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As an individual plant participating in the power market, the virtual power plant (VPP) is regarded as the ultimate confguration
of the energy Internet, and efective dispatching is a challenge. Tis paper proposes a multi-agent optimal bidding strategy based
on a self-adaptive global optimal harmony search algorithm (SGHSA) to solve the problem of multi-operator participation in
virtual power station scheduling.Temethod takes multiple agents to simulate the bidding process in the VPPs and distributes the
profts for the operators based on the market mechanism to optimize the distributed energy resources (DERs). Case studies are
provided and show that the proposed method realizes the optimal distribution of power generation and demand level, which
improves the comprehensive advantage of the VPP in electricity market transactions.

1. Introduction

A virtual power plant (VPP) is a necessary form of the future
energy Internet, which participates in the power market as an
individual power unit [1]. Based on the advanced information
and communication technology, the VPP integrates distrib-
uted energy resources (DERs) such as distributed power
generation (DG), energy storage, controllable load, and
electric vehicles to coordinate and optimize them to achieve
the stability and reliability of their overall output to the main
grid [2]. Under the current model, the electricity price of the
virtual power plant is the same as the power supply’s price of
the main grid to which the VPP is connected. However, the
power supply’s price of the main grid fuctuates from peak to
valley level due to the supply-demand relationship and other
factors, which cannot motivate the enthusiasm of the virtual
power plant to implement a load shift of the power grid [3].
Terefore, determining the purchase price of the VPP needs
to consider multiple factors.

A virtual power plant imitates the function of a tradi-
tional large power plant by centralized scheduling and in-
telligent control of the DERs [4]. Te internal and external

interaction units involved in the virtual power plant are
shown in Figure 1. Te VPP realizes the overall coordinated
regulation of distributed energy resources, energy storage,
and various loads through advanced data communication
and coordinated control technology and interacts with
power grid companies and power distribution companies to
participate in the demand-side management and power grid
auxiliary services.

When it comes to the interaction between the VPP and
the power grid and the optimal internal scheduling of the
VPP, the VPP is generally thought of as a management
system representing the DERs in transactions with the grid.
Te DER output is arranged by the maximum overall beneft
or the minimum operating cost of the VPP. In this mode,
each DER is owned by the VPP by default, and the corre-
sponding compensation is given to the controllable load in
the VPP. Te VPP has absolute power control over the
output of the DER; that is, there is just one DER operator in a
VPP [5]. With the large-scale development of the DERs, the
investment subject of the DERs gradually showed a trend of
diversifcation, and the DERs in the VPP may be owned by
diferent operators [6].
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Meanwhile, there are several operators in a VPP, and
each operator has diferent interest demands. Suppose we
ignore the self-interests of each operator in the VPP and only
focus on the overall benefts of the VPP. In that case, the
DER operators and load aggregators will lack the enthusiasm
to join the virtual power plant, which hinders the promotion
and development of the virtual power plant [7]. Terefore,
how to take into account the interest demands of each
operator, how to make a reasonable scheduling plan, and
how to improve the enthusiasm of multiple operators are the
challenges for the VPP dispatching center.

Generally, there are two kinds of transaction modes and
beneft distribution mechanisms for the distributed energy
participating in the market: the price changes over time and
the bidding pattern. Under the price changes pattern over
time, operators of the DERs schedule their power generation
based on the VPP’s internal real-time electricity price, which
includes particular interest game behavior. In [8], a VPP
scheduling model including photovoltaic, wind power,
hydropower, and other energy sources was established,
which realized the coordinated operation of various DERs,
but it did not involve the beneft distribution of each op-
erator. In [9], a microgrid optimization method based on
multi-agent bidding equilibrium was proposed to distribute
the benefts to the investors of the DERs, but the uncertainty
of the renewable energy generation is not considered. In
[10], an optimal economic dispatch of virtual power plant
based on bidding is proposed to achieve optimal power
generation of distributed generation in VPPs. In [11], a bi-
level multi-time scale scheduling method based on bidding
for multi-operator VPP was proposed to provide a frame-
work for solving proft allocation and optimal scheduling
problems. However, this paper did not describe how the
operators determine their bidding function.

Under the bidding mode, the DERs inside the VPP ofer
their prices and quantities to the market, and if their bid
price is accepted, they will sell their power at the winning
price. Te bidding strategy of the DERs is crucial in the
bidding mode; however, there are few pieces of research in
this feld, and most of them focus on the bidding strategy of
the VPP participating in the electricity market. Kardakos
et al. [12] studied the strategic bidding behavior of the VPP
with distributed energy, storage systems, and power users
participating in the day-ahead electricity market.

Shafekhani et al. [13] modeled the bidding behaviors of the
VPP and generation companies and studied the bidding
process of the VPP and other strategic competitors (gen-
eration companies) in the day-ahead electricity market. In
[14], the bi-level equilibrium model was established to study
the interaction in multiple energy sources when they par-
ticipated in the electricity market, competing with the
generation company in diferent ways and infuencing the
market equilibrium results. However, all the above studies
regard the VPP as an internal aggregation without any
confict of interest to participate in the power market.

