a; Ba,ESS and Ba,PV are the bus sets of
ESS and PV clusters in subnetwork a respectively; PESS

i and
QPV

j are the active and reactive power output of ESS and PV
at bus i and bus j respectively; SP

ie and SO
je are the active and

reactive power sensitivity of bus i and bus j to bus e re-
spectively; and ΔUave

e represents the historical average
voltage deviation of bus e.

3.1.1. Electrical Coupling Strength Constraints
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where Ea is the branch set of subnetwork a; DP
ij and D

Q
ij are

the active and reactive electrical distances from bus i and bus
j respectively; and Din and Dout represent the lower and
upper bounds of inside and outside electrical coupling
strength for subnetwork a respectively.

3.1.2. Information Propagation Delay Constraint

t
a,ESS/PV
delay �

log N
a,ESS/PV

− 1􏼐 􏼑

log d
a,ESS/PV t

a,ESS/PV
comp + t

a,ESS/PV
comm + t

a,ESS/PV
action􏼐 􏼑

≤ tdelay, ∀a ∈ A,

(5)

where ta,ESS/PV
delay represents the ESS or PV cluster internal

information propagation delay in subnetwork a; Na,ESS/PV is
the number of devices in ESS or PV cluster; the average
communication point connectivity degree da,ESS/PV repre-
sents the information propagation ability; the ratio of two
“log(·)” function represents the average hop counts required
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Figure 2: Multitimescale control realization based on the CEC-DCVC model.
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to propagate the leading device status to all follower devices;
ta,ESS/PV
comp , ta,ESS/PV

comm , and ta,ESS/PV
action represent the single com-

munication, calculation, and action time of ESS or PV,
respectively; and tdelay is the delay upper bound.

.e outer objective function is to minimize the whole
distribution network power loss. .e power flow constraints
of the whole distribution network are given in Appendix A
equations (A.1)–(A.4), which have been preprocessed by
second-order cone relaxation [32] to convert original
nonconvex programming into convex programming. Em-
bedding the inner function equation (1) into the outer
function, the bilevel optimization model can be formed as
follows:

min
BESS ,BPV

􏽘
ij∈E

lijrij
⎛⎝ ⎞⎠max

Ba
􏽘
a∈A

􏽘
e∈Ba

he,

s.t. (A.1) − (A.4), (B.7) − (B.10), (2) − (5),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where BESS and BPV are the bus sets of ESSs and PVs in the
whole distribution network, respectively; E is the branch set
of the whole distribution network; lij,t is the square of current
for branch ij; rij represents the resistance of branch ij.

3.2. Solving Process by Tabu Search Algorithm. Tabu search
algorithm is applied in this paper to search for the optimal
ESSs and PVs allocation strategy corresponding to themodel
(6)..e dimension of BESS or BPV is related to the number of
buses in the distribution network, and each element of BESS

or BPV is “1” or “0.”.e number “1” indicates that ESS or PV
is distributed to this bus, while the number “0” indicates the
opposite. .e neighbors of BESS or BPV can be generated by
changing several elements of BESS or BPV from “1” to “0,” or
vice versa. Especially, the optimal solution is obtained based
on the inner distribution network partition function
equation (1). Finally, the detailed steps of Tabu search are
shown in Algorithm 1.

4. Interval Dispatch Stage

To achieve the economic and safe operation of the distri-
bution network under representative power fluctuation
scenarios, the cloud and edge sides minimize the power loss
of the whole network and the voltage deviations of sub-
networks, respectively. Correspondingly, ADMM is adopted
to solve the subproblems assigned to cloud and edge sides.
Besides, the optimal power flow boundaries among sub-
networks are formed.

4.1. Problem Descriptions

4.1.1. Cloud-Side Optimization Model. .e optimization
objective at the cloud-side is to minimize the power loss of
the whole distribution network. .e power flow, OLTC, and
CB constraints of the whole network are given in Appendix
A. .e cloud-side optimization model can be described as

min
α,β

􏽘

t∈Tcloud

Δt 􏽘
ij∈E

lij,trij,

s.t. (A.1) − (A.13),
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,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where α and β are the OLTC and CB state matrixes, re-
spectively; Tcloud is the interval dispatch set at cloud-side;
πa,b � [UΞ, PΓΓ, QΓΓ], UΞ is the voltage of boundary bus Ξ in
arbitrary subnetwork a; PΓΓ and QΓΓ are the active and
reactive power of boundary branch ΓΓ respectively; πa,b and
πa,b are the lower bound and upper bound for power flow
boundary, respectively; κa,b � [Ua,b

Ξ , Pa,b
VL, Qa,b

VL], Ua,b
Ξ repre-

sents the hypothetical voltage of bus Ξ in subnetwork a; Pa,b
VL

and Qa,b
VL are the active and reactive power of virtual load,

respectively; and Aa is the set of subnetworks adjacent to
subnetwork a.

