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�e paper is proposed an improved equilibrium optimizer (IEO) algorithm to solve the optimal power flow (OPF) problem with
the participation of a renewable energy source (RES). In the proposed IEO method, the “exponential term” is replaced by a
function that does not dependent on the number of iterations.�is modification of the IEO algorithm increases exploration ability
compared to EO algorithm. In addition, the exploration of the proposed IEO algorithm will not decrease according to the number
of iterations which avoids to get stuck at the local optimal solution.�e IEO algorithm is tested on two IEEE 30-bus and IEEE 118-
bus systems with three different objective functions. �e performance of the proposed IEO method is compared with equilibrium
optimizer (EO), artificial ecosystem optimization (AEO), cuckoo search algorithm (CSA), teaching-learning-based optimization
(TLBO), artificial bee colony (ABC), and many other existing methods. Besides, a simple probabilistic formula for calculating RES
output power based on the Monte-Carlo simulation model is proposed in this paper to reduce the computation time for the OPF
problem with RES.�e simulation results obtained show that the proposed IEO algorithm has better quality of the solution as well
as stability level compared to the original EO algorithm and other algorithm. �us, the proposed IEO algorithm is also one of
effective and reliable algorithms for handling OPF problem with RES.

1. Introduction

Optimal power flow (OPF) is an optimizing tool for power
system planning and operation. �e OPF has been received
significant interest of power system optimization research
group since first introduced in 1962 [1]. �e main aim of the
OPF problem is to determine the optimal setting control
variables which optimize chosen objective functions such as
fuel cost, emission cost, power loss, and voltage profile while
satisfying a set of operational and physical constraints. �e
control variables of the OPF problem are that the actual
power at the generator buses, excluding the slack bus, the

voltage magnitude at all the generator buses, tap changer of
transformer, and shunt compensators. Many mathematical
programmingmethods have been deployed to deal with OPF
problems, such as linear programming (LP) [2], nonlinear
programming (NLP) [3], Newton-based techniques [4],
quadratic programming (QP) [5], and interior-point (IP)
methods [6]. However, the objective functions of the OPF
problem, which was solved by these conventional methods,
are simple and differentiable. In addition, the energy sources
of the conventional OPF problem only involved thermal
power sources. In fact, the OPF problem in modern power
systems is always a nonlinear optimization problem andmay
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be a nondifferentiable one; thus, it is an actual challenge for
optimization methods for dealing with, especially, the
conventional methods. In order to overcome the limitations
of classical methods, heuristic methods have been consid-
ered as alternative approaches to solve the OPF problem
with the advantages of obtaining nearly optimum solution
whether the problem is differentiable or not.

In recent decades, heuristic optimization algorithms
have been developed based on inspired from physical
phenomena, animal behavior, or evolutionary concepts.
�ey provide straightforward and effective solutions for the
OPF problem.�e typical algorithms such as particle swarm
optimization (PSO) [7], gravitational search algorithm
(GSA) [8, 9], differential evolutionary (DE) [10], krill herd
algorithm (KHA) [11], artificial bee colony (ABC) [12],
biogeography-based optimization (BBO) [13], Jaya algo-
rithm [14], harmony search (HS) [15], teaching-learning-
based-optimization technique (TLBO) [16], Sine-Cosine
(SC) [17], grey wolf optimizer (GWO) [18], and moth swarm
approach (MSA) [19]. �e objective functions of the OPF
problem usually are considered consisting of three different
types of fuel functions, namely, quadratic cost, piecewise
quadratic cost, quadratic cost curve, and power loss,
emission cost and voltage deviation. In addition, the ob-
jective of maximum social welfare [20] and available transfer
capability [21] are also used when solving the OPF problem
by heuristic optimization algorithms. In general, these
methods are successfully applied in the OPF problem.
However, the solution of these algorithms often falls into the
local optimum for the large-scale power system.

So, in order to improve the solution quality and effi-
ciency of the metaheuristic methods, the hybrid and im-
proved algorithms have been proposed to solve the OPF
problem [22–30]. �e goal of the hybrid algorithms is to
achieve optimal balance between exploration and exploi-
tation strategy. In [22], a hybrid (SFLA-SA) algorithm of
simulated annealing algorithms (SFLAs) with the probabi-
listic shuffle jump characteristic of the shuffled frog algo-
rithm (SA) is proposed to avoid stagnation at the local
solution of SFLA. In [23], the hybrid (PSO-GSA) algorithm
is proposed for the OPF problem by combining the social
thinking ability in PSO and the local search ability of GSA to
reach the better solution quality compared to PSO. In [24],
the hybrid algorithm between cuckoo search algorithm
(CSA) and sunflower algorithm (SFO) (HCSA-SFO) is
proposed, wherein the Lévy flight function of CSA has been
replaced by themutation and selectionmechanism of SFO to
reach the higher solution quality and shorter executed time
over CSA. Many studies have been proposed in recent years
with aims of improving exploration performance or the
solution quality by using random jumps of Lévy flight or
mutation vector to increase diversity of population such as
the improved grey wolf optimizer (DGWO) [25], modified
honey bee mating optimization (MHBMO) [26], and skip
shuffle modification (MSFL) [27]. An improved moth-flame
optimization algorithm (IMFA) for solving optimal power
flow problem is proposed in [28]. In [29], the improved
collision object optimization (ICBO) algorithm is proposed
by using three colliding objects instead of two objects

collision as the original algorithm. A modified imperialist
competitive algorithm (MICA) with a review of the imperial
power mechanism to promote global optimization has been
proposed in [30] to improve the simulation time as well as
the optimal solution. �ese hybrid or improved algorithms
in general have yielded significant performance compared to
the original version in terms of obtained solution quality as
solving the OPF problems which have many local
optimizations.