Like the research on virtual power plants, microgrids can
also realize the function of aggregating distributed energy by
connecting distributed energy to the grid. Ahmad et al. [15]
proposed a joint energy management and trading model to
provide low-cost power consumption for distribution sys-
tems. Ahmad et al. [16] ofered a strategy integrating dis-
tributed energy, load scheduling, energy storage system, and
feed to efectively utilize energy and develop an autonomous
system that can manage all these resources efectively and
efciently. Ahmad et al. [17] put forward a uniform DSM
model used to reduce the electricity costs and demand
during the peak hours. Te simulation results show that the
model achieves excellent performance and can efectively
reduce the carbon dioxide emissions. Still, the study did not
consider the consumer’s privacy. Te implementation
complexity of the proposed model is also high. In [18], a
single management system was formed by considering the
consumer’s preference, priority, ease of use, power grid
stability, minimum deviation, smoothness of demand curve,
and the insertion cost. Te system will also provide con-
sumers' privacy as it would mask the energy usage pattern
that combines psychological incentives in addition to eco-
nomic benefts. It will also protect the consumer’s privacy. In
[19], the concept of domain and constraint reduction was
applied to reduce the number of variables and the number of
constraints of the given REM mathematical model in resi-
dential areas, simplifying the complexity of the mathe-
matical model.

Self-adaptive global optimal harmony search algorithm
(SGHSA) is an improvement of the traditional harmony
search algorithm (HS) by Mojtaba et al., which can ensure
global optimization and rapid convergence [20]. Te algo-
rithm simulates the process by which musicians repeatedly
adjust the pitch of each instrument in the band according to
their memory to achieve an excellent harmonic state [21,22].
In SGHSA, the solution vector is called “harmony.” If an
optimization problem has k decision variables, a harmony
vector is k-dimensional. Te initial harmony vector group is
generated randomly and stored in the harmony memory
(HM).Te optimization process consists of the initialization
of the HM, the improvisation of the new harmony, and the
update of the HM.Te pros and cons of the created harmony
vector are judged by the objective function [23].

Te harmony memory considering rate (HMCR) is the
probability of choosing a harmony from HM. Substantial
HMCR value is conducive to local search, while small
HMCR value enriches the diversity of the harmony library.
Te pitch adjusting rate (PAR) is the adjustment rate of the
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Figure 1: Te internal and external interaction units involved in
the VPP.
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selected xbest. A substantial PAR value is helpful to transfer
xbest’ information to the next generation, thus improving the
local search capability performance around xbest, while a
small PAR value can increase the diversity of the HM [24].
Because the local application and global exploration are
always contradictory in the search process, it is not easy to
identify the specifc value of HMCR and PAR.

As the values of HMCR and PAR are not fxed in
SGHSA, the HMCR (PAR) is assumed to follow a normal
distribution. Trough a certain number of iterations, the
appropriate HMCR (PAR) value is found for later iteration
solutions to adapt to specifc problems and stages of the
search, which gives attention to local and global search areas.
Compared with ordinary HS, SGHSA has more advantages
in solving problems due to its dynamic parameter adjust-
ment. SGHSA is an intelligent algorithm with a simple
concept, easy implementation, strong robustness, high ef-
fciency, and fewer requirements [25] and has been widely
applied in various felds, such as construction engineering
[26], materials engineering [27], engineering design opti-
mization [28], route planning [29], and medical feld [30]. In
addition, other algorithms have been proposed to deal with
the bidding problems, and Zhang et al. [31] presented a new
bidding strategy (BS) in which the wind power suppliers act
as the price setters. Te new algorithm, called the evolu-
tionary game method (EGA), is inspired by the hybrid
particle swarm optimization and the improved frefy al-
gorithm (HPSOIFA). Compared with the conventional
methods, the predictor can reduce the uncertainty of wind
generation and BM price.

Regarding the internal energy optimal scheduling
problem of the VPP, it is less engaged in the distribution of
interests of numerous DER operators inside the VPP, and it
is assumed that the VPP or a single operator owns the DERs,
according to the above study materials. As a result, this
research proposes a multi-agent optimum bidding method
in multi-operator VPPs based on SGHSA. To accomplish
optimization, the system uses the MAS control structure of
the multi-operator VPP, sharing the earnings of various
operators through the market mechanism. SGHSA is pro-
posed to enable the DERs to get the optimal bidding function,
which is then submitted to the bidding manager agent to
optimize the owners’ interests. Te bidding manager agent
creates a new internal electricity price based on the bidding
function, which is then passed back to the DERs to enable
them to develop the next round of strategies until the outcome
reaches equilibrium.Te following are the primary innovative
contributions of the suggested technique.

(1) Considering the interest demands of each DER
operator, to increase the excitement of the DER
operators to participate in the VPP, the internal
market trading mechanism is designed to ofer a
framework for handling the interest distribution
among operators and optimum scheduling issues of
the multi-operator VPP.

(2) Aiming at the shortcomings of the traditional har-
mony algorithms, such as slow convergence and low
search accuracy, an improved adaptive global

optimal harmony search algorithm (SGHSA) was
proposed. SGHSA has the ability of dynamic
learning to adapt to specifc problems and stages of
the bidding function search, maximizing the profts
of the bidding agent.

(3) Te proposed bidding strategy can obtain the bid-
ding function through the bidding unit agent. After
the internal price of the VPP is received, the un-
certainty of the renewable energy generation is
considered.

