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,is article investigates an annular directed distributed double optimal algorithm to manage many we-energy frameworks in
energy management of energy Internet (EI). ,e we-energy (WE) is an integrated energy hub containing varied energy devices of
different functions including multi-energy production, consumption, and conversion. On this basis, all WE models cooperate to
search for a minimum value of an objective function. Energy management in EI has two main goals. On the one hand, it needs to
attain the optimality of economy with influence about the fluctuation of distributed renewable energy and randomness of terminal
users. On the other hand, the EI should protect the privacy of terminal users well. Besides, discovering optimality value in the
oscillation near convergence point, EI also needs a decrease in communication frequency and refraining of Zeno behavior. Zeno
behavior means some operation is triggered infinite times in finite times of iteration. For realizing these proposes, this literature
establishes an EI system that transfers cyber information in an annular directed path. ,e algorithm in this EI system adopts a
novel annular distributed double-control price guiding strategy. In addition, this algorithm employs other two methods including
the alternating direction method of multipliers method and the Newton-downhill method to optimize economy and reach
convergence, respectively. Meanwhile, that algorithm adopts a small positive constant w to avoid Zeno behavior.,e performance
of that algorithm is demonstrated through simulation results. Moreover, the optimality, convergence analysis, and avoiding Zeno
behaviors are strictly proved by convex optimization and the monotone-bounded convergence theorem.

1. Introduction

Due to increasing concern about cosmopolitan environ-
mental problems, the strategy of carbon emission reduction,
and the utilization of environmentally friendly energy re-
sources, the concept of energy internet (EI) [1] is developing
at a marvelous speed in recent years. EI is a multi-energy
system with a large number of advanced technology con-
taining the theory of multiagent systems; the cyber com-
munication and the physical energy transmission method
[2]; the intelligent strategy of energy management; game and
synergy theory about the multi-energy resource in a certain
region; demand response between every energy units; op-
timal operation with various energy devices with different
functions, among others. EI, a new pattern of energy system,
devotes itself to satisfying terminal users’ various kinds of
energy demand and enhancing the renewable energy’s

utilization efficiency [3]. However, due to the fluctuation of
renewable energy resources [4–6], the randomness of ter-
minal users, and complex but strong coupling in various of
energy, the optimal dispatch in EI is exceedingly difficult and
the method about that is exceedingly unadvanced for
complex multi-energy distributed systems and eagerly
needed to be reinforced nowadays.

We can divide the recent research concerning optimal
dispatch of EI into two categories approximately: one is the
traditionally centralized optimal strategy, and the other is
the newly developing distributed optimal strategy. ,ere are
several documents about the centralized optimal strategy.
,e work in [7] solved the energy management with a non-
convex object, and [8] introduced a two-stage multi-ob-
jective optimal scheduling in EI. ,e centralized optimal
strategy has high quality in many fields including optimal
performance, speed of convergence, and conquering
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disturbance caused by energy generators and terminal users.
So traditional single energy systems including traditional
power systems generated by terminal users always adopt the
centralized optimal strategy. However, the centralized op-
timal strategy needs a large-scale energy generator that
naturally disperses renewable energy resources that could
not build. Centralized EI also brings too much compute and
control pressure to its central processing unit. What’s more,
the communication frequency in centralized EI is too high,
and local malfunctions in the centralized optimal strategy
influence global systems strikingly. Besides, it is impossible
for the centralized optimal strategy to protect users’ privacy
because of its concentrated physical framework. ,erefore,
the centralized optimal strategy will be replaced by the
distributed optimal strategy sooner or later [9]. ,e litera-
ture [10, 11] proposed non-iterative algorithms for the
distributed solution of multiagent optimal dispatch prob-
lems. ,e distributed optimal strategy can greatly decrease
the frequency of communication and reduce the impact of
local malfunction on global systems.,e distributed optimal
strategy is plug and play, so that it is very easy for distributed
EI to expand its scale. And the distributed optimal strategy
can protect users’ privacy to a certain extent in the present
researches. Most important of all, it is impossible for natural
disperse renewable energy resources to build large-scale
centralized energy generators, so the only way to utilize
renewable energy is the distributed optimal strategy. All
advantages above are greatly significant to EI and can only be
satisfied by the distributed optimal strategy and not by the
centralized optimal strategy. For the foregoing reasons, it is
no wonder that concern in the study of EI transfers from the
centralized optimal strategy to the distributed optimal
strategy in recent years.

However, the difficulty of energy management in the
distributed optimal strategy is much higher than that in the
centralized optimal strategy on account of renewable energy
resources’ fluctuation and terminal users’ randomness. Due
to the long distance between energy producers and terminal
users in the centralized optimal strategy, although it will
strongly increase the cost of energy transmission, the fluc-
tuation of renewable energy resources and the randomness
of terminal users scarcely affect the EI system. But in the
distributed optimal strategy, the distance between genera-
tors and terminal users may be very short, so if the fluc-
tuation of renewable energy resources and the randomness
of terminal users couple together, it will impact the stability
of EI strongly. For solving the problem, various literatures
use various strategies. ,e literature [6] revealed the dis-
turbance caused by renewable energy resources’ fluctuation
in power systems. ,e literature [12] presented an unsu-
pervised algorithm to extract the EV charging loads non-
intrusively from the smart meter data. ,e literature [13]
optimized power trading by Stackelberg game. But methods
below aimed at power systems, and the type of energy was
only power. ,ese methods cannot solve energy manage-
ment of EI with strong coupling between different types of
energy.

Generally, we resolve a big complex system to some
small and single systems and study small systems

respectively to study the big system which is hard to study
directly. So, we used agents to study multiagents [12], and
we used microgrids to study power systems [14]. But what
can we use to study EI? Different people had different ideas.
Swiss scholars proposed the energy hub [15], which resolves
EI into some small unit for the first time, and interpreted
that energy can transform into another kind of energy in EI
firstly. Subsequently, Li.L proposed prosumer in [16] to
move forward a new step about establishing a small unit,
which explained basic energy unit in EI is not only an
energy producer and an energy consumer. ,e prosumer
makes much progress not only in coupling between gen-
erators and terminal users but also in cooperating among
different energies [17]. Sun et al. summed up all models
above and referenced the theory of multiagents [18] and
proposed we-energy (WE) [19]. We-energy is a full-duplex,
hole distributed without a center, intelligent and peer-to-
peer energy unit in EI. Compared with other models, WE is
most suitable for the current EI for the several reasons
below. Firstly, the WE is a full-duplex model, while other
models including energy hubs are half-duplex models.
Secondly, the WE is equal to the hole network. In other
words, the WE is completely a selfish and rational model.
So, the decision of the WE is very hard to be influenced by
other we-energies, which is very suitable for the distributed
algorithms. ,irdly, the WE is a point-to-point model, but
other models are point-to-plane models. ,e WE com-
municates to other Wes, while others communicate to the
hole network. So, the WE is more suitable for the algorithm
in this article. Because of these reasons, this study adopts
the WE as a basic energy unit.

Since the distributed framework and the large-scale
system of EI, the suitable method of energy management
between WE is the distributed algorithm realized by mul-
tiagent. ,e literature [20] used the distributed algorithm to
optimize residential WE and designed an operation method
that maps the infeasible solutions into the feasible region.
,e literature [21] mixed the alternating direction method of
multipliers into the distributed algorithm for the first time.
,e literature [22] converted synchronous communication
into out of synchronous communication by event-triggered
in the distributed algorithm. But the distributed algorithm in
[21, 23] considered energy conversions as must-run energy
load and flexible energy load, whichmade energy conversion
could only supply all load in one type of energy demand. For
terminal users, the energy that the producer generated and
conversion devices transformedmade no difference, so EI by
no means differentiated load into must-run load and flexible
load. In addition, the literature [21, 23] ignored Zeno be-
havior in the algorithm, which could increase iteration times
closed to infinity value under some initial values.