4.1.2. Edge-Side Optimization Model. .e optimization
objective at each edge-side is to minimize the voltage de-
viations in each subnetwork. .e power flow, ESS, and PV
inverter constraints in each subnetwork are given in Ap-
pendix B. To keep the same second-order cone forms in the
cloud-side optimization model (7), the voltage deviation of
arbitrary bus j is also expressed with the square form. .e
edge-side optimization model in each subnetwork can be
described as

min
Pa,ESS ,Qa,PV

􏽘

t∈Tedge
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(8)

where Pa,ESS is the discharge power matrix of ESSs; Qa,PV is
the reactive power output matrix of PV inverters; Tedge

represents the interval dispatch set at edge-side; uj,t is the
square of voltage amplitude for bus j; U2

0 is square of the
reference voltage amplitude; κb,a � [Ub,a

Ξ , Pb,a
ΞΓ , Qb,a
ΞΓ ], Ub,a

Ξ
represents the hypothetical voltage of bus Ξ in subnetwork b;
Pb,a
ΞΓ and Qb,a

ΞΓ are the hypothetical active and reactive power
of branch ΓΓ respectively.

4.1.3. Stochastic Programming considering Power
Fluctuations. In practice, the stochastic fluctuations of PV
active power outputs and load demands may make it hard to
sustain the power flows within the economic and safe
boundaries by directly solving the above deterministic op-
timization models. .erefore, the optimization objectives of
models (7) and (8) are further transferred into the following
stochastic programming forms:
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min
x

Eξ f
loss

(x, ξ, 􏽢y)􏼐 􏼑,

min
ya

Eξa f
a,|Δu|

􏽢xa
, ξa

, ya
( 􏼁􏼐 􏼑, ∀a ∈ A,
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⎪⎪⎩
(9)

where x� [α, β]; ya � [Pa,ESS,Qa,PV]; ξ � {ξa | a ∈ A} is the set
of PV active power outputs (denoted as PPV

j,t ) and load
demands (denoted as Qload

j,t ); Eξ(·) and Ea
ξ(·) are the math-

ematical expectation under ξ and ξa respectively; floss(·) and
fa,|Δu|(·) represent the objective of models (7) and (8) re-
spectively; 􏽢xa is the partial copy of x download to edge-side
a; 􏽢y � [􏽢ya]1×A is the summary of copies ya upload to cloud-
side; and A is the number of subnetworks.

Moreover, to solve the above stochastic programming
equation (9), the uncertain variable ξa is simplified into a
series of typical values with specific probabilities as Gaussian
and Beta distribution [8]. .en, the representative scenario
set Wa in subnetwork a can be described by the Cartesian
product of PV output setWa,PV and load demand setWa,load:

Wa
� Wa,PV

× Wa,load
� wa

� ξw
a

, ϕw
a

􏼐 􏼑􏽮 􏽯, (10)

where ξw
a

and ϕw
a

are uncertain variable and corresponding
occurrence probability of scenario wa respectively.

Correspondingly, the representative scenario set
(denoted as W) of the overall distribution network is given
by

W � 􏽙
a∈A

Wa
� w � ξw, ϕw( 􏼁􏼈 􏼉, (11)

where ϕw � 􏽑a∈Aϕ
wa

and ξw
� ξwa

|a ∈ A􏽮 􏽯. Moreover, the
stochastic programming equation (9) is retransferred into
the following deterministic form:
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, 􏽢y( 􏼁,
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(12)

4.2. ADMM-Based Optimization Procedure under CEC
Architecture. According to equation (12), the number of
optimization models is A+ 1. To determine the optimal
reference operating points of the voltage control equipment,
all the cloud and edge-side optimization models should
converge, which means that there exist frequent copy in-
teractions during the optimization process. To guarantee the
fast convergence in the interval dispatch stage, the ADMM
considering computing resource constraints is adopted in
the cloud-side control center and edge computing devices.
Firstly, based on the augmented Lagrange function method,
the cloud and edge side optimization models with equality
constraint πa,b � κa,b � κb,a are further decoupled into A+ 1
convex optimization models as follows:

minφ(x),

φ(x) � 􏽘
w∈W

ϕw
f
loss x, ξw, 􏽢y( 􏼁 + λT πave − Ω( 􏼁 +

ρ
2
πave − Ω

����
����
2
2,

s.t. (A.1) − (A.13),

π a,b ≤πa,b ≤π a,b
, a ∈ A, b ∈ Aa

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Initialize: BESS � 0, BPV � 0, k� 0
[Edge-sides]: Calculate DP

ij and D
Q
ij via equation (4)

Repeat:
[Cloud-side]: Add BESS

k and BPV
k into Tabu list and generate neighborhood list

Repeat:
Select candidate solutions from the neighborhood list
If, ESSs and PVs in Ba,ESS and Ba,PV satisfy equations (B.7)–(B.10) and equation (5), buses in Ba satisfy equations (2)–(4)
[Edge-sides]: Partition distribution network by solving equation (1)
[Cloud-side]: Solve model (6) constrained by equations (A.1)–(A.4)

Until local optimum is no longer updated
[Cloud-side]: Set local optimum as BESS

k+1 and BPV
k+1

If the local optimum is better than the global optimum
[Cloud-side]: Set the local optimum as the global optimum

Until maximum iteration

ALGORITHM 1: Tabu search for the optimal ESS and PV allocations based on subnetwork partition.
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where φ(·) and ψ(·) are the optimization functions at cloud and
edge sides, respectively; πave � 􏽐w∈Wϕwπw, πw represents π
under scenariow; κave,a,b � 􏽐wa∈Waϕw

a

κwa,a,b, κwa,a,b represents
κa,b under scenario wa; for the whole network and subnetwork
a respectively, Ω� [Ωa,b]1× L and Ωa,b are the auxiliary vari-
ables, λ and λa,b are the dual variables, ρ and ρa are the penalty
factors, and L is the number of power flow boundaries.