Te remainder of the paper is structured as follows.
Section 2 describes the MAS framework for multi-operator
VPPs. Section 3 suggests the bidding and clearance procedure.
Section 4 describes the fowchart for calculating the optimal
bidding function using SGHSA. Section 5 presents case
studies and analytic results. Section 6 draws the conclusion.

2. The MAS Framework of Multi-Operator VPP

Te multi-operator virtual power plant means that diferent
investment entities own the DERs within the VPP.Te owner
of the VPPs just signs contracts with the DER operators to
allow the DERs to join the centralized dispatching power
generation in the VPP, withoutmastering the technical details
such as the generation cost of the DERs [32]. Wind turbines
(WTs), photovoltaic cells (PV cells), micro-gas turbines
(MTs), demand response (DR), battery storage, electric ve-
hicles (EVs), and other resources are among the renewable
energy sources used by the operators in this paper.

Because of MAS’s intelligence, independence, and co-
ordination, it can transform a global control problem into a
distributed optimization problem of multi-level and mul-
tiple control systems, resulting in overall system economy
and stability. In the last several years, it has been widely used
in the energy management of microgrids and VPP [33],
coordinated control [34], bidding operation [35], and other
aspects. Terefore, based on the MAS structure adopted in
[36], this paper constructs the layered structure virtual
power plant operation architecture, as shown in Figure 2.

Top Layer. VPP dispatching center agent, as the top layer of a
management unit in the VPP, can interact with the main
grid on behalf of the VPP, such as the purchase and sale of
electricity based on the price or contract.

Second Layer. Tis layer contains functional agents such as
the bidding manager agent and operation control agent,
which can manage the lower level of agents and accept the
management of the upper level. Te operation control agent
shares the current operating condition of the VPP with the
bid manager agent and receives scheduling optimization
results of the power generation operation returned by the
bidding manager agent. Te bidding manager agent man-
ages the bidding process in the VPP, obtains the economic
distribution scheme of power generation, shares the scheme
with the operation control agent, and reports the electricity
price received from the bidding to the VPP dispatching
center agent.
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Tird Layer. Tis layer involves the execution agents,
such as the bidding unit agent, which accepts the
management of the second layer agent. Te bidding
agent simulates the economic behavior of the rational
person in economics, takes the maximization of their
interests as the goal, and carries out bidding behavior
under the management of the bidding management
agent. Te bidding unit agent makes bidding decisions
based on local measurement information and com-
munication information with other agents and submits
the bidding strategy to the bidding manager agent.

3. Bidding and Clearing Process of Multi-
Operator VPP

3.1. Optimal Bidding Strategy Model of Agents. If there are k
operators in the VPP, there should be k bidding unit agents.
Under the existing internal power pricing, each bidding unit
agent tries to maximize its interests. In the bidding round n,
the proft function of operator i is represented in the fol-
lowing equation:

maxF
n
i � P

n
× Q

n
i − Ci, (1)

where Fn
i is the operator i’s proft, Pn is the internal power

price at the bidding round n, and Qn
i is the operator i’s

reported electricity output.
As indicated in (2) [37], the cost of electricity generation

assumes a quadratic function. Ci is the converted cost after
taking into account the following components and envi-
ronmental protection measures like clean energy subsidies

and carbon trading, and C1
i and C0

i are convertible cost
coefcients, while Cconst

i is the fxed cost coefcient.

Ci � C
1
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n
i( 

2
+ C

0
i Q

n
i + C

const
i . (2)

Te operators have a variety of DER units, each with a
diferent cost. As a result, the DER cost coefcient must be
translated to obtain the operators’ overall power-generating
cost. Te exact conversion formula may be seen below [11].
In the nth round of bidding, for the operator i,
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, (6)

where cflui is the operator i’s fuctuating cost coefcient, j is
the number of pieces of equipment that operator i owns, and
integers l and k represent the number of PVs and WTs,
respectively. Te convertible cost coefcients of the equip-
ment j are c1i,j and c0i,j. Te electricity output of the device j is
denoted by Qn

i,j; cconsti,j is the equipment j’s fxed cost coef-
fcient; Ei is the sum of all devices that participated in the
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Figure 2: Te internal bidding MAS framework of multi-operator VPP.
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bidding procedure; and δWT and δPV represent the mean
error coefcients of WT and PV power generation forecast,
respectively. In the auction procedure, EWT

i and EPV
i are the

total number of WTs and PVs that participated in the
bidding.Te output of theWT k and the PV l is referred to as
Qn

i,k and Qn
i,l, respectively.

As can be seen in (3) [38], when an operator engages in
the bidding process, the bidding function is communicated
to the bidding manager agent.

y
n
i � a

n
i × Q

n
i + b

n
i , a

n
i , b

n
i > 0. (7)

At the bidding round n, yn
i is the bidding price with the

Qn
i , whereas an

i and bn
i are the bidding function price

coefcients.
Qn

i is essentially the operator’s optimization goal and the
operator’s optimum power production for the electricity
price Pn at the bidding round n. In other words, in bidding
round n+ 1, the optimum bid function should theoretically
pass the point (Qn

i , Pn) and fulfll [39]

Q
n
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P
n
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2C
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i
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P
n
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n+1
i × Q

n
i + b

n+1
i .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

According to (4), the ideal price coefcients an+1
t,i and bn+1

t,i

are distributed in a downward spiral on the coordinate
system. Based on the SGHSA, the bidding unit agent derives
the bid function coefcients an+1

i and reports them to the
bidding manager agent in this paper.