Although the distributed optimal strategy and the dis-
tributed algorithm reduce communication frequency and
protect users’ privacy in EI to a certain degree, the com-
munication frequency’s reduction and privacy’s protection
still need to be reinforced. Nowadays, the energy that ter-
minal users need, generators produce, and energy trans-
formers convert is becoming more and more random,
varied, and unstable. Furthermore, time delay [22],
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controllability deficiency [24], and Zeno behavior that al-
ways consists in the Newton–Raphson algorithm [23] do
serious harm to EI. What is most terrible is Zeno behavior,
because it will increase times of iteration to a large value,
even to ameasureless value.Moreover, traditional researches
about privacy protecting only protected privacy from
unneighborly agents, but they did nothing about neighbor
agents [25–27]. ,at method had disadvantages. On the one
hand, network sparse caused by only-neighbor communi-
cation destroyed the controllability of EI due to the theory in
[24]. On the other hand, some users were not willing to trust
their neighbor agents. To solve these problems, this literature
based on the alternating direction method of multipliers in
EI [28], Newton–Raphson algorithm [23], and auction-
based algorithm [29] proposes an annular directed dis-
tributed algorithm, which leads WEs to communicate in an
annular route. Compared with traditional distributed op-
timization methods, the annular directed distributed algo-
rithm can not only observably reduce communicating
intensity but also protect all users’ data that cannot be ac-
quired by other agents including neighbor agents. However,
in conventional distributed optimization methods, some
ratios, power output, or estimated prices have to be shared
among neighbored agents so they cannot protect all data. In
addition, this study establishes a small number to avoid Zeno
behaviors about Newton-downhill factors which traditional
researches do not consider. ,e contributions of this study
are summarized as follows:

(1) Reinforce the protection of users’ privacy. In the
annular directed distributed algorithm, devices’ data
can only be extracted by themselves. By the annular
directed distributed algorithm, all we-energies only
transfer a power-heat-gas energy flow to another we-
energy. Besides, all devices inside the we-energy only
transfer that power-heat-gas flow, too. ,e energy
flow is the summation of previous energy manu-
facture, energy conversion, and encryption factors.
Firstly, each energy device does not know where the
energy flow begins (the start place is randomness and
that of each time of iteration is different), so the
energy device does not know the operating condition
of each device. Secondly, the privacy of the started
device is protected by encryption factors. When the
energy flow starts, it will add several values to each
type of energy. With this method, the second device
cannot know the operating condition of the first
device. However, traditional research cannot protect
several types of data among neighbor agents [25–27].
In traditional researches, some ratios, power output,
or estimated prices have to be shared among
neighbored agents so they cannot protect all data.

(2) Reduce the intensity of communication and change
the information in communication from last time
data to updated data. Firstly, the communication in
the annular directed distributed algorithm is single-
directed communicating and the communication in
traditional researches [27] is non-directed. ,e non-
directed communication means the EI needs to

communicate in both ways. So, the intensity of
single-directed communication is half of the non-
directed communication. Secondly, communication
in traditional research is one-to-many communi-
cation, while the communication in this article is
one-to-one communication. ,ere are several con-
tributions to one-to-one communication. Firstly, the
encryption of energy flow described hereinbefore
needs that. Secondly, the data one-to-many com-
munication transfers are the data in last time all
above, but the data one-to-one communication
transfers are the data that have already been updated
by the new energy price in this time of iteration, so
the information in one-to-one communication is
newer than that in one-to-many communication.

(3) Avoid abnormal energy conversion successfully. It is
worth noting that the price guiding the alternating
direction method of multipliers is unsuitable for the
energy conversion because the price guiding always
leads to the overshoot in energy conversion. Firstly,
the cost functions of energy conversion devices are
always linear but the cost functions of energy man-
ufacture devices are always convex so too much en-
ergy will increase the energy-producing price but will
not change the energy conversion price. Secondly,
because the energy sold price need to be changed in
the control center of the hole EI, a distributed we-
energy cannot change the energy price even though
too much energy changes to another type of energy.
For the reasons, above one type of cheap energy will
change all of themselves to another expensive energy
even though the energy conversion may consume all
this type of energy and produce too many other
energies. For avoiding that, this study enlightened by
the idea of mistest in reinforcement learning. ,e
literature [30] proposed a mistesting method to solve
the problem of energy conversion and use downhill
factors to ensure the astringency of the algorithm.

(4) Avoid Zeno behavior in the Newton-downhill
method successfully. Zeno behavior means some
operation is triggered infinite times in finite times of
iteration. In this literature, Zero behavior means
Newton-downhill factors are adjusted too many
times in one time of iteration.,eoretically speaking,
the Newton-downhill method will go converge
sooner or later, so the Zeno behavior will never
appear. However, in the realistic project, if the
downhill factor changes too many times in one time
of iteration, we will regard it as Zeno behavior. ,is
article solved that issue.

(5) Prove that the annular directed distributed algorithm
holds asymptotic convergence when the Zeno co-
efficient reaches maximum value by the monotone-
bounded convergence theorem. Meanwhile, optimal
performance of the equilibrium point is certified by
difference theorem and convex optimization. And by
the theory of finite and infinite, avoiding Zeno be-
havior in certain accuracy is proved, too.
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,e rest of this study is organized as follows: Section 2
presents theWEmodel, energy device models, constraints of
main features, and requirements about energy devices.
Section 3 introduces some basic knowledge about graph
theory; presents the annular directed distributed algorithm
for the first time; and proves astringency, optimality, and
avoiding Zeno behaviors of it. In Section 4, several simu-
lation results are presented to prove the effectiveness of that.
Section 5 concludes the study.

2. The We and Device Models in EI

2.1. System Modeling and Test Systems. ,e distributed en-
ergy producer includes distributed renewable generators,
distributed renewable heat devices, distributed coal or oil
combined heat and power devices, and equivalent distributed
gas producers. ,ere are two things worth noting: one is that
there are no distributed fuel generators and distributed fuel
heat devices because they are both more inefficiently than
distributed combined heat and power devices. ,e other is
that there are two kinds of combined heat and power devices
in EI: one is the distributed coal or oil combined heat and
power devices belonging to the distributed energy producer,
which produces power and heat by coal or oil, and the other is
the distributed gas combined heat and power devices be-
longing to the distributed energy conversion devices, which
produces power and heat by gas. ,e distributed energy
conversion devices include distributed power to gas devices,
distributed electric boilers, and distributed gas combined heat
and power devices. ,e distributed energy storage devices
include distributed power storage devices, distributed heat
storage devices, and distributed gas storage devices. ,e
distributed terminal users and the distributed energy trans-
form devices cannot be divided into smaller devices.

,e distributed energy producer satisfies the constraints
below:

P
DP
i � P

DRG
i + P

DCOC
i ,

H
DP
i � H

DRHD
i + H

DCOC
i ,

G
DP
i � G

DGP
i ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where i is the serial number ofWE. If there are nWEs in EI, i
belongs to 1 to n. PDP

i ,HDP
i , andGDP

i are the total power, heat
rate, and gas rate produced by the distributed energy pro-
ducer devices in ith WE, respectively. PDRG

i and PDCOC
i are

the power rate of the distributed renewable generators and
the distributed coal or oil combined heat and power devices
in ith WE, respectively. HDRHD

i andHDCOC
i are the heat rate

of DRHD and the distributed coal or oil combined heat and
power devices in ith WE. GDGP

i is the gas rate of the dis-
tributed gas producers in ith WE.

,e distributed energy conversion devices satisfy the
constraints below:

P
DCD
i � P

DCD
i − P

DP2G
i − P

DEB
i ,

H
DCD
i � H

DEB
i + H

DGC
i ,

G
DCD
i � G

DP2G
i − G

DGC
i ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where PDCD
i , HDCD

i , and GDCD
i are the total power, heat rate,

and gas rate exchanged by the distributed energy conversion
devices in ith WE, respectively—plus or minus of them
represents the output or input. PDGC

i , PDP2G
i , andPDEB

i are the
exchanging power rate in the distributed gas combined heat
and power devices, the distributed power to gas devices, and
the distributed electric boiler in ith WE, respectively. HDEB

i

and HDGC
i are the exchanging heat rate in the distributed

electric boiler and the distributed gas combined heat and
power devices in i WE, respectively. GDCD

i , GDP2G
i , and GDGC

i

are the exchanging gas rate in the distributed energy con-
version devices, the distributed power to gas devices, and the
distributed gas combined heat and power devices in ith WE,
respectively.