.e update rules of Ω� [Ωa,b]1× L, λ, and λa,b in the kth

iteration are given by

Ωk � Ωa,b
k􏽨 􏽩1×L

�
πave,a,b

k− 1 + κave,a,b
k− 1 + κave,b,a

k− 1
3

􏼢 􏼣
1×L

, ∀a ∈ A, b ∈ Aa
,

(15)

λk � λk− 1 + ρ πavek − Ωk( 􏼁, (16)

λa,b
k � λa,b

k− 1 + ρa κave,a,b
k − Ωa,b

k􏼐 􏼑, ∀a ∈ A, b ∈ Aa
, (17)

.e update rules of 􏽢x and 􏽢ya in kth iteration are given by

􏽢xk � 􏽢x
a
k􏼂 􏼃1×A � argminφ xk( 􏼁, (18)

􏽢ya
k � argminψ ya

k( 􏼁, ∀a ∈ A. (19)

.e convergence criterion of ADMM is codetermined by
the primary residual Rk and dual residual Sk in the cloud-side
as follows:

Rk � πavek − Ωk

����
����∞≤ ε

pri
,

Sk � ρ Ωk − Ωk− 1
����

����∞≤ ε
dual

,

⎧⎪⎨

⎪⎩
(20)

where εpri and εdual are the maximum allowable error of Rk
and Sk respectively.

4.3. Solution Process with Computing and Communication
Resource Scheduling. As shown in Figure 3, when the al-
located computing and communication resources do not
match the ADMM, only after t

edge,max
imbalance all edge-sides have

completed the subproblems and uploaded the copies to the
cloud-side, the subproblem at the cloud-side can be exe-
cuted. Similarly, each edge-side subproblem can only be
calculated after tcloudimbalance that the cloud-side has completed
the subproblem and downloaded the copies to edge-sides.
Compared with the complete resource balance situation, the
additional time will accumulate to Δttotal after L steps,
which will occupy more computing and communication
resources of CEC architecture and adversely affect the
quality of voltage control application. .erefore, the com-
puting and communication resources of CEC architecture
need to be reasonably scheduled to alleviate this situation.
Based on the definition of kth iteration imbalance indexHib,k,
this paper gives the allocation criteria of central processing
units (denoted as the CPU clock speeds υcloudCPU and υedge,aCPU ) and
communication network bandwidth (denoted as the speeds
of sending and receiving packets υcl⟶ ed,a and υed,a⟶ cl

between cloud-side and arbitrary edge-side a).
Furthermore, the υcloudCPU , υedge,aCPU , υcl⟶ ed,a, and υed⟶ cl,a

provided for ADMM can be determined by solving equa-
tions (21)–(24):

Hib,k �

����������������������������

t
cloud
k − t

ave
k􏼐 􏼑

2
+ 􏽐

a∈A
t
edge,a
k − t

ave
k􏼐 􏼑

2

A + 1

􏽶
􏽴

≤Hib,
(21)

t
cloud
k � t

cloud
comp,k + t

cl⟶ed
comm,k �

τcloudCPI K
φ

· O minφ xk( 􏼁( 􏼁

υcloudCPU

+ t
cloud
start + max

􏽐b∈AaΩa,b
k

�����

�����
pack

+ 􏽢xa
k

����
����
pack

υcl⟶ed,a

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ t

cloud
pack , (22)

t
edge,a
k � t

edge,a
comp,k + t

ed,a⟶cl
comm,k �

τedge,aCPI K
ψ

· O minψa ya
k( 􏼁( 􏼁

υedge,aCPU

+ t
edge,a
start +

􏽐b∈Aaκave,a,b
k

�����

�����
pack

+ 􏽢ya
k

����
����
pack

υed,a⟶cl + t
edge,a
pack , (23)

t
ave
k �

t
cloud
k + 􏽐

a∈A
t
edge,a
k

A + 1
,

(24)
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where Hib is the upper limit of imbalance index; tcloudcomp,k,
tcl⟶ed
comm,k, and tcloudk are the computing, communication, and
total time at cloud-side, respectively; t

edge,a
comp,k, ted,a⟶cl

comm,k , and
t
edge,a
k are computing, communication, and total time at
edge-side, respectively; tavek is the average of tcloudk and all
t
edge,a
k ; O(·) is used to the calculate time complexity; τ(·)

CPI
represents the cycle per instruction; K(·) represents the av-
erage number of instructions in single-step; ||·||pack is used to
calculate the number of packets; t

(·)
start is the start time of

ADMM single-step procedure; t
(·)
pack is the time of pre-

processing and packaging for data frames.
Finally, the detailed steps of ADMM under CEC ar-

chitecture are shown in Algorithm 2.

5. Real-Time Time-Window Stage

Note that the unexpected power fluctuations deviating from
the respective scenarios may lead to voltage violations. It is
required that the continuous voltage control equipment
should have the real-time power regulation capabilities to
maintain the bus voltages within the permitted range and
guarantee the power flow boundaries satisfying Δκa,b

t � 0.
However, traditional localized control strategies only reg-
ulate the equipment based on local measurement

information, which cannot realize the coordination among
other equipment. .erefore, in this Section, a consensus-
based distributed cluster control scheme is developed.