In this process, the generation constraint of the unit
needs to be met. For the adjustable unit, the following
formula can represent the electric energy generated by the
dispatchable unit during the bidding of the n round. pn

i is the
output power of the dispatchable unit during the bidding of
the n round. Δt is the time interval of the bidding round.

Q
n
i �

p
n− 1
i + p

n
i

2
Δt. (9)

Constraints are as follows.

3.1.1. Unit Output Constraints.

uip
min
i ≤p

n
i ≤ uip

max
i , (10)

ui ∈ 0, 1{ }, (11)

where pmax
i represents the upper and lower limits of the

output power of the dispatchable unit and ui is a binary
variable. When ui is 0, the unit is ofine and shut down.
When ui is 1, the unit runs online.

3.1.2. Climbing Rate Constraint.

− R
D
gΔt≤p

n
i − p

n− 1
i ≤R

U
gΔt, (12)

where RD
g and RU

g are the dispatchable unit’s upward and
downward climbing rates, respectively.

3.1.3. Constraints on Unit Start-Up and Shutdown Costs.
Start and stop constraints are not listed here due to space
limitations (refer to [37]).

Due to the substantial uncertainty of the output power of
the random generator set (wind power and photovoltaic),
the output power of the random generator set pn

i does not
exceed the available output power of the random generator
set pq.

0≤p
n
i ≤pq. (13)

3.2. Te Clearing Process of Bidding Manager Agent. Te
bidding manager agent calculates the internal electricity
price based on the supplied information and the load
condition and distributes the power-generating amount to
each bidding unit agent, as illustrated in (9).

P
n+1

� y
n+1
i Q

n+1
i , i � 1, 2, . . . , l,

Dload � 
h

i�1
Q

n+1
i .

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (14)

Suppose M is the smallest possible number of operators
whose combined power generation has not been surpassed.
Each operator’s power production allocation and the in-
ternal energy price of the bidding round n+ 1 may be solved
by the bidding management agent, as shown in the following
equation:

P
n+1

�
D

load
+ i∈NP

n/bn+1
i − i∈M P

n
− C

0
i /2C

1
i  − i∉MQ

n
i 

i∈N1/b
n+1
i

,

(15)

where Dload
t represents the amount of demand that the VPP

needs to meet.
Formula (10) can be simplifed as follows:

P
n+1

� P
n

× 1 −
i∈M1/C

1
i

2B
n+1  +

i∈MC
0
i /C

1
i + 2D

load′

2B
n+1 , (16)

where Bn+1
t � 

N
i�1 1/b

n+1
t,i Dload′

t � Dload
t − i∉MQn

t,iD
load′
t

represents the load left after subtracting the operator’s power
production that exceeds the limit.

Kong et al. [39] found that the bidding function’s pricing
coefcient is distributed on a straight line and not unique;
therefore, the condition can be achieved by adequately
defning the search range of bidding coefcients for all
bidding agents, 0< (i∈M1/c1i )/(2Bn+1)< 1, and (17) depicts
the power price convergence value Pclear:

Pclear �
i∈MC

0
i /C

1
i + 2D

load′

i∈M1/C
1
i

. (17)

Te VPP’s decision-making process is depicted in Fig-
ure 3 by a fowchart. Using the SGHSA algorithm, the
bidding unit agent fnds the optimal bidding function yn

i �

an
i × Qn

i + bn
i and reports it to the bidding management

agent, which contains the optimal bidding function coef-
cient and generation limit value [(an

i , bn
i ), (Qmin, Qmax)]. Te
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bidding manager agent calculates and distributes to all
bidding unit agents the new internal energy price Pn+1 of the
VPP and the power generation distribution scheme Qn+1

based on the bidding function supplied by the bidding unit
agent and the current load demand. Each bidding agent
modifes its bidding strategy based on the updated internal
electricity price Pn+1 and rereports it until price convergence
in the VPP.

Te SGHSA parameter’s adaptive dynamic adjustment
feature may solve the optimal bidding function for diferent
bidding unit agents based on the VPP’s internal electricity
price, the generation cost, and the generation limit of other
operators and maximize the advantages of operators.

4. DER Bidding Process Based on SGHSA

4.1. Defnition of the Problem and Its Parameters. In this
paper, the harmony vector of SGHSA is the optimal bidding
function coefcient (an

i , bn
i ) of the bidding unit agent, and

the evaluation criterion is the revenue function of the
bidding unit agent. Te corresponding relationship between
the variables in this paper and the SGHSA parameters is
shown in Table 1.

Te parameters of SGHSA are shown in Table 2.Te four
main parameters of SGHSA are HMS, HMCR, PAR, and
BW. Te other three parameters are dynamically adjusted
with the iterative search except for HMS, fxed after
initialization.