2.2. WE Model. WE is a basic energy unit that can have
devices all above. ,e model of WE in power-gas-heat EI is
as follows:

Pi

Hi

Gi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

λi,P,P λi,P,H λi,P,G

λi,H,P λi,H,H λi,H,G

λi,G,P λi,G,H λi,G,G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pi
′

Hi
′

Gi
′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where P, H, andG are power, heat, and gas, respectively.
Vector Pi Hi Gi􏼂 􏼃

T and Pi
′ Hi
′ Gi
′􏼂 􏼃

T are energy flow in
terminal side and network side—plus or minus and an
absolute value of the element in vector represent the di-
rection and rate of energy flow, respectively. Besides, the
following constraints are limited to micro-power-system in
WE:

Pi
′ � P

DP
i + P

DTD
i ,

Pi − Pi
′ � P

DSD
i ,

⎧⎨

⎩ (4)

where PDTD
i is the power flow between ith WE and oth-

ers—plus or minus and the absolute value of it are the di-
rection and rate of power flow, respectively. ,e following
constraints in micro-heat-system and micro-gas-system in
WE are similar to constraints above. All P are changed into
H or G correspondingly. Matrix λ represents energy flow’s
proportion of allocation and efficiency of energy conversion.
How to design matrix λ? Different research has different
points of view in it. Ref. [8] models matrix λ as the dot
product of Hadamard matrices and efficiency matrices. But
Ref. [8] prohibits circumflex in WE. ,e circumflex is
harmful to smart grid, but may not be harmful to the dis-
tributed energy conversion devices in EI because the dis-
tributed energy conversion devices could never shorten out.
Although circumflex will waste certain energy due to loss in
energy conversion, because of a lot of start-stop constraints
and ramping rate limits in the distributed energy conversion
devices, circumflex is needed in energymanagement. So, this
study models matrix λ as follows:

λ � K × A + K′ × A′, (5)

where A′ and A are Hadamard matrices. An element in A is
1 or 0 represent that there is or is not corresponding energy
flowing from network side to terminal side. Oppositely, that
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in A′ is 1 or 0 represents that there is or is not corresponding
energy flowing from terminal side to network side. Elements
in K and K′ are corresponding energy flow’s proportion of
allocation and efficiency of corresponding energy conver-
sion. For example, if an element in K is κa,b,

κa,b � va,bηa,b. (6)

,ere will be va,b proportion of energy a from network
side converting into energy b in terminal side, and con-
version efficiency is ηa,b. So, κa,b is a positive number smaller
than 1. Oppositely, if an element in K′ is κa,b

′,

κa,b
′ �

1
va,b
′ηa,b
′
. (7)

,ere will be va,b
′ proportion of energy a from terminal

side converting into energy b in network side, and con-
version efficiency is ηa,b

′ . So, κa,b
′ is a number larger than 1. It

is worth nothing that, if va,b
′ equals to zero, κa,b

′ will be
meaningless. On this occasion, we stipulate va,b

′ ηa,b
′ as a small

positive number ζ in order to run the distributed algorithm.
Constraints in A′ ensure that ζ could not influence precision
of results. So, in power-gas-heat EI, the WE matrix is as
follows:

P

H

G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

A′ ∘

1

v
′SST
PP η′SSTPP

1

v
′DEB
PH η′DEBPH

1

v
′DP2G
PG η′DP2GPG

1
ξ

1
1
ξ

1

v
′DGC
GP η′DGCGP

1

v
′DGC
GH η′DGCGH

1

v
′EWC
GG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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+

A ∘

v
SST
PP ηSSTPP 0 v

DGC
GP ηDGCGP

v
DEB
PH ηDEBPH 1 v

DGC
GH ηDGCGH

v
DP2G
PG ηDP 2G

PG 0 v
EWC
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P′

H′

G′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(8)

where SST is a solid-state transformer and EWC is corre-
sponding energy without conversion. Energy flow in the
network side satisfies the constraints below:

􏽘

n

i�1
Pi
′ � 0, 􏽘

n

i�1
Hi
′ � 0, 􏽘

n

i�1
Gi
′ � 0,

⎧⎨

⎩ (9)

where n is the total of WEs.

2.3. ,e Distributed Energy Producer Device Models and Cost
Functions

2.3.1. ,e Distributed Renewable Generators and the Dis-
tributed Renewable Heat Device Models. ,e distributed
renewable generators include wind-driven generators and
solar-driven generators. But DRHD only includes solar-

driven heat devices. Wind and solar are free, and the op-
erating cost of taking the advantage of renewable energy
resources is such little that it can be ignored. Models and cost
functions of the distributed renewable generators and
DRHD are as follows:

P
DRG
i,t � P

wind
i,t + P

solar
i,t ,

H
DRHD
i,t � H

solar
i,t ,

C
DRG
i,t � 0,

C
DRHD
i,t � 0,

(10)

where wind and solar are kinds of renewable energy re-
sources. C is the operating cost function of corresponding
device. t is hours from 0 to24. P and H are the rate of power
and heat. It is worth noting that energy management in this
study is hourly dispatch, so all-time in this study is in hour
units.

Constraints of the distributed renewable generators and
DRHD are as below:

P
wind−min
i ≤P

wind
i,t ≤P

wind−max
i ,

P
solar−min
i ≤P

solar
i,t ≤P

solar−max
i ,

H
solar−min
i ≤H

solar
i,t ≤H

solar−max
i ,

(11)

where min and max are corresponding minimum rate and
corresponding maximum rate of corresponding energy in
corresponding WE.

2.3.2. ,e Distributed Coal or Oil Combined Heat and Power
Device Models. ,e distributed coal or oil combined heat
and power devices adopt coal fuel to produce power and
heat. Models and cost functions of the distributed renewable
generators and DRHD are as follows:

P
DCOC
i,t � ηDCOCi F

DCOC
i,t

1
φDCOC

i,t + 1
,

H
DCOC
i,t � ηDCOCi F

DCOC
i,t

φDCOC
i,t

φDCOC
i,t + 1

,

(12)

where PDCOC
i,t and HDCOC

i,t are power and heat rate of the
distributed coal or oil combined heat and power devices
generating, respectively, and FDCOC

i,t is the thermal rate of
coal the distributed coal or oil combined heat and power
devices consuming. ηDCOCi is the energy conversion of the
distributed coal or oil combined heat and power devices.
φDCOC

i,t is the ratio of heat and power. It is worth noting that,
coal does not belong to power-heat-gas network of EI. So,
energy management cannot influence coal’s price and the
production of coal. People cannot produce coal or oil, after
all.

φDCOC
i,t �

Prh
Prp

, (13)
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where Prh and Prp are the price of heat and power obviously.
,e operating cost function of the distributed coal or oil
combined heat and power devices is

C
DCOC
i,t � a

DCOC
i P

DCOC2
i + b

DCOC
i P

DCOC
i + αDCOCi H

DCOC2
i

+ βDCOCi H
DCOC
i + c

DCOC
i P

DCOC
i H

DCOC
i + χDCOCi ,

(14)

where aDCOC
i bDCOCi αDCOCi , βDCOCi , cDCOCi , and χDCOCi are

constants, and aDCOC
i αDCOCi , and χDCOCi are positive con-

stants. ,e distributed coal or oil combined heat and power
devices satisfy the constraints below:

− P
DCOC−ramp
i ≤P

DCOC
i,t − P

DCOC
i,t−1 ≤P

DCOC−ramp
i ,

d
DCOC
i P

DCOC
i,t + e

DCOC
i H

DCOC
i,t + f

DCOC
i ≥ 0,

d
DCOC
i P

DCOC
i,t + e

DCOC
i H

DCOC
i,t ≤g

DCOC
i ,

h
DCOC
i ≤φDCOC

i,t ≤ j
DCOC
i ,

(15)

where P
DCOC−ramp
i is the power ramping constrain of the

distributed coal or oil combined heat and power devices.
dDCOC

i , eDCOCi , fDCOC
i , gDCOC

i , hDCOC
i , and jDCOCi are

constants.

2.3.3. ,e Distributed Gas Producer Models. ,e operating
cost function of the distributed gas producers is

C
DGP
i,t � a

DGP
i,t G

DGP2
i,t + b

DGP
i,t G

DGP
i,t + c

DGP
i,t , (16)

where bDGPi,t , and cDGPi,t are constants and aDGP
i,t is a positive

constant.G represents the rate of gas. ,e limit of the dis-
tributed gas producers is

0≤G
DGP−min
i,t ≤G

DGP
i,t ≤G

DGP−max
i,t , (17)

where GDGP−min
i,t and GDGP−max

i,t are lower and higher limits of
the distributed gas producers, respectively.