5.1. Consistency Variable Construction. Science the tradi-
tional consensus-based control methods do not consider the
power flow boundary constraints, so the regulations will
inevitably bring additional power flow exchange among
subnetworks [33–35]. Accordingly, the power flow distri-
bution will deviate from the optimal state. .erefore, the
power flow boundary constraints are introduced into the
consensus-based cluster control in this Section. Specifically,
when voltage violation occurs at arbitrary bus e in the worst
real-time scenarios, the ESS and PV with the highest active
and reactive power regulation sensitivities will be regarded
as the two leaders. .e remaining ESSs and PVs are regarded
as corresponding followers. By adjusting the ESS charging-
discharging powers and PV inverter outputs, respectively,
the voltage deviation can be kept within the allowable range
under the preset boundary power flow constraint Δκa,b

t � 0.
For the leaders, the consistency variables after nor-

malization are defined as [μa,ESS
θ,t , μa,PV

ω,t ]T �, [ΔPESS
θ,t /ΔP

ESS
θ,t ,

ΔQPV
ω,t/ΔQ

PV
ω,t]

T, where, for ESS and PV clusters, respectively,

...

...

Cloud Center

Edge Node a

Edge Node b

Edge Node A

Cloud Center

Edge Node a

Edge Node b

Edge Node A

Time

Time

Step 1 Step 2 Step 3 Step 4 Step ℒ-1 Step ℒ

Step 1 Step 2 Step 3 Step 4 Step ℒ-1 Step ℒ

ΔTtotal

Ttotal
imbalance

Ttotal
imbalance

t cloudimbalance

t cloudcomp

t cloudbalance

t edgebalance

t edgecomp t ed→cl
comm

t cl→edcomm

t edge,max
imbalance

Figure 3: Influence of imbalanced resource allocation on ADMM iteration time.
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the highest power sensitivity equipment is installed at bus θ
and ω; μa,ESS

θ,t and μa,PV
ω,t are the lead consistency variables;

ΔPESS
θ,t and ΔQPV

ω,t are the power change upper bounds of
leaders. For the followers, the consistency variables after
taking into account the sensitivity correction are defined as
[μa,ESS

i,t , μa,PV
j,t ]T � [(CPSP

ie/S
P
θe)(ΔP

ESS
i,t /ΔPESS

i,t ), (CQS
Q
je / SQ

ωe)

(ΔQPV
j,t /ΔQ

PV
j,t )]T, where i ∈ Ba,ESS and i≠ θ; j ∈ Ba,PV and j≠

ω; μa,ESS
i,t and μa,PV

j,t are the following consistency variables; CP

and CQ are the active and reactive power allocation coef-
ficients, respectively; SP

ie and SP
θe are the active power sen-

sitivity of bus i and bus θ to bus e respectively; SO
je and SO

ωe are
the reactive power sensitivity of bus j and bus ω to bus e
respectively; ΔPESS

i,t and ΔQPV
j,t are the power change upper

bounds of followers..e consistency variables of leaders and
followers satisfy [μa,ESS

θ,t
, μa,PV

ω,t ]T � [μa,ESS
i,t , μa,PV

j,t ]T.
At time t, to ensure Δκa,b

t � 0 obtained in Section 4, as
shown in Figure 4, κa,b

t is divided into two categories, i.e.,
upstream boundary κa,up

t � [U
a,up
t , P

a,up
t , Q

a,up
t ] and down-

stream boundary κa,down
t � [Ua,down

t , Pa,down
t , Qa,down

t ]. When
the upstream boundary bus of arbitrary subnetwork a is
regarded as slack bus, i.e., ΔUa,up

t � 0, as long as ΔPa,up
t � 0

and ΔQa,up
t � 0 as given in equation (25), there is κa,up

t � 0.

ΔPa,up
t

ΔQa,up
t

⎡⎣ ⎤⎦ �
Δ􏽥Pa

t

Δ􏽥Q
a

t

⎡⎣ ⎤⎦ +
ΔPESS

θ,t

ΔQPV
ω,t

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

􏽘

i∈Ba,ESS ,i≠ θ

ΔPESS
i,t

􏽘

j∈Ba,PV ,j≠ω

ΔQPV
j,t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0,

(25)

where Δ􏽥Pa

t and Δ􏽥Q
a

t are the state variables of active and
reactive power in subnetwork a respectively.

Since the downstream subnetwork of subnetwork a is
adopted the same strategy, it also makes κa,down

t � 0.
.erefore, Δκa,b

t � 0 is realized. Besides, before regulating,
the CP and CQ can be determined to satisfy both
[μa,ESS

θ,t , μa,PV
ω,t ]T � [μa,ESS

i,t , μa,PV
j,t ]T and equation (25) only by

simple algebraic calculations at the edge-side.

5.2. Consensus-Based Cluster Correction Mechanism. In the
proposed consensus-based cluster correction mechanism,
the leaders update power outputs in the form of droop
control until the voltage amplitude of bus e returns to the
allowable range. Specifically, for the kth update process, the
leader power outputs can be given as

μa,ESS
θ,t,k

μa,PV
ω,t,k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
μa,ESS
θ,t,k− 1

μa,PV
ω,t,k− 1

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ −
ηP

Ue,t,k− 1 − U􏼐 􏼑

ηQ
Ue,t,k− 1 − U􏼐 􏼑

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (26)

where ηP and ηQ are used to adjust the convergence speed
and accuracy of the leaders; U represents the voltage am-
plitude lower limit U or upper limit U.