Consider a normal distribution for the HMCR (PAR)
with mean HMCR.m (here 0.98), PAR.m (here 0.9), and
standard deviation 0.01 (0.05) [39]. Te procedure begins
with an HMCR and PAR value determined in accordance
with the normal distribution. Te HMCR and PAR values
associated with the created harmony are then substituted for
the poorest member of the HM.Ten, a specifed number of
generations, called Learning Period (LP), HMCR.m and
PAR.m, are recomputed by averaging all recorded HMCR
and PAR values.Te HMCR and PAR are recalculated and
utilized in subsequent rounds using the new mean and
existing standard deviation. Consequently, an appropriate
HMCR and PAR value may be gradually learned for each
unique situation by repeating this procedure. BW is adjusted
dynamically with the change of iteration times Gen, as
shown in the following equation:

BW(Gen) �

BWmax −
BWmax − BWmin

Tmax
· 2Gen; Gen<

Tmax

2
,

BWmin; Gen≥
Tmax

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

4.2. Te Procedure of Solving the Coefcient of the Optimal
Bidding Function Based on SGHSA. Te fundamental har-
monic search algorithm is divided into the following steps:

SGHSA fnd the best
bidding function Renew Fi

n
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Dload = ∑ Qi
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n = ai

n × Qi
n + bi

n

(ai
n, bi

n > 0)

Figure 3: Te fowchart of the decision-making process in the VPP.
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(1) defning the problem and the parameter values; (2)
initializing harmony memory (HM); (3) improvisation,
generating a new harmony; (4) updating the harmony
memory bank; and (5) checking whether the algorithm is
terminated.

Te core of the harmony search algorithm using the
adaptive process is to improve HMCR, PAR, and BW and
adjust direction. Major improvements include the
following:

(1) Adaptive Strategy of HMCR. Since the HMCR of the
standard harmony search algorithm is a fxed value,
there is no concern about how to accelerate the
convergence rate of harmony. Terefore, setting the
HMCR to a dynamically changing value is necessary.
At the initial optimization stage, a larger HMCR is
used to fnd the optimal local value quickly. A
smaller HMCR can increase the probability of
random new solutions at the later optimization stage.
Te diversity of harmony efectively prevents falling
into a locally optimal solution.

(2) Adaptive Strategy of PAR. Similarly, the PAR needs
to be dynamically adjusted during the adaptive
process to meet the diference between the early and
late optimization stages. In contrast to HMCR, PARs
need to be changed from small to large. In the early
stage of algorithm optimization, minor PARs can
quickly fnd the optimal local value. In contrast,
larger PARs can increase the probability of being
disturbed in the late stage of optimization and enrich
the diversity of sounds.

(3) Adaptive Strategy of BW. In the standard harmony
search algorithm, the BW of each set of harmony
variables is the same. Te same BW does not ft all
harmonies. For the early and late stages of optimi-
zation, the length of BWneeds to be adjusted to some
extent. To this end, BW has been improved.

Based on the above discussion, the harmony search
algorithm fow is obtained.

Step 1. Get the current electricity price.
Obtain the current VPP internal electricity price Pn and

defne the bidding unit agent i objective function using the
equation provided below.

maxF
n
i � P

n
× Q

n
i − Ci, (19)

where Fn
i is the operator i’s proft in bidding round n, Qn

i is
the electrical output provided by the operator during round
n of the bidding process, and Ci is the converted cost after
accounting for the following elements and environmental
protection measures.

Step 2. Calculate the relationship between the cost and
generation.

Calculate agent i’s maximum and minimum power
generation limitations, and then enter the convertible cost
coefcients C1

i and C0
i , as well as the fxed cost coefcient

Cconst
i . For the DER operator i, determine the cost-to-gen-

erate connection between the two variables.

Step 3. Initialize the HM.
Set the upper and lower bounds LB(an

i ), UB(an
i ), LB(bn

i )

, UB(bn
i ) of the coefcients an

i and bn
i as the initial values for

the HM and compute the objective function’s values. Te
HM has HMS (30 in this paper) vectors:

HMi �

X
1
i

⋮

X
J
i

⋮

X
HMS
i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

a
n1
i b

n1
i F

n1
i a

n1
i , b

n1
i 

⋮ ⋮ ⋮

a
nj
i b

nj
i F

nj
i a

nj
i , b

nj
i 

⋮ ⋮ ⋮

a
n30
i b

n30
i F

n30
i a

n30
i , b

n30
i 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where a
nj
i � LB(an

i ) + rand([0, 1]) × [UB(an
i ) − LB(an

i )]b
nj
i

is in the same way.Te price coefcient range of bidding unit
agent 1 in this paper is an

1 ∈ [1× 10− 3, 2×10− 3], bn
1 ∈ [0.10,

0.35] [11], so the HM1 is as follows:

Table 1: Te corresponding relationship between variables in this paper and SGHSA parameters.

No. SGHSA Music phenomenon Variables in this paper
1 Decision variables Music instruments an

i , bn
i

2 Range of variables Range of notes LB(an
i ), UB(an

i ); LB(bn
i ), UB(bn

i )

3 Solution vector Harmony [an
i , bn

i ]

4 Objective function Standards of aesthetics Fn
i (an

i , bn
i )

5 Iteration Practice Tmax
6 Harmony memory Experience HMi

Table 2: Te SGHSA parameters and their abbreviation.