2.4. ,e Distributed Energy Conversion Device Models and
Cost Functions

2.4.1. ,e Distributed Power to Gas Devices and the Dis-
tributed Electric Boiler Models. ,e models and cost func-
tions of the distributed power to gas devices are as follows:

G
DP2G
i,t � ηDP2Gi,t P

DP2G
i,t ,

C
DP2G
i,t � θDP2Gi,t P

DP2G
i,t ,

(18)

where ηDP2Gi,t is the energy conversion efficiency of the
distributed power to gas devices. θDP2Gi,t is a positive constant.
,e limit of the distributed power to gas devices is

P
DP2G−min
i,t ≤P

DP2G
i,t ≤

1
n

× P
network

, (19)

where PDP2G−min
i,t is the start-stop constraint of the distrib-

uted power to gas devices, Pnetwork is the surplus power rate
in the network of EI. ,e models, operating cost functions,
and limits of the distributed electric boiler are similar to that

of the distributed power to gas devices. We only need to
replace gas with heat.

2.4.2. ,e Distributed Gas Combined Heat and Power Device
Models. ,e model and operating cost functions of the
distributed gas combined heat and power devices are as
follows:

P
DGC
i,t � ηDGCi G

DGC
i,t

1
φDGC

i,t + 1
,

H
DGC
i,t � ηDGCi G

DGC
i,t

φDGC
i,t

φDGC
i,t + 1

,

φDGC
i,t �

Prh
Prp

,

C
DGC
i,t � θDGCi,t G

DGC
i,t ,

(20)

where PDGC
i,t and HDGC

i,t are the power and heat rates of the
distributed gas combined heat and power devices genera-
tion, GDGC

i,t is the gas rate of coal of the distributed gas
combined heat and power devices consumption, ηDGCi is the
energy conversion of the distributed gas combined heat and
power devices, and φDGC

i,t is the ratio of heat and power. ,e
constraints of the distributed gas combined heat and power
devices is: GDGC−min

i,t ≤GDGC
i,t ≤ (1/n) × Gnetwork, which is

similar to that in the distributed power to gas devices. ,e
constraints of φDGC

i,t is similar to that in the distributed coal
or oil combined heat and power devices.

2.5. ,e Distributed Energy Storage Devices Models and Cost
Functions

2.5.1. ,e Distributed Energy, the Distributed Power Store
Device, the Distributed Heat Storage Devices, and the Dis-
tributed Gas Storage Device Models. ,e distributed power
storage devices have an optimal condition about reserve of
stored power. If the stored power is less than optimal
condition too much, it will harm batteries and other devices.
If stored power is more than optimal condition too much,
the stored power will loss too much. So, the optimal per-
formance of the distributed power store device is

O
DPSD
i,t � a

DPSD
i P

S−DPSD
i,t P

S−DPSD
i,t − 2μDPSDi􏼐 􏼑 + b

DPSD
i , (21)

where O is the optimal function of the reserved power in the
distributed power store device, PS−DPSD

i,t is the stored power
in time t, μDPSDi is the optimal reserve power in the dis-
tributed power store device, aDPSD

i and bDPSDi are constants,
and aDPSD

i is a negative constant. ,e cost function of the
distributed power store device is

C
DPSD
i,t � O

DPSD
i,t−1 − O

DPSD
i,t + θDPSDi,t P

DPSD
i,t

����
����2, (22)

where θDPSDi,t is a positive constant and PDPSD
i,t is the power

rate of the distributed power store device. If PDPSD
i,t is pos-

itive, it expresses power output, vice versa. So, we can know
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P
DPSD
i,t � P

S−DPSD
i,t−1 − P

S−DPSD
i,t . (23)

,e distributed power store device needs to satisfy the limits
below:

−P
in−DPSD
i ≤P

DPSD
i,t ≤P

out−DPSD
i ,

P
min−S−DPSD
i ≤P

S−DPSD
i,t ≤P

max−S−DPSD
i ,

(24)

where Pin−DPSD
i and Pout−DPSD

i are the maximum limits of
power input and output rate of the distributed power store
device, and Pmin−S−DPSD

i andPmax−S−DPSD
i are capacity mini-

mum and maximum values, respectively.
,e models, operating cost functions, and limits of the

distributed heat storage devices and the distributed gas
storage devices are similar to that of the distributed power
store device. We only need to replace power with heat or gas.

,e energy loss in the distributed energy transform
devices is very loss, for convenience, so we ignored that.

2.6. Energy Load Models. ,e must-run load and control-
lable load which traditional research including Ref. [20, 21]
adopts may be unsuitable for EI because of several reasons
that I proposed in the preceding part of this study. So, we
only adopt PEL

i,t HEL
i,t , and GEL

i,t to represent power heat and gas

loads. If EI supplies less energy to WEs than which they
need, the terminal users’ energy demand will not be satisfied.
But if EI supplies more energy toWEs than which they need,
it will waste a lot of energy. So, the operating cost of EL
depends on the unbalance between energy supply and de-
mand. ,e cost function of power EL is as follows:

C
P−EL
t � θP−EL

i,t P
supply
i,t − P

EL
i,t

�����

�����
2

2
,

θP−EL
i,t �

θP−EL
1,t , P

supply
i,t ≤P

EL
i,t ,

θP−EL
2,t , P

supply
i,t ≥P

EL
i,t ,

⎧⎪⎨

⎪⎩

(25)

where θP−EL
1,t and θP−EL

2,t are two positive constants. ,e reason
for dividing θP−EL

t into θP−EL
1,t and θP−EL

2,t is that the harm of
surplus and lack of power is different. ,e cost functions of
heat and gas are similar to that of power. ,e only difference
is the type of energy.

2.7. Object Functions. ,is study focuses on the economical
optimization by energy management in WEs and EI. So, the
object function is used to co-planning all WEs to realize the
maximize of the economy in (22):

maxF � 􏽘
n

i�1
Wi,t􏼐 􏼑, (26)

Wi,t � 􏽘
m

j�1
Prp × ΔPj

i + Prh × ΔHj

i + Prg × ΔGj

i − Prf × F
j

i − C
j

i􏼐 􏼑, (27)

where Wi,t is the economy function of each WE; j is the
serial number of each devices in WE; Prg and Prf are price
of gas and coal; ΔPj

i , ΔH
j
i , andΔG

j
i are energy flow rate of

power, heat, and gas, respectively. If they are positive, it
means that the devices output the corresponding energy,
vice versa. Of course, they can be zero. F

j

i is consumption of
coal, which is non-negative. Cj

i is the operating cost function
of devices.

3. The Annular Directed Distributed Algorithm
and Its Certifications

3.1. Basic Knowledge of Graph ,eory. ,e graph theory
adopts Graph � (V, E, B) to represent a graph.
V � vi|i � 1, 2, . . . , n􏼈 􏼉 is a finite nonempty set of nodes in
the graph. And the E⊆V × V is the set of sides. ,e side
(vi, vj) means that there is a side between vi and vj. B �

[bi,j] ∈ Rm×n is the weighting neighbor matrix of the graph.
,e weighting neighbor matrix B is used to express the
relationship between nodes and sides.,e diagonal elements
in that are all zero constantly. If the non-diagonal element
bi,j > 0, (vi, vj) ∈ E. But if bi,j � 0, (vi, vj) ∉ E. In the un-
directed graph, sides between nodes are not directed, so
(vi, vj) ∈ E equals to (vj, vi) ∈ E.,e paths between vi and vj

consist of a lot of sides like (vi, vi1), (vi1, vi2) · · · (vik, vij). If
there is a path between vi and vj, we define that vi andvj are
connected. If entire pairs of nodes are connected, we define
that the graph is connected. If all elements in B except
diagonal elements are positive, the graph is complete.

3.2. ,e Relationship between Graph ,eory and EI.
Traditional researches [19, 20] use an undirected connected
graph to model EI, use nodes to model WE or other agents
about energy microgrid, and use sides to model channels
which can transfer information and energy because they
think the undirected connected graph can not only control
all WEs in EI due to the path between entire pairs of nodes
but also protect users’ privacy data which could only be
acquired by neighbor nodes. ,ey may be right to some
extent. Agents in the unconnected graph cannot commu-
nicate among all nodes and that in the complete graph
cannot protect users’ privacy. But that model has some
serious disadvantages. Firstly, agents’ privacy data can be
acquired by neighbor agents, which cannot protect users’
privacy entirely. Secondly, only-neighbor communicating
causes a lot of trouble for the distributed algorithm in
comparison with that in the complete graph. As for solving
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this problem, some researches pursue the consensus of tiny
growth rate about voltage, air pressure in gas pipeline, and
flow of hot water [29]. Although the consensus makes the
distributed algorithms easily, it may not be the most optimal
method for energy management. ,irdly, if an agent is strict
with privacy and unwilling to communicate with other
agents, the only way is to segment it from the whole system
of EI. ,at agent will be operated in island mode and other
agents will be operated in grid-connected mode, which is
very bad for unifying dispatch of EI. Fourthly, only-neighbor
energy transformation leads to a lot of energy loss and
operating costs. Information has privacy, but energy flow
does not have, after all! Last but not least, the connected but
most complete graph is not well distributed in compactness,
which is very bad for controllability of EI in accordance with
the theory [24] proposed.