Furthermore, the followers update their outputs
according to the k − 1th state of the leaders and adjacent
followers. Considering the communication link connectivity
among voltage regulation equipment, the kth outputs of
followers can be given as

μa,ESS
i,t,k

μa,PV
j,t,k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
ziθμ

a,ESS
θ,t,k− 1

zjωμ
a,PV
ω,t,k− 1

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

􏽘

m∈Ba,ESS ,m≠ θ

zimμ
a,ESS
m,t,k− 1

􏽘

n∈Ba,PV ,n≠ω

zjnμ
a,PV
n,t,k− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ∀i ∈ Ba,ESS

, i≠ θ, j ∈ Ba,PV
, j≠ω, (27)

Initialize: k� 0, εpri � 10− 3, εdual � 10− 3, Ω0 � 0, Ωa,b
0 � 0, λ0 � 0, λa,b

0 � 0, ρ� 0.5, ρa � 0.5
[Edge-sides]: Construct representative scenarios of subnetworks
Upload representative scenarios of subnetworks to the cloud-side
[Cloud-side]: Construct representative scenarios of the whole network
Repeat
Adjust υcloudCPU and υedge,aCPU by allocating the number of CPU cores and clock speed of each core at cloud and edge sides respectively to

satisfy equation (21)
Adjust υcl⟶ ed,a and υed⟶ cl,a by allocating uplink and downlink bandwidth of server communication port bandwidths at cloud

and edge sides respectively to satisfy equation (21)
k� k+ 1
[Edge-sides]: Update λa,b

k and 􏽢ya
k via equations (17) and (19)

Upload κave,a,b
k− 1 , κave,b,a

k− 1 , and 􏽢ya
k to cloud-side

[Cloud-side]: Update Ωk � [Ωa,b
k ]1×L, λk, and 􏽢xk � [􏽢xa

k]1×A via equations (15), (16), and (18)
Download Ωa,b

k and 􏽢xa
k to edge-sides

[Cloud-side]: Calculate Rk and Sk via equation (20)
Until Rk≤ εpri and Sk≤ εdual

ALGORITHM 2: ADMM under CEC architecture.
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where zσδ (σ � i or j; δ � θ, ω, m, or n) represents the state
transition coefficient, generally determined by the means
Metropolis algorithm [33]:

zσδ �

2
1 + dσ + dδ

, σδ ∈ Θa,ESS/PV
σ ,

1 − 􏽘

σδ∈Θa,ESS/PV
σ

2
1 + dσ + dδ

, j � i,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

whereΘa,ESS/PV
σ σ represents the set of links that have a direct

communication connection with ESS or PV installed at bus
σ; dσ and dδ represent the point connectivities of bus σ and δ
respectively, i.e., the number of equipment with direct
communication links to ESS or PV installed at bus σ and δ.

Finally, the detailed steps of the proposed consensus-
based cluster correction mechanism are shown in
Algorithm 3.

6. Case Studies

In this Section, improved 33-bus and IEEE 123-bus systems
are used to test the effectiveness of our proposed CEC-
DCVC method. .e centralized stochastic programming
method proposed in [8], the decentralized stochastic
programming method proposed in [21], and the CEC
robust optimization method are adopted as the
comparisons.

.e software and hardware adopted in the simulations
are as follows. .e cloud server adopts Intel Xeon 4 CPU@
3.2GHz, 8GB RAM with Win 10, while edge servers adopt
Intel Core i5 CPU@2.4GHz, 4GB RAM with Win 10.
100Mbps communication links with TCP protocol are
adopted to exchange copies among cloud-side control center
and edge computing devices, while 10Mbps communication

links with UPD protocol are adopted to realize consensus-
based cluster control among the continuous voltage control
equipment. .e CEC architecture is implemented on the
Microsoft Visual Studio 2019 platform based on multiagent
technology. GUROBI 8.9.0 in MATLAB 2018b is adopted to
solve the ADMM subproblems.

6.1. Voltage Control Results of Modified 33-Bus System

6.1.1. Modified 33-Bus System. .e 33-bus system [36] with
three subnetworks is firstly tested, as shown in Figure 5. .e
allowed operational voltage range [U, U]� [0.95, 1.05] p.u.
.e parameters of voltage control equipment are demon-
strated in Table 1. .e maximal allowable hourly and daily
action limits of the OLTC are 4 and 30 times, respectively,
and action limits of CBs are 2 and 15 times, respectively.
Without losing generality, we assume that ESSs are dis-
tributed near PVs, and PVs in each subnetwork have the
same generation. In addition, we assume that all load buses
have the same power demand factor, which represents the
ratio of forecasting load demandmagnitudes to the reference
operating magnitudes, as shown in Figure 6.

6.1.2. Results in the Interval Dispatch Stage. .e forecasting
curves described in Figure 6 are used as the probability
distribution means for stochastic programming. In addi-
tion, assume that the load demands obey the Gauss dis-
tribution with 5% standard deviations, while the PV
outputs obey the Beta distribution, where both two shape
parameters are set as 6.06. .en, 100 representative sce-
narios are generated by using the proposed method in
Section 4.1.3. For example, Figure 7 shows the possible
voltage amplitudes at 12 : 00. It can be seen that about 10%
of representative scenarios show bus voltage violations,
with the maximum voltage of 1.067 p.u. .erefore, it is
necessary to carry out voltage control.