No. SGHSA parameters Abbreviation
1 Harmony memory size HMS
2 Harmony memory considering the rate HMCR
3 Te mean of HMCR HMCR.m
4 Pitch adjusting rate PAR
5 Te mean of PAR PAR.m
6 Bandwidth BW
7 Te maximum of BW BWmax
8 Te minimum of BW BWmin
9 Maximum iterations Tmax
10 Learning period LP
11 Te change of iteration times Gen
12 Te current VPP internal electricity price Pn

13 Te operator i’s proft in bidding round n Fn
i

14 Te electrical output during bidding round n Qn
i

15 Te converted cost Ci

International Transactions on Electrical Energy Systems 7



HM1 �

1.71 × 10− 3 0.19 53.29

⋮ ⋮ ⋮

1.43 × 10− 3 0.25 55.47

⋮ ⋮ ⋮

1.25 × 10− 3 0.27 52.60

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

Step 4. Modify new pricing coefcients.
Modify new pricing coefcients anew

i and bnewi in the
methods described below. (1) Choose the best coefcients
abest

i andbbesti of the HM. (2) Randomly generated withinthe
value range of the bidding function coefcients an

i andbn
i '

range of values. (3) Fine-tune the coefcients in the frst two
methods.

(i) Produce an HMCR value based on HMCR∼N (0.98,
0.01) and generate a random number r1 between [0,
1]. If r1<HMCR, then take method (1) in step 4 to
get the coefcients anew

i and bnewi ; otherwise, take
method (2) in step 4 to get the coefcients anew

i and
bnewi .

(ii) Produce a PAR value based on PAR∼N (0.9,0.05)
and generate a random number r2 between [0, 1]. If
r2< PAR, then fne-tune the optimal coefcients
abest

i and bbesti in steps 4-(i) with the BW, which is
related to the number of iterations. Otherwise, no
adjustments.

abest
1 and bbest1 in the HM1 are 1.43×10− 3 and 0.25, and

the randomly generated HMCR� 0.96, r1 � 0.67, so anew
1 �

abest
1 and bnew1 � bbest1 because r1<HMCR. Te randomly

generated PRA� 0.75, r2 � 0.87, so we do not do anything to
anew
1 andbnew1 because r2>PAR; then, anew

1 � abest
1 � 1.43 ×

10− 3 and bnew1 � bbest1 � 0.25.
Te pseudo-code of the coefcients anew

i and bnewi is as
follows.

HMCR∼N (0.98, 0.01)
PAR∼N (0.9, 0.05)
BW(Gen) � BWmax

− (BWmax − BWmin/Tmax) ·

2Gen;Gen< (Tmax/2)BWmin;Gen≥ (Tmax/2)

for (j� 1 to 50) do
if (rand[0, 1]<HMCR) then

anew
i � abest

i

bnewi � bbesti

if (rand[0, 1]< PAR) then
anew

i � abest
i ± BW × rand([0, 1])

bnewi � bbesti ± BW × rand([0, 1])

end if
else
anew

i � LB(an
i ) + rand([0, 1]) · [UB(an

i ) − LB(an
i )]

bnewi � LB(bn
i ) + rand([0, 1]) · [UB(bn

i ) − LB(bn
i )]

end if

end for

Step 5. Update the HM.
HMCR and PAR values should be recorded if the newly

created coefcients anew
i and bnewi produce a higher proft

Fn
i (anew

i , bnewi ) than the lowest proft Fn
i (anew

i , bnewi ) in the
existing HM.

Te proft (55.47) corresponded by the newly generated
harmony in step 4 is more than the worst proft(52.6) in the
[Te newly generated harmonyanew

1
− 3bnew1 in Step 4 corre-

sponding proftFn
i (1.43 × 10− 3, 0.25) (55.47) is more than

the worst proft Fn
i (1.25 × 10− 3, 0.27)(52.6) in the] HM1.

Terefore, the worst harmony is substituted with the new
connection (anew

1 , bnew1 ). Furthermore, memorize the HMCR
and PAR values. Te updated HM1 is as follows:

HM1 �

1.71 × 10− 3 0.19 53.29

⋮ ⋮ ⋮

1.43 × 10− 3 0.25 55.47

⋮ ⋮ ⋮

1.43 × 10− 3 0.25 55.47

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

Step 6. Recompute HMCR.m and PAR.m.
Repeat steps 4 and 5. If Gen� LP, recompute HMCR.m

and PAR.m based on memorized values of ones.
When Gen� LP� 50, based on the previously recorded

HMCR (PAR) value, it can be recalculated that
HMCR.m� 0.95, PAR.m� 0.87, so HMCR∼N (0.95,0.01)
and PAR∼N (0.87,0.05) were used for the subsequent iter-
ative search.

Step 7. Determine whether to terminate.
If Gen�Tmax, output the optimal bid function coef-

cients an
i and bn

i .
After the above operation steps, the fnal optimal bidding

function coefcient of agent 1 is obtained: an
1 and bn

1 are
equal to 1.47×10− 3 and 0.24, respectively.

Te fowchart for explaining the optimal bidding based
on SGHSA is shown in Figure 4.

5. Case Studies

Verifying the SGHSA algorithm’s efcacy in bidding
function search is based on the creation of the VPP system
in [11]. As indicated in Table 3, the following are the
DER’s costs and power limitations. Tere are three DER
operators in the VPP. Each of the three operators has one
or more of the following components: WT1, PV1, MT1,
WT2, MT2, PV2, and MT3. Set the value of δWT to 0.2. Set
the value of δPV to 0.1, with a price convergence precision
of 0.01. Table 4 lists the SGHSA and HS parameters used in
this study.