For solving these problems, this study proposed a new
algorithm named the annular directed distributed algo-
rithm. In the annular directed distributed algorithm, the
path of information and energy is separate. ,e infor-
mation path is a directed annular path, which is shown in
Figure 1 and the hole energy path constitutes an undi-
rected complete graph. After ensuring all devices’ oper-
ating conditions, how to transmit corresponding energy
from the supply side to the demand side will be an ele-
mentary math problem that does not need algorithms. So,
the most significant problem of energy management in the
annular directed distributed algorithm is how to ensure
devices’ optimal operating condition in the information
side.

3.3. Main Algorithm. ,e proposed management in the
annular directed distributed algorithm is to ensure devices’
optimal operating condition in the information side. ,e
main algorithm is shown in Table 1.,emethod in step 12 is:

If we want to change the type a of energy to the type b of
energy, the energy input will be updated by the method that:

I
k+1
a,i,t � I

k
a,i,t dh

ηb
a × Prb

Pra + θb
a

− 1⎛⎝ ⎞⎠ + 1⎡⎢⎢⎣ ⎤⎥⎥⎦, (28)

where I is the input of energya (the starting value of I is
initialized by step 3), k is the number of iteration times, ηb

a

is the efficiency of energy conversion, and Pra and Prb are
the energy prices of energy a and b. What is noteworthy is
that if a device can change one type of energy to two or
more types of energies, the price of output energies is the
weighted average of all output energies, and weighted
factors are the rate ratio of that energy to hole output
energies. θb

a is the energy conversion price from energy a to
energy b., dh is a downhill factor whose effect is to adjust
devices’ operating condition in case of divergence of the
annular directed distributed algorithm. dh does not change
between different types of the distributed energy conver-
sion devices, the starting value in each iteration of dh is 1,
and the updating conditions and methods of that will be
introduced below.

,e method in step 14 is as follows:

P
supply
i,t � P

r
i,t × Px,t,

H
supply
i,t � H

r
i,t × Hx,t,

G
supply
i,t � G

r
i,t × Gx,t.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(29)

where P
supply
i,t , H

supply
i,t , and G

supply
i,t are the power, heat,

and gas which the energy management supplied to energy
load in ith WE, respectively. But they may not be equal to
PEL

i,t , HEL
i,t , and GEL

i,t . So, we should adjust energy prices. We
use cost functions of ELs as subgradient functions to adjust
the energy price. We adjust power price like Figure 2. w in
Figure 2 is a small positive constant, which may be different
with different types of energy. By the way, the precision of
Ps d andPsm is no possibility infinite in practical engi-
neering, so if they are very less theoretically, we regard them
as zero. r is another Newton-downhill factor about avoiding
overshoot, if one type of energy supply-demand mismatch
changes symbol, r � 0.5 × r.

,e method to adjust the price of gas and heat is similar
to that of power, so we only need to change the energy type.
After price adjustment, we should inspect the astringency of
the algorithm. Whichever supply-demand mismatching in
all types of energy absolute value in k + 1 times of iteration is
more than that in k times of iteration, or supply-demand
mismatching in all types of energy value changes symbol, the
result in step 14 must be invalid. ,e algorithm will return
step 12 or step 3, respectively, and energy management will
amend downhill factor dh or r to half of quondam value and
repeat processes above until all energy supply-demand
mismatching absolute value in k + 1 times of iteration is no
more than that in k times of iteration. Besides, the value of
dh or r in k times of iteration should not be retained into
k + 1 times of iteration. It will initialize into 1 again in that.
What is always ignored by traditional research but is very
significant to energy management is there is a problem of
Zeno behavior. Zeno behaviors mean some operation is
triggered infinite times in finite times of iteration. In the
annular directed distributed algorithm, Zeno behaviors are
that the frequency of that r or dh change is too high in one
time of iteration.

It is worth noting that, because accuracy in down-to-
earth engineering is limited, if the energy supply-demand
mismatch is very less, we can regard energy supply-demand
balance as achieved and stop algorithm. Besides, if we do not
stop the algorithm in that circumstance, the algorithm result
may be choppy near the exact value due to the energy
mismatch is less than that the small positive constant w

adjusted.
Four things need to be added. Firstly, after one time of

iteration, the sequence of WEs should be changed. ,e ith
WE will be the (i + 1)th WE, and the first WE will be the last
WE. We should transmit all information from the old first
WE to the new first WE before iteration. ,e reason for that
is too much control and computing load is at the last WE.
Changing the sequence can relieve the load of the last WE.
Besides, it can also increase the precision and universality of
algorithm results. Secondly, all initialized energy flow and
energy load flow is needed to be initialized over and over
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again in each iteration. ,e annular directed distributed
algorithm has a great advantage in which it can protect each
user’s privacy much better than traditional EI or traditional
multiagent systems [25–27].

Although preceding researchers can protect users’ pri-
vacy which cannot be searched by all agents, neighbor agents
still can access their private data. But in the annular directed
distributed algorithm, all agents can only access total before
themselves. However, the privacy of the first agent cannot be
protected by this method, hence we use fictitious initial

energy flows to protect it. For reinforcing the confidentiality
of privacy data, initial energy flows should be changed each
iteration. ,irdly, privacy protecting is needed not only
among different WEs, but also inside WEs. ,e information
inside WEs transmitted in one directed line whose direction
is identical to the direction of the information path between

Table 1: Annular distributed algorithm.

Initialize and iterate: (k � 1, i � 1, r � 1, dh � 1);
(1) Set initial value of Prp Prh Prg, w.
(2) Input all reserves of stored energy of each of the distributed energy store devices in time t − 1.
(3) Set initial value of energy input of all the distributed energy conversion devices in a small value in all WEs, including PDP2G

i,t , PDEB
i,t , and

GDGC
i,t .

(4) Initialize power-gas-heat energy flow Px,t, Hx,t, andGx,t and power-gas-heat energy load flow Pall
L,t, Hall

L,t, and Gall
L,t. Input them into

control center of terminal load in first WE. Turn to first WE.
(5) Store Px,t Hx,t Gx,t, Pall

L,t, H
all
L,t, and Gall

L,t by the designations of Ps
x,t Hs

x,t GS
x,t, PS−all

L,t , HS−all
L,t , and GS−all

L,t in control center of terminal load in
first WE.
(6) Pall

L,t, Hall
L,t, and Gall

L,t equals to the sum of corresponding type of energy loads of ith WE and corresponding Pall
L,t, Hall

L,t, and Gall
L,t.

(7) If i< n, i � i + 1, transmit Pall
L,t, Hall

L,t, and Gall
L,t to ith WE, and return step 6, else, continue.