Unchage to Upstream 
Sub-network

Downstream Sub-network 
Equivalent

Slack Bus

Ka,up

Ua,up Pa,up Qa,up

Ka,down

Ua,down Pa,down Qa,down

Figure 4: Strategy to realize Δκa,b
t � 0.
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.e hourly tap positions of OLTC and CBs within one
day determined by conducting the proposed cloud-side
ADMM algorithm are shown in Figure 8. .e 15min

reference reactive power outputs of PVs and charging-dis-
charging curves of ESSs determined by conducting the edge-
side ADMM algorithms are shown in Figure 9.

Under the CEC architecture, the proposed DCVC
method can realize the coordination of discrete and con-
tinuous types of equipment with different timescales.
According to Figure 8, to guarantee the hourly global op-
timal power flows, the taps of OLTC over the day change 22
times, while the average taps of CBs are 3.465. Furthermore,
as shown in Figure 9, there exists a significant difference in
the continuous equipment power outputs in the daytime and
night:

(i) In the daytime, the average ESS charging power is
38.79 kW, 45.73 kW, and 53.45 kW in subnetworks
1, 2, and 3 to absorb the additional active power
output of PVs. .e average PV inverter reactive
power outputs are 59.43 kVar, 213 kVar, and
− 32 kVar in subnetworks 1, 2, and 3. Especially,
when PV active power outputs reach the peaks, the

Initialize: k� 0, ηP � 1, ηQ � 1
[Edge-side]: Marking bus θ and bus ω with the highest active and reactive sensitivity equipment to voltage violation bus e
[Edge-side]: Calculate CP and CQ to satisfy [μa,ESS

θ,t , μa,PV
ω,t ]T � [μa,ESS

i,t , μa,PV
j,t ]T and equation (25)

Repeat
k� k+ 1
If Ue,t,k >U or Ue,t,k < U

[ESS & PV leaders]: Update μa,ESS
θ,t and μa,PV

ω,t via equation (26)
Else
[ESS & PV leaders]: Maintain μa,ESS

θ,t and μa,PV
ω,t

[ESS & PV followers]: Update μa,ESS
i,t,k and μa,PV

j,t,k via equation (27)
Until max μa,ESS

i,t,k , μa,PV
j,t,k􏼚 􏼛≤ 10− 2.

ALGORITHM 3: Consensus-based cluster correction mechanism.

 

26 27 28 29 30 31 32 3323 24 25

19 20 22

2 3
OLTC

21

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sub-network 2Sub-network 1

Sub-network 3

1

CB
ESS
PV

Figure 5: Modified 33-bus system.
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Figure 6: Forecasting curves of PV active power output and load
demand factors.

Table 1: Parameters of OLTC, CBs, PVs, and ESSs.

Voltage control equipment Types Subnetworks Parameters Placement buses

Discrete equipment OLTC — 0.005 p.u/tap ∗ 20 taps 1
CB 1, 2, 3 30 kVar/tap ∗ 10 taps 2, 3, 6, 11, 21, 23

Continuous equipment

PV1 1 450 kVA 21, 22, 25
PV2 2 450 kVA 27, 29, 33
PV3 3 500 kVA 9, 11, 13, 16
ESS1 1 500 kWh 20, 25
ESS2 2 600 kWh 27, 31
ESS3 3 600 kWh 10, 13, 16
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PV reactive outputs are close to 0 or even negative to
absorb the inductive reactive powers from the dis-
tribution network to reduce the bus voltage ampli-
tudes. Conversely, when PV active outputs are at low
levels, the PV inverters increase their reactive power
outputs to raise the bus voltage amplitudes.

(ii) In the night, the average ESS discharge power is
22.16 kW, 36.45 kW, and 43.29 kW in subnetworks 1,
2, and 3, respectively, to support high load demands.
Since the PV active power outputs are close to 0, the
PV inverter reactive power outputs are increased to
support the bus voltage. In this case, the average PV
reactive power outputs are 77.58 kVar, 287 kVar, and
111.34 kVar in subnetworks 1, 2, and 3, respectively.
Finally, in this test system, the voltage qualification
rate is 100% under representative scenarios, while
the average bus voltage deviation is 0.0121 p.u. and
the power loss is 45.23 kW.

6.1.3. Results in the Real-Time Time-Window Stage. In this
stage, 5000 random scenarios are generated by the Monte
Carlo sampling method to simulate the uncertain PV active
power outputs and load demands deviating from the rep-
resentative scenarios. By using the proposed consensus-
based cluster correction strategy in Section 5, the correction

results of bus 16 with the largest voltage deviations under the
worst real-time scenarios are shown in Figure 10.

Under the worst real-time scenarios from 10 : 25 : 00 to
12 : 45 : 00, the voltage amplitude of bus 16 exceeds the
lower limit 5 times. .e maximum voltage deviation
occurs at 10 : 25 : 00 with the lowest voltage magnitude
0.937 p.u. .e possible reason causing such a sharp drop
may be the sudden power drops of PVs at the high-level
load demands. In this case, by precomputing the sensi-
tivity matrix, the ESS and PV installed at bus 16 are
determined as the active and reactive power regulation
leaders, respectively, while the ESSs and PV at buses 9, 10,
11, and 13 are regarded as the followers. Under the op-
timal power flow boundary constraints obtained by the
proposed ADMM algorithm, the regulation processes
with the proposed consensus-based cluster correction
strategy are shown in Figure 11.