To test the efectiveness of SGHSA, this case uses three
classical test functions as the benchmark functions. It makes
a comparative analysis of the optimization results of SGHSA
and HS algorithms under the condition that the

8 International Transactions on Electrical Energy Systems



optimization operations of the three test functions are run
separately 50 times. Te concerned indexes are the objective
function value of iteration completion, the average function
value, and the standard deviation of the function value of the
results of 50 runs. F1–F3 were compared after 5000 iterations
in 10 and 30 dimensions, respectively (Table5).

To better understand the test results, Table 6 records the
test comparison results 50 times from a numerical per-
spective, where Dim represents the dimension, and MEAN
represents the average value of the optimal harmony
function, which is used to refect the convergence accuracy
of the algorithm. STDV represents the standard deviation of
the optimal harmony function value, which is used to re-
member the algorithm’s stability.

It can be seen from the table that SGHSA has good global
optimization and adaptive ability in most cases. For ex-
ample, for functions F1 and F2, MEAN and STDV are
smaller than the HS algorithm when the dimension is 10 and
30.

To assess the efcacy and rationale of SGHSA, SGHSA
was compared with HS.Te number of previous iterations in
SGHSA is the dynamic learning process of parameters
HMCR and PAR. For the convenience of comparison with
HS, the active learning process is not presented in the fgure,
and only the simulation process after the completion of
dynamic learning is captured. When the internal electricity
price issued by the bidding unit agent is 0.49￥, the dynamic
simulation process of the quotation coefcient of operator 1
is shown in Figures 5 and 6. Te operator’s optimal price
coefcient converges rapidly in the 25th iteration based on

Set the SGHSA parameters: Tmax,
HMS, LP, HMCR.m, PAR.m,

BWmax, BWmin

Update the HM and memorize
the HMCR and PAR values

Gen=LP?

Recalculated HMCR.m and PAR.m
based on memorized values

Update the HM
Gen=Gen+1

Initialize the HM
Set Gen=1

Final solution
(ai

n, bi
n)

Gen≤LP? yes

yes

yes

Improvise a new harmony: ai
new,bi

new

according to HMCR(Gen),
PAR(Gen),BW(Gen),ai

best and bi
best
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new,bi

new

according to HMCR(Gen),
PAR(Gen),BW(Gen),ai

best and bi
best

Fi
n(ai

new, bi
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Fi
n(ai
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Fi
n(ai
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T
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...
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nj(ai
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nj)
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nHMS,ai
nHMS)

...
...

HMi = =

Figure 4: Te fowchart for explaining the optimal bidding function based on SGHSA.

Table 3: Costs of factories and power constraints of the DERs
(Table 3 is reproduced from [10]).

No. DG
Cost coefcient/

￥C1Q2 + C0Q + Cconst Qmin
(kW)

Qmax
(kW)

C1 C0 Cconst

Operator
1

WT1 0 0.02 0 0 200
PV1 0 − 0.01 0 0 150
MT1 3.33×10− 3 0.050 5 5 180

Operator
2

WT2 0 0.02 0 0 200
MT2 3.33×10− 3 0.050 10 10 120

Operator
3

PV2 0 0.01 0 0 240
MT3 1.67×10− 3 0.067 60 60 180

Table 4: Te parameters of SGHSA and HS.

No.
HS SGHSA

Parameter Value Parameter Value
1 HMS 30 HMS 30
2 HMCR 0.85 HMCR.m 0.98
3 PAR 0.8 PAR.m 0.9
4 BWmax 0.9 BWmax 0.9
5 BWmin 0.4 BWmin 0.4
6 Tmax 100 Tmax 100
7 — — LP 50

International Transactions on Electrical Energy Systems 9



SGHSA, while based on the HS they converge in the 30th
iteration.

Figure 7 provides the VPP internal price convergence
process. Te internal electricity price converges rapidly to
￥0.424 at the 14th iteration, between the main grid pur-
chase and sale price (￥0.37 and ￥0.66). Te bidding and
trading system can boost the revenue of operators and the

motivation of the VPPs to engage in peak adjustment of the
main grid. Meanwhile, the load users in the VPP can reduce
the power consumption cost. For the main grid, the ad-
vantages of the VPP can be fully utilized to relieve the power
supply pressure of the power grid.

Quadratic programming based on the equilibrium
method (QPEM) [40, 41] is used to allocate the power
generation of the operator and then compared with the
method proposed in this paper. When using the QPEM
method, Te VPP dispatching center conducts electricity
settlement with the operator based on the power purchase
price of the enormous power grid. It sells electricity to users
based on the power sale price of the power grid. Table 7
displays the distribution, proft, and internal electricity price
for each operator based on SGHSA, HS, and QPEM,
respectively

After the bidding strategy is adopted to distribute op-
erators’ power generation, each operator’s power generation
proft is higher than that of QPEM, mainly because the
electricity generation obtained by operators through the
method proposed in this section is higher than the QPEM.
Te internal electricity price of VPP is greater than or equal
to the electricity purchase price of the grid in each period.
Since the QPEM method sells electricity to users according
to the electricity selling price of the grid, the proposed
method sells electricity according to the internal cost of VPP,
which is less than or equal to the electricity selling price of
the grid in each period. Hence, the electricity price of the
users calculated by the proposed method is lower than that
of the QPEM.