(8) If i � 1, transmit Pall
L,t, Hall

L,t, and Gall
L,t to control center of terminal load in first WE. Pall

L,t, Hall
L,t, and Gall

L,t is equal to themselves subtracting
corresponding PS−all

L,t , HS−all
L,t , and GS−all

L,t which are stored in first WE.
(9) Compute and store ratios of load to Pall

L,t Hall
L,t, and Gall

L,t by the designations of Pr
i,t, Hr

i,t, and Gr
i,t in control center of terminal load in ith

WE.
(10) If i< 5, i � i + 1, transmit Pall

L,t, Hall
L,t, and Gall

L,t to ith WE, and return step 9, else, i � 1, continue.
(11) Update entire operating conditions containing energy input or output volumes of all the distributed energy producer and the
distributed energy store devices in ith WE to the value that (26) and (27) can get peak value. Because all parts of (27) are linear or non-
convex, the work is very easy and does not need complex algorithm.
(12) Update entire operating conditions containing energy input or output volumes of all the distributed energy conversion devices in ith
WE by method described below.
(13) Add all energy input and output volumes in all the distributed energy producer, the distributed energy conversion devices, and the
distributed energy store devices in ith WE to Px,t, Hx,t, andGx,t. If i< n, i � i + 1, transmit the volumes of Px,t, Hx,t, and Gx,t to ith WE and
return to the step 11, else i � 1, transmit the volumes of Px,t, Hx,t, and Gx,t to ith WE, continue.
(14) If all types of energy supply-demand balance are reached, energy management finishes, else, if one type of energy supply-demand
mismatch absolute value is higher than that in last time of iteration, dh � 0.5 × dh, return step 11, else, if one type of energy supply-demand
mismatch changes symbol, r � 0.5 × r, return step 3, else, r � 1, dh � 1 k � k + 1, return step 11.
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Figure 1: Gas supply-demand mismatch (kw) in 100 times of w.
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Figure 2: Power price adjusting.
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WEs. Fourthly, although the annular information path
has numerous advantages, it is exceeding sensitive to
malfunctions. For handling this issue, if a device in one
WE is broken down, the energy load in that WE will
operate by island mode and other WEs will operate by a
mode combined to the grid as normal. Finally, in the
annular directed distributed algorithm, the information
path is different from the energy transmission path. ,e
energy transmission path is independent of privacy
protecting, so all devices can transmit energy to others.
After realizing a balance between energy supply and
energy demand, how to transmit energy in the shortest
way is an easy problem which does not need complex
algorithms, so this study does not discuss energy trans-
mission path. It is worth noting that the optimization in
this article is distributed. ,e principle is to adjust energy
price to change the energy mismatch. If the adjust of
energy price is overshoot to the optimization valve, the
algorithm will be oscillation or divergency and the energy
supply-demand balance will never be reached. So, we
should adopt the Newton-downhill method to avoid the
overshoot of energy price.

We list the data exchange and privacy protection that is
required by the proposed distributed algorithm and con-
ventional distributed methods in Tables 2 and 3 (✔ for
entirely exchanging, ✖ for not exchanging, ● for crypto-
graphically exchanging) (✔ for protecting, ✖ for not
protecting).

From that two tables you can know that the proposed
algorithm can protect the data of power-heat-gas output or
input conditions of each device better. It is worth noting
that, all manufactures of one type of energy are commercial
competitors, so are all we-energies. So, it is unreasonable for
conventional distributed methods to regard some energy
manufactures and some we-energies as neighbor agents and
exchange data among them. ,e data cryptographically
exchanging method in this article is a better method.

4. Testification of Convergence Analysis,
Optimality, and Avoiding Zeno Behaviors

,e convergence of the algorithm and the balance between
energy supply and energy demand are proved below.

Firstly, we establish an assumption that the operating
condition of the distributed energy conversion devices in k +

1 times of the iteration is equal to those in k times of the
iteration. Under that circumstance, all energy supply-de-
mand is decided by formula (27). We discuss power supply-
demand as an example. We can calculate power input or
output in each of the distributed energy producer and the
distributed energy store devices by solving the partial dif-
ferential equation below.

z Wi,t􏼐 􏼑

z ΔPj
i􏼐 􏼑

� 0. (30)

And we can disassemble Wi,t by:

Q � 􏽘
m

j�1
Prh × ΔHj

i + Prg × ΔGj
i − Prf × F

j
i − C

j
i􏼐 􏼑,

Wi,t � 􏽘
m

j�1
Prp × ΔPj

i + Q􏼐 􏼑.

(31)

So, we can transform (28) into

z(Q)

z ΔPi
j

􏼐 􏼑
� −Prp. (32)

Due to the non-convex of Q, z(Q)/z(ΔPj
i ) is a de-

creasing function. If power is excess in EI, the price of that
will decrease. So, the solution of (32) will be less, vice versa.
Moreover, because of the downhill factor r, if overshoot will
never appear, r will reduce until overshoot vanishes. And the
change of r only alters the adjusting extent of power price
but does nothing about adjusting the direction of that. So r

does not affect the monotonicity of power price. It is worth
noting that the monotonicity of power price aims at power
price when adjusting of r finishes. ,e power price of the
overshoot systems needs to be abandoned so it is mean-
ingless to energy management. Above all, we can draw a
conclusion in line with mathematical induction that under
the assumption that the operating condition of the dis-
tributed energy conversion devices in k + 1 times of the
iteration is equal to that in k times of the iteration, the power
price, which is one of the results of the algorithm, is
monotone. However, without the assumption, is the power
price monotone? ,e answer is right. A contradiction
method is used to prove it.

First of all, we set up an assumption that the power price
is not monotone. So, step 12 to step 14 will be an endless loop
and dh will be halved over and over again. Hence,

dh � lim
m⟶+∞

1
2

􏼒 􏼓
m

� 0. (33)

So, the operating condition of the distributed energy
conversion devices in k + 1 times of the iteration is equal to
that in k times of the iteration. On the basis of the con-
clusions mentioned above, the algorithm is monotone,
which is in contradiction with the assumption at the be-
ginning of the contradiction method. So, we can prove that
the power price is monotone. It is worth noting that the
proof process does not contain the circumstance that when
the power supply-demand mismatch tends to a very small
value. If that mismatch is very small, we will deem that the
power supply-demand is balanced and we will regard it and
Psm as zero in practical engineering. Due to the finite
precision of measurement and operation in practice, it is
useless to discuss the small power supply-demandmismatch.

Because w is small, power supply-demand mismatch
cannot change direction without going through a small
value. And due to the reason above, if that is small, we will
regard Psm as 0 so the power price will not update. So, the
power price is unilateral bounded and the bound is the value
when that mismatch is exceedingly small.
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In accordance with the monotone-bounded convergence
theorem and conclusions all above, we can prove that the
power price is convergence. We can figure out the value of
power price when it is convergence by the way that:

Prpk+1 � Prpk ×(1 − 0 · 2 × w × Psm),

Prpk+1 � Prpk.
􏼨 (34)

So, Psm � 0, the price of power will converge to a value
that can make the power supply-demand balance. Similarly,
the price of heat and gas will converge to a value that can
reach the heat or gas supply-demand balance, too. ,e
proving process of them are analogical to that of power, and
we only need to change the types of energy. To sum up, after
numerous times of iteration, all types of energy prices are
converged and all kinds of energy are balanced between
energy supply and energy demand. EI is stabilized.

,e optimality of the convergence point in the annular
directed distributed algorithm is proved below.

Similar to convergence proving, the attesting of opti-
mality in energy management needs to prove optimality
about power systems without energy conversion first.

z Wi,t􏼐 􏼑

z P
j
i􏼐 􏼑

� Prp −
d(C(P))

d(P)
. (35)

Because C(P) is a convex function, d(C(P))/d(P) is an
increasing function. Step 11 in the annular directed dis-
tributed algorithm requires all power-producing devices to
choose operating conditions when d(C(P))/d(P) � Prp. At
the convergence point, power supply-demand balance is

satisfied. We assume another operating condition of EI as
device A produce ΔP power less than its power-producing in
the annular directed distributed algorithm. For maintaining
power supply-demand balance, device B will produce ΔP
power more. Cost decrease in A is ΔP × ΔCA(ΔP).
ΔCA(ΔP) is backward difference gradient in the conver-
gence point of device A. Analogically, cost decrease in B is
ΔP × ΔCB(ΔP). ΔCB(ΔP) is forward difference gradient in
the convergence point of device B. Because all C(P) are
convex functions, ΔCA(ΔP)< Prp<ΔCB(ΔP). So, the
convergence point is optimal for power without energy
conversion. By the same token, the convergence point is
optimal for heat and gas without energy conversion. And we
should prove optimality among energy conversion.

Because w is a very small constant, energy price in a large
number of iteration only changes a little. Hence, the speed of
energy price changing is much lower than that of energy
conversion changing so that we can ignore the change of
energy price when we study energy conversion. If ηb

a × Prb is
more than Pra + θb

a, due to (28), there is more and more
energy that changes from a to b until ηb

a × Prb is equal to
Pra + θb

a. ,ereafter, ηb
a × Prb is equal to Pra + θb

a though the
hole iteration.Whenever energy price changes a little, energy
conversion will change at a far high speed to reach equality
between ηb

a × Prb and Pra + θb
a and goes along with slowly

energy price changing. ,at equality is still satisfied until
convergence point. By the way, because of the difference
between that two speeds, frequency about adjusting of dh is
much less than that of r. So, Zeno behavior never happens in
dh. However, the Zeno behavior never happens in r, either.
And the reason for it will be described in this literature, too.