Figures 11(a) and 11(b) illustrate that the states of ESSs
and PV inverters reach the consensuses after 45 and 51
iterations, respectively. .e maximum deviations during the
regulation process are 1.01% and 2.73%, respectively. .e
corresponding boundary power flow fluctuations are pre-
sented in Figure 12. Since the PV outputs in subnetwork 3
have been greatly reduced, the P

3,up
t is suddenly increased by

0.198MW. But with the ESS consensus-based cluster cor-
rection process, the optimal active power boundary can be
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Figure 7: Voltage magnitudes at 12 : 00 under representative scenarios without control.

OLTC at bus 1

-10
-8
-6
-4
-2
0
2
4
6
8

10

Ta
p 

Po
sit

io
n

6 12 18 240
Time (h)

(a)

0

2

4

6

8

10

Ta
p 

Po
sit

io
n

6 12 18 240
Time (h)

CB at bus 2
3
6

11
21
23

(b)

Figure 8: Hourly tap positions for 33-bus system. (a) OLTC. (b) CBs.
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restored within 0.84 s. Meanwhile, the PV leader increases
the reactive power output, so that the PV followers need to
reduce their reactive power outputs to balance Q

3,up
t . .e

overall time-consuming is only 1.10 s, and the maximum
reactive power fluctuation is 0.014MVar, which satisfies the
real-time control requirements. Besides, the correction
process in this stage only occurs in subnetwork 3, which has
no impact on the optimal operation of other subnetworks.

6.2. Voltage Control Results of Modified IEEE 123-Bus System

6.2.1. Modified IEEE 123-Bus System. As shown in Fig-
ure 13, the IEEE 123-bus system [37] with three subnet-
works is tested to verify the effectiveness of our proposed
method under larger-scale distribution networks. .e load
demand curves and discrete equipment parameters for this
system are the same as the 33-bus system. OLTC is in-
stalled at bus 1. CBs are installed at buses {19, 28, 43, 63, 80,
91, 106, 118}. .e PV output curves and continuous
equipment parameters in the subnetworks 1, 2, and 3 are
the same as those in the subnetworks of the 33-bus system,
while the assumptions of subnetwork 3 in 33-bus system
are adopted in subnetwork 4 here. ESSs and PVs are lo-
cated at buses {15, 20, 27, 39, 45, 53, 56, 74, 78, 82, 87, 98,
113} and {14, 18, 21, 26, 31, 35, 46, 49, 57, 65, 68, 74, 77, 78,
85, 90, 93, 98, 113}, respectively.

6.2.2. Results in the Interval Dispatch Stage. Due to the
increased number and scale of subnetworks, the operating
conditions in subnetworks are more complex. .ereby, the
number of representative scenarios increases to 200.
However, the proposed DCVC method can still coordinate
the discrete and continuous types of equipment under CEC
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Figure 9: 15min PV inverter reference outputs and ESS states of charge for 33-bus system. (a) Subnetwork 1. (b) Subnetwork 2.
(c) Subnetwork 3.
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architecture, as shown in Table 2. Finally, in this test system,
the voltage qualification rate can also be maintained at 100%,
while the average voltage deviation is 0.0137 p.u. and the
power loss is 124.23 kW.

6.2.3. Results in the Real-Time Time-Window Stage.
Without losing generality, bus 2 with the most serious
voltage violation under the worst scenario is taken as an
example for discussion and analysis. As shown in
Figures 14(a) and 14(b), although the number of ESS and PV
increases to 4 and 6, respectively, both the ESS and PV
cluster consistency variables can still well converge within
the allowed time. Specifically, the two equipment clusters
converge after 66 and 88 iterations, respectively. .e cor-
responding time-consumption is 1.23 s and 1.58 s, respec-
tively. In addition, the maximum deviations of two
consistency variables are limited to 5%.

6.3. Comparison with Current Methods. To verify the su-
perior control performance of the proposed CEC-DCVC
method in multitimescale, the following five methods are
compared:

(1) Method #1: with no control method
(2) Method #2: with the proposed CEC-DCVC method
(3) Method #3: with the centralized stochastic pro-

gramming method in [8]
(4) Method #4: with the decentralized stochastic pro-

gramming method in [21]
(5) Method #5: with the CEC robust optimization

method

During one day, the average voltage deviation |ΔU| of
each bus is shown in Figure 15. .e control results of
subnetworks and the whole network are shown in Tables 3
and 4.

.e results indicate that the proposed method #2 has a
better performance than others in reducing voltage de-
viations and power losses. Specifically, although method
#3 has a similar power loss reduction performance in the
two test systems compared with our proposed method #2,
the average voltage deviations with method #3 are 16.67%
and 19.90% larger, respectively. .is is because method #3
only focused on minimizing the power losses without
considering the voltage deviations. In addition, because
the centralized control structure is used in method #3,
only one representative scenario set is adopted during
determining the optimal power flows. Conversely, in our
proposed method #2, not only both the voltage deviations
and power losses are considered as the optimization
objectives, more fine representative scenario sets con-
sidering the differences among the subnetworks are
established in our paper as well. Moreover, since method
#4 fails to avoid the interregional suboptimal power flows
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Figure 11: Iterative processes of consensus-based cluster correction in subnetwork 3 of 33-bus system. (a) ESS cluster. (b) PV cluster.
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during partial localized voltage control, the average
voltage deviations in the two test systems are increased by
4.21% and 7.19%, respectively, while the power losses are
increased by 5.14% and 6.98% compared with our pro-
posed method #2. In addition, although method #5 adopts
the same CEC architecture as our proposed method #2,
the average voltage deviations in the two test systems are
increased by 32.63% and 19.25%, respectively, while the
power losses are increased by 23.53% and 24.24% com-
pared with our proposed method #2. .e reason is that the
conservative results under the worst scenarios are usually
obtained in robust method #5.