Virtual power plant bidding functions are directly
infuenced by load users who do not engage in the bidding
process because of a restricted number of DER operators.
With an optimum bidding function based on the SGHSA,
the bidding unit agent may increase operator proft while
also maximizing their interests.

Figure 8 shows operator 1’s whole-day power generation
and DER scheduling results. It can be seen from the fgure

Table 5: Te expressions and characteristics of 3 classical test functions.

No. Te function
name Functional expression Te search

space
Minimum

function value
F1 Sphere f(x) � 

n
i�1 x2

i [− 5.12, 5.12] 0
F2 Rosenbrock f(x) � 

n− 1
i�1 [100(xi+1 − x2

i ) + (xi − 1)2] [− 30, 30] 0
F3 Ackley f(x) � − 20 exp(− 0.2

�����������
(1/n) 

n
i�1 x2

i


) − exp((1/n) 

n
i�1 cos(2πxi) + 20 + exp(1) [− 32, 32] 0

Table 6: Comparison of the experimental results.

No. Dim
HS SGHSA

MEAN STDV MEAN STDV

F1
10 4.00×10− 100 1.70×10− 101 0 0
30 2.55×10− 34 2.49×10− 35 4.80×10− 146 1.78×10− 146

F2
10 8.14×100 5.25×10− 2 1.44×10− 4 6.79×10− 6

30 2.82×101 7.26×10− 5 7.19×10− 6 1.79×10− 7

F3
10 2.36×10− 1 8.32×10− 17 2.36×10− 1 8.32×10− 17

30 8.62×10− 2 0 8.62×10− 2 0
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Figure 5: Dynamic simulation process of optimal price coefcient
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1 of operator 1.
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Figure 6: Dynamic simulation process of optimal price coefcient
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1 of operator 1 (Figures 5 and 6 are reproduced from [10]).
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that the operator’s DER does not generate power based on
the bid-winning power, which may take demand response
and charge and discharge of energy storage into consider-
ation, and the VPP makes secondary adjustments to its plan.
In addition, when the power load is low, the wind aban-
doning phenomenon will occur in the power system with
new energy access. Due to the limitation of the power
transmission and the node voltage, it is impossible to absorb
all the new energy during the peak load, and hence, diferent
degrees of abandonment exist. Tis scheduling mode fully
respects the autonomy of each operator, efectively alleviates
the phenomenon of abandoning wind and light, and im-
proves the energy utilization rate while increasing the op-
erator’s income.

Figure 9 shows the power generation of operator 1 based
on SGHSA and HS, and the bid-winning electric quantity
based on SGHSA is higher than HS in more than two-thirds
of a day. Generally, the operator’s bid-winning power based
on SGHSA is higher than that of HS. Te parameter ad-
aptation of SGHSA can gradually learn the appropriate
HMCR (PAR) to adapt to specifc problems and stages of the
search and maximize the operator’s proft, proving the
superiority of SGHSA in the bidding strategy search for the
virtual power plant.

Figure 10 shows the relationship between the VPP’s
internal electricity price, total power generation, and load.
As can be seen from the overall trend in the fgure, when the
load and the VPP’s power generation are large, the internal
electricity price of the VPP is relatively high. When the load
and the VPP’s power generation are small, the internal
electricity price of the VPP is low. Tis indicates that the
internal price of the VPP conforms to the economic law that
increases with demand and cost and can be seen as a re-
fection of the connection between supply and demand.

6. Conclusion

Tis paper proposes an optimal bidding method for multi-
operator VPP based on SGHSA. Aiming at the inherent
shortcomings of the traditional harmony algorithms, such as
slow convergence speed and low search accuracy, a new
adaptive global optimal harmony search algorithm is pro-
posed by improving the improvisation stage of the HS al-
gorithm. Te simulation results show that the proposed
SGHSA has good global optimization and adaptive ability,
and the algorithm has good robustness. Using this algorithm
in the VPP bidding and trading can improve the operators’
bidding ability, provide a friendly interaction mode between
the VPP and the main power grid through price

Table 7: Comparison of the efects of SGHSA and HS.

No.
Power generation (kWh)/proft (￥)

Internal electricity price (￥)
Operator 1 Operator 2 Operator 3

SGHSA 138.15/56.53 140.56/54.29 189.75/74.28 0.424
HS 144.39/53.21 115.20/43.04 112.84/41.05 0.417
QPEM 139.42/54.22 120.20/49.82 133.62/60.05 0.419
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Figure 8: Te power generation of operator 1 and its DER dis-
patching results.
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Figure 9:Te power generation of operator 1 based on SGHSA and
HS, respectively.
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information, and optimize the allocation of energy re-
sources. At the same time, it can represent the supply and
demand connections within the virtual power plant, in-
creasing the profts generated by the generator for the op-
erator. In conclusion, this method can efectively make the
operation of the VPP more economical and fexible and can
improve the enthusiasm of the DER operators to participate
in the VPP.

To obtain the results that are applicable for the long
term, it is insufcient to analyze the load data of a specifc
day. Te scheduling problem of the operator’s internal
DER after the bidding is not discussed in this paper. For
future work, considering the uncertainty of the DER
output, we will further study how the operators conduct
the DER scheduling to reduce the loss caused by bidding
deviation.
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