Table 2: Privacy protecting between we-energies.

Type of data exchange
among neighbor we-
energies

,e proposed
distributed
algorithm

Conventional
distributed methods

Privacy protection for that data
in proposed distributed

algorithm

Privacy protection for that data in
conventional distributed methods

Power output or input
ratio ● ✔ ✔ ✖

Heat output or input
ratio ● ✔ ✔ ✖

Gas output or input ratio ● ✔ ✔ ✖
Power price ✔ ✔ ✖ ✖
Heat price ✔ ✔ ✖ ✖
Gas price ✔ ✔ ✖ ✖

Table 3: Privacy protecting inside we-energies.

Type of data exchange
inside each we-energy

,e proposed
distributed
algorithm

Conventional
distributed methods

Privacy protection for that data
in proposed distributed

algorithm

Privacy protection for that data in
conventional distributed methods

Power output or input
ratio ● ✔ ✔ ✖

Heat output or input
ratio ● ✔ ✔ ✖

Gas output or input
ratio ● ✔ ✔ ✖

Power price ✔ ✔ ✖ ✖
Heat price ✔ ✔ ✖ ✖
Gas price ✔ ✔ ✖ ✖
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We assume another operating condition of EI as energy a

transforms Δa energy less than its energy conversion in the
annular directed distributed algorithm. For maintaining
power supply-demand balance, energy management should
produce Δa energy a less and produce ηb

a × Δa energy more.
,e cost decrease in producing and transforming in a is
Δa × (ΔCa(Δa) + θb

a). And the cost increase in producing in
b is Δa × ηb

a × ΔCb(Δa × ηb
a). ΔCa(Δa) and ΔCb(Δa × ηb

a)

are difference gradients. Because all C are convex functions,
ΔCa(Δa) + θb

a < Pra + θb
a � ηb

a × Prb<ΔCb(Δa × ηb
a) × ηb

a.
So Δa × (ΔCa(Δa) + θb

a)<Δa × ηb
a × ΔCb(Δa × ηb

a), energy
conversion in the convergence point is optimal. In addition,
equal relations mentioned above do not consider the in-
fluence of constraint. So, it is no wonder that in reality EI
project,

To sum up, the convergence point in the annular di-
rected distributed algorithm has optimality.

Avoiding Zeno behavior of the annular directed dis-
tributed algorithm is proved below:

On account of the reason in the preceding part of this
literature, Zeno behavior never happens in dh. But Zeno
behavior in r still needs analysis.

If overshoot happens, energy overshoot and energy
mismatch in the last time of iteration are all finite for the
reason of if they are infinitely small we will regard them as
zero and energy supply-demand are reached. (Both infinitely
small and infinitely great are all infinite.) ,e adjusting of
energy price can be calculated through linear or quadratic
functions (all functions in this literature are linear or
quadratic) by four fundamental rules, gradient rules, and
inverse function rules from finite values (energy overshoot
and energy mismatch in last time of iteration). Hence, they
are finite, and so adjusting times of r in one or finite times of
iteration is finite, thus Zeno behavior does not happen in r or
dh.

To sum up, the annular directed distributed algorithm is
not only optimal but also convergence. In addition, Zeno
behavior never occurs in it.

5. Simulation Results

,e framework of the EI system used to test the annular
directed distributed algorithm containing 5WEs and data of
devices all above are exhibited in Appendix. In this article, if
all the types of energy mismatches are less than 500kw, we
think of the balance of energy-producing and energy-con-
suming as achieved and regard Psm as zero. After 42 times of
iteration, that balance is reached. ,e simulation results are
discoursed below

Figures 3–5 are prices of power, heat, and gas.
Figures 6–8 are supply-demand mismatches of power, heat,
and gas. ,e Zeno coefficient is times of r adjusting. It shows
that after 42 times of the iteration, when the Zeno coefficient
is 2, power, heat, and gas mismatch are all lower than 500kw.
At this moment kw · h t, the power mismatch is 462kw less.
,e heat mismatch is 387kw more. And the gas mismatch is
near zero in experimental precision. Comparing with tra-
ditional distributed algorithm 28 which needs hundreds of
times to reach energy supply-demand balance, the annular

directed distributed algorithm is exceedingly quick. EI
system should fix the prices of power heat and gas as 11 ￠
per kw · h, 9 ￠ per kw · h, and 8 ￠ per kw · h. (Due to
accuracy of USA dollars, retain prices to integral multiples.)
Figures 9 and 10 are times of r and dh adjusting in each time
of iteration. Times of those are no more than twice as they
show. So, Zeno behavior does not appear. 11 and 12 are the
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power-heat-gas mismatch in 100 times of w, and
Figures 13–15 are the power-heat-gas mismatch in 0.01
times of w. ,ey show that if the value of w is too large, the
algorithm will vibrate seriously. If the value of w is too small,
the algorithm will converge in a very slow speed. So, the
algorithm in this article is very sensitive to the value of w. To
this end, the plug and play performance of the proposed
distributed method is low because if the EI framework and
the energy load changes largely, it is very hard for us to
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Figure 11: Power supply-demand mismatch (kw) in 100 times of
w.
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adjust w. What’s more, the proposed method ignores energy
transmitting cost so some areas which are hard to transmit
energy are unsuitable for the proposed method. However,
some areas require large demand of privacy protecting, so
they must adopt the proposed method.

EI is a new energy system in scientists’ conceive. Al-
though EI has got large concern among researchers, there is
not an unabridged EI system with a high permeability of
renewable energy resources, a large scale of physical system,
and a highly interconnected network among different kinds
of energy nowadays because it has just been proposed. A lot
of cases in articles which are imagined by authors may be
absurd and unreasonable in actuality. ,e only thing we can
know is the energy demand. We summarize various energy
demands in the world in Table 4 and analyze if they are fit for
the proposed algorithm (✔ for fit,✖ for unfit). Because there
are too many kinds of energy demand in the whole world,
our work may be incomplete.

A1 is suitable for the proposed distributed method be-
cause the business competition in urban is sharp and the
privacy protection demand is large. A2 is unsuitable for the
proposed method because the energy load is changeable
which cause great trouble of w. A3 is unsuitable for the both
traditional and proposed method because the heat and gas
transmitting is hard in that area. ,ey need another method
about heat and gas transmitting. A4 is suitable for the
proposed method because the privacy protecting in that area
is important due to political factors. A5 is unsuitable for the
proposed method because the privacy protecting in that area
is not important. A6 is suitable for the proposed method
because the change of that area is very slow and the w is easy
to choose. A7 is suitable for the proposed method because
the business competition in that area is serious so the privacy
protecting is important. A8 is suitable for the proposed
method because the change of that area is very slow so the w

is easy to choose. To sum up, the proposedmethod is suitable
for some cases with high demand of privacy protecting and
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Figure 12: Heat supply-demand mismatch (kw) in 100 times of w.
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Table 4: Application scenario analysis.

Serial
number Scene Regional characteristics Typical case

Fit for
traditional
distributed
methods

Fit for the
proposed
distributed
method

A1 Suburb type Small area with low energy demand Urban ✖ ✔

A2 Seasonal
switching type

Need heat in winter and cold in summer. ,e
demand of power and gas is large.

Cities in Yangtze plain,
middle and lower,

China
✔ ✖

A3 Cold plateau
,e atmospheric pressure is low because of high
altitude, and the temperature is cold for the same

reason. All energy demands are low.

Qinghai-Tibet plateau,
China ✖ ✖

A4 Island (in sea) Wind and petroleum are rich Nansha six reefs, China ✖ ✔
A5 Cold area Heat load is high Northeast, China ✔ ✖
A6 Mountainous Energy load is low. Wind and solar are rich. Southwest, China ✖ ✔

A7 High latitude
port

DC load of ships is high. Heat load is high because
the temperature is cold

Port cities in Northern
Europe and North

America
✖ ✔

A8 Dispersing area ,e natural gas is rich, and the energy load is
dispersed Northwest, China ✖ ✔

CCWE DRG DRHD DCOC

DEBDGCDP2GDGP

DPSD DHSD

EL

DGSD

Figure 16: We-energy 1.
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Figure 17: We-energies 2–5.
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Figure 18: Energy internet.