6.4. Resource Balance Performance. To be more practical,
assume that the CEC architecture also undertakes some
other applications except for voltage control, such as power
scheduling [29], stability operation control [30], and load
forecasting [31]. When the voltage control application and
those other applications overlap during the solving process,
heterogeneous and limited computing resources will be
provided to the voltage control application. Without losing
generality, in this section, the benchmark utilization of CPU
and bandwidth is set as an overload situation [38] to sim-
ulate the above situation under CEC architecture. As shown
in Figures 16(a) and 16(b), under the traditional polling
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Figure 13: Modified IEEE 123-bus system.

Table 2: Voltage control equipment operation conditions in the interval dispatch stage of IEEE 123-bus system.

Interval dispatch elements Operation conditions
Changing taps of OLTC 24
Average taps of CBs 4.35

Average output of PV inverters in day/night (kVar)

Subnetwork 1 34.26/134.21
Subnetwork 2 − 52.38/206.42
Subnetwork 3 − 123.62/234.34
Subnetwork 4 − 69.46/269.15

Average charge/discharge power of ESSs (kW)

Subnetwork 1 35.46/19.14
Subnetwork 2 41.47/32.25
Subnetwork 3 53.36/42.42
Subnetwork 4 43.82/31.71
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Figure 14: Iterative processes of consensus-based cluster corrections in subnetwork 3 of IEEE 123-bus system. (a) ESS cluster. (b) PV
cluster.
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Figure 15: Average voltage deviation |ΔU| of each bus. (a) 33-bus system. (b) IEEE 123-bus system.

Table 3: Control results of five methods in 33-bus system.
Method #1 #2 #3 #4 #5

Average |ΔU| (p.u.)

Subnetwork 1 0.0090 0.0088 0.0123 0.0076 0.0141
Subnetwork 2 0.0343 0.0092 0.0096 0.0082 0.0101
Subnetwork 3 0.0469 0.0098 0.0117 0.0137 0.0128
Whole network 0.0290 0.0095 0.0114 0.0099 0.0126

Power loss (kW) Whole network 124.67 48.83 48.96 51.34 58.23

Table 4: Control results of five methods in IEEE 123-bus system.
Method #1 #2 #3 #4 #5

Average |ΔU| (p.u.)

Subnetwork 1 0.0121 0.0122 0.0158 0.0080 0.0121
Subnetwork 2 0.0359 0.0163 0.0183 0.0162 0.0185
Subnetwork 3 0.0506 0.0172 0.0205 0.0240 0.0258
Subnetwork 4 0.0532 0.0163 0.0177 0.0194 0.0204
Whole network 0.0358 0.0153 0.0191 0.0164 0.0189

Power loss (kW) Whole network 354.41 132.12 132.71 141.34 164.15
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resource allocation strategy [39], the average resource al-
location imbalance indexes Hib,k are 0.264 and 0.374, re-
spectively, for two test systems during the iterative processes.
As shown in Figures 17(a) and 17(b), the corresponding total
solving time-consumption reaches 49.12 s and 195.93 s,
which exacerbate the high computing pressure duration
under CEC architecture in multiapplication cases. In ad-
dition, overlong solving time-consumption is adverse to
meet the correspondence between the control strategies and
the actual working conditions. After executing the proposed
computing and communication resource allocation strategy,
the average resource allocation imbalance indexes Hib,k are
greatly reduced to 0.071 and 0.075, respectively. .e cor-
responding total solution time is decreased to 16.91 s and
49.59 s. Besides, as demonstrated in Figures 17(a) and 17(b),
different resource allocation strategies do not affect the it-
erations required for ADMM convergence, where two test
systems converge after 39 and 70 iterations.

7. Conclusion

To solve the multitimescale voltage control problem of high
PV-penetrated distribution networks, this paper proposes a
CEC-DCVC method, which decomposes the global voltage
control task and solves it coordinately. It effectively reduces
the voltage deviations and power losses and realizes an

excellent allocation of computing and communication re-
sources. Compared with the centralized method, the model
dimensions and algorithm time complexity are greatly re-
duced. Besides, its scalability is significantly improved,
suitable for photovoltaic frequent fluctuation scenarios.
Compared with the decentralized method, due to the in-
troduction of optimal power flow boundary constraints,
unnecessary power interactions among subnetworks during
local voltage regulations are avoided. Furthermore, the
complete decoupling of voltage regulations in each sub-
network is realized. Besides, the cloud-side control center is
used to undertake the partial optimization model, which
effectively reduces the computing burden on edge-side
devices with limited computing and communication
resources.

Moreover, the proposed method is a general method
based on optimal power flow stochastic programming,
which can be extended to other applications based on the
CEC architecture in distribution networks.

Appendix

A.1. Constraints at the Cloud-Side

A.1. Power Flow Constraints of Second-Order Cone Form for
Whole Network.
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Figure 16: Imbalance indexes Hib,k during the iterative processes. (a) 33-bus system. (b) IEEE 123-bus system.
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where αm,t is the virtual binary variable, which represents the
state of OLTC; M is the tap set of OLTC; Utap is the voltage
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0 represents the capacity
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t and K

CB are the hourly and daily
limit of changing taps for CBs, respectively.
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where S
PV,cap
j is the capacity of PV inverter installed at bus j.
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