Table 5: Data.

Distributed
renewable
generators and
distributed
renewable heat
devices

Pwind
i,t ,

(×103kw)

Psolar
i,t ,

(×103kw)

Hsolar
i,t ,

(×102kw)

Pwind−min
i ,

(×102kw)

Pwind−max
i ,

(×104kw)

Psolar−min
i ,

(×102kw)

Hsolar−min
i ,

(×102kw)

Hsolar−max
i ,

(×104kw)

WE1 3.9843 1.4254 0.4513 1.2182 5.2452 0.1420 1.1035 2.7131
WE2 4.5324 2.2871 0.2541 1.1546 2.6264 0.3197 1.3214 3.6157
WE3 0.5844 1.1250 2.2509 0.9137 4.2567 0.0984 2.3147 1.9548
WE4 1.6534 1.0070 0.0131 0.8954 4.3218 0.1247 1.2181 1.7496
WE5 1.2455 3.1543 0.3065 1.3193 3.2148 0.2214 1.3120 1.3427
Distributed coal or
oil combined heat
and power devices

aDCOC
i ,

(×10− 4)

bDCOCi ,
(×10− 3)

αDCOCi ,
(×10− 4)

βDCOCi ,
(×10− 3)

cDCOCi ,
(×10− 4)

χDCOCi , (×102) dDCOC
i eDCOCi

WE1 1.65 1.50 1.80 1.20 1.74 2.25 36.15 57.15
WE2 1.35 0.45 1.95 1.50 1.72 2.84 35.40 59.55
WE3 1.80 1.95 1.20 1.50 1.43 5.92 38.70 60.45
WE4 1.65 1.80 1.35 2.10 1.47 3.71 40.05 63.15
WE5 1.95 2.85 1.65 1.65 1.76 3.69 39.30 62.55
Distributed coal or
oil combined heat
and power devices

fDCOC
i gDCOC

i hDCOC
i jDCOCi ηDCOCi

P
DCOC−ramp
i ,

(kw)
PDCOC

i,t−1 , (kw)

WE1 320355 488760 0.52 0.86 89% 1056 3908
WE2 323760 479760 0.54 0.87 84% 987 3847
WE3 305460 518805 0.51 0.91 91% 853 3691
WE4 298095 482355 0.59 0.90 92% 964 4058
WE5 277530 546315 0.58 0.88 95% 1208 4061
Distributed gas
producers

aDGP
i,t ,

(×10− 4)
bDGPi,t cDGPi,t

GDGP−min
i,t

(kw)
GDGP−max

i,t (kw)

WE1 1.5 3.0360 1485 201.3 5941.40
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Table 5: Continued.

Distributed
renewable
generators and
distributed
renewable heat
devices

Pwind
i,t ,

(×103kw)

Psolar
i,t ,

(×103kw)

Hsolar
i,t ,

(×102kw)

Pwind−min
i ,

(×102kw)

Pwind−max
i ,

(×104kw)

Psolar−min
i ,

(×102kw)

Hsolar−min
i ,

(×102kw)

Hsolar−max
i ,

(×104kw)

Distributed power
to gas devices ηDP2Gi,t θDP2Gi,t

PDP2G−min
i,t ,
(kw)

Initialized operating condition (kw)

WE1 77% 0.03 520 520
WE2 82% 0.02 610 610
WE3 81% 0.04 710 710
WE4 79% 0.01 610 610
WE5 84% 0.02 600 600
Distributed
electric boiler ηDEBi,t θDEBi,t

PDEB−min
i,t ,
(kw)

Initialized operating condition (kw)

WE1 92% 0.02 980 980
WE2 95% 0.04 720 720
WE3 93% 0.01 840 840
WE4 97% 0.03 1030 1030
WE5 91% 0.05 790 790
Distributed gas
combined heat
and power devices

θDGCi,t ηDGCi hDGC
i jDGCi

Initialized
condition GDGC−min

i,t , (kw)

WE1 0.03 83% 0.59 5.3120 750 750
WE2 0.02 79% 0.55 5.2019 690 690
WE3 0.05 82% 0.58 5.7187 840 840
WE4 0.01 84% 0.57 5.2162 720 720
WE5 0.04 86% 0.54 5.9146 710 710
Distributed power
storage devices aDPSD

i bDPSDi θDPSDi,t

Pin−DPSD
i ,
(kw)

Pout−DPSD
i ,
(kw)

Pmin−S−DPSD
i ,

(kw)

Pmax−S−DPSD
i ,

(kw)

PS−DPSD
i,t−1 ,
(kw)

μDPSDi

WE1 1.12 154 0.15 432 567 271 1568 1100 625
WE2 1.09 136 0.13 459 614 226 1734 1025 629
WE3 0.93 127 0.17 503 412 191 1721 1328 735
WE4 0.82 198 0.21 441 450 140 1430 1327 577
WE5 1.33 121 0.11 404 442 142 1331 954 518
Distributed heat
storage devices aDHSD

i bDHSD
i θDHSD

i,t

Hin−DHSD
i ,
(kw)

Hout−DHSD
i ,
(kw)

Hmin−S−DHSD
i ,

(kw)

Hmax−S−DHSD
i ,

(kw)
HS−DHSD

i,t−1 , (kw)

WE1 1.30 253 0.14 561 641 171 1765 1207 534
WE2 1.25 768 0.19 540 590 254 1583 1011 672
WE3 0.71 354 0.13 572 525 369 1852 1319 601
WE4 0.96 417 0.17 503 530 342 1754 1021 608
WE5 1.04 139 0.14 509 523 244 1543 1055 512
Distributed gas
storage devices aDGSD

i bDGSDi θDGSDi,t

Gin−DHSD
i ,
(kw)

Gout−DHSD
i ,
(kw)

Gmin−S−DGSD
i ,

(kw)

Gmax−S−DGSD
i ,

(kw)

GS−DGSD
i,t−1 ,
(kw)

μDGSDi

WE1 2.10 734 0.23 325 371 46 1206 435 542
WE2 2.86 261 0.14 317 384 71 1671 429 531
WE3 1.84 458 0.12 349 363 61 1087 456 568
WE4 2.10 430 0.21 401 312 82 960 463 591
WE5 1.61 419 0.19 366 350 69 1427 421 601

Energy load PEL
i,t

(×104kw)

HEL
i,t ,

(×103kw)
GEL

i,t , (kw) θP−EL
1,t θH−EL

1,t θG−EL
1,t θP−EL

2,t θH−EL
2,t θG−EL

2,t

WE1 1.3790 6.9612 5640 2.8 2.6 2.1 1.0 1.0 2.7
WE2 2.3333 7.3429 6272 2.8 2.6 2.1 1.0 1.0 2.7
WE3 1.4900 7.0056 5080 2.8 2.6 2.1 1.0 1.0 2.7
WE4 1.4138 6.9752 6736 2.8 2.6 2.1 1.0 1.0 2.7
WE5 1.7618 7.1143 5592 2.8 2.6 2.1 1.0 1.0 2.7
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some cases which change slowly. However, it is unsuitable
for some cases with low demand of privacy protecting and
some cases which change quickly.

6. Conclusions

Based on the traditional distributed and the alternating
direction method of multipliers algorithm in energy market,
this article proposed a new communicating and optimizing
algorithm of energy management EI. EI in this algorithm
communicates information in an annular way, which can
not only greatly reduce communicating times, but also can
protect the privacy data of all agents that can only be
searched by itself. Compared with previous privacy pro-
tection in multiagent systems in which privacy data are
transmitted to neighbor agents, privacy in this article is
protected much more strongly. In addition, this article uses
the subgradient method to quicken the annular directed
distributed algorithm and solve the issue of astringency in
energy transforming. Simulation results and theoretical
identification containing the monotone-bounded conver-
gence theorem, theory of limit, and contradiction have
demonstrated the effectiveness of the proposed algorithm
(see Table 5).

Appendix

Figures 16 and 17 are structure of we-energy 1 and all others
we-energy. Figure 18 is EI in simulation test platform of this
article. CCWE is the control center of WE.

All data of the simulation test platform are in the chart
,e price of coal or oil is 6￠ per kw · h. We initialize the

prize of power, heat, and gas to 15￠ per kw · h. w is 10− 6 for
power and heat and 1 · 5 × 10− 6 for gas.

Data Availability

,e authors confirm that all relevant data are included in the
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