Nowadays, renewable energy sources (RESs) including
wind power and solar energy are gradually replacing con-
ventional thermal power plants due to advantages of these
energy sources. Integrating wind and solar power on the
traditional grid can have significant impact on the efficiency
of power system operation. However, they have posed many
difficulties in planning and operating the power system due
to their uncertain and discontinuous nature. �erefore,
solving the optimal power system (OPF) problem to min-
imize the objective functions in the power system containing
traditional power plants and renewable energy power plants
is one of the important tasks for the independent operator
system.

Several published papers related to the OPF problem in
the power system including conventional power plants and
renewable energy power plants have been presented in re-
cent years. Optimization methods are widely used to solve
problems related to penetration of renewable energy. A
hybrid Harris hawks optimizer for integration of renewable
energy sources considering stochastic behavior of energy
sources is proposed in [31]. In [32], authors have been
proposed differential evolutionary particle swarm optimi-
zation to deal with optimal power flow of power systems
with controllable wind-photovoltaic energy systems. A
barnacle mating optimizer (BMO) has been proposed to
solve the optimal power flow (OPF) problem with and
without renewable energy sources [33]. �e effectiveness of
the proposed BMO in solving the OPF is tested on a
modified IEEE-30 bus system that is integrated with solar PV
farms. In [34], authors have been proposed an algorithm
hybrid based on combination of phasor particle swarm
optimization and a gravitational search algorithm
(PPSOGSA) for the OPF in power systems with an inte-
grated wind turbine (WT) and solar photovoltaic (PV)
generators. �e forecasted active power of WT and PV are
considered as dependent variables in the OPF formulation,
while the voltage magnitude at WT and PV buses is con-
sidered as control variables. Forecasting the output power of
WT and PV generators is based on the real-time mea-
surements and the probabilistic models of wind speed and
solar irradiance. In [35], the authors have been used the
genetic algorithm (GA) and the two-point estimation
method to solve the OPF problem integrating wind and solar
energy. A hybrid method of moth swarm algorithm and
gravitational search algorithm (HMSAGSA) is used to solve
OPF problems including wind energy [36]. �e improved
two-point estimation method is proposed to solve the OPF
problem combining wind and photovoltaic cells [37]. A self-
adaptive evolutionary programming (SAEP) [38] is applied
to solve OPF with combined wind energy. A number of
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other algorithms are proposed to solve OPF problems with
integrated renewable energy sources as introduced in
[39–46]. In general, these methods are applied in the OPF
problem with RES. However, the simulation results only are
tested on IEEE 30 bus system with RES while the IEEE 118
bus system is tested without RES.

Recently, an algorithm equilibrium optimizer (EO) is
developed by Faramarzi et al. [47]. �e EO has fast con-
vergence ability, but it is also easy to fall in local minima. In
order to overcome the limit, this paper is proposed an
improved equilibrium optimizer algorithm (IEO) for solving
the OPF problem with integrated renewable energy sources.
In the IEO, the exponential term is replaced by a function
that does not dependent on the number of iterations. �is
modification of the IEO algorithm increases exploration
ability compared to the EO algorithm. In addition, the
exploration of the IEO algorithm will not decrease according
to the number of iterations that avoid to get stuck at the local
optimal solution. �e proposed IEO method is tested on the
modified IEEE 30-bus and 118-bus systems with RESs, and
simulation results are compared with many other methods.
�e simulation results obtained show that the proposed IEO
algorithm provides quality solution and stability ability with
other objective functions. �us, the proposed method is an
alternative approach quite promising for solving optimal
power flow problems. �e main contributions in this paper
are as follows:

A new improved IEO algorithm for solving OPF
problem with RES, which improves quality solution
and stability level, is proposed in this paper.
A simple probabilistic formula for calculating RES
output power based on the Monte-Carlo simulation
model is proposed to reduce the computation time for
the OPF with RES.
A modified IEEE 118-bus system with wind and solar
power plants is introduced in this paper.

�e remaining organization of the paper is done as
follows. Section 2 includes the mathematical model related
to the OPF problem. In Section 3, uncertainty modelling of
wind and solar power outputs is presented. Section 4 de-
scribes EO and IEO algorithms and the application of the
IEO algorithm for the OPF problem. Section 5 gives sim-
ulation results. Finally, the conclusion is given in Section 6.

2. Problem Formulation

�e two IEEE 30-bus and IEEE 118-bus systems integrating
of wind and solar energy are considered in this study. �e
wind and solar power output are scheduled as like other
fossil energy sources. However, the uncertainty of the RES
output should require a combination of all generator outputs
and reserve outputs for the system to operate in a balanced
manner under all circumstances. �erefore, the total cost of
generation includes fuel costs for fossil fuel generators,
direct costs that ISO buys electricity from RES suppliers,
penalty costs, and reserve costs. �e generation cost models
are described in the following sections.

2.1. Cost of Wind and Solar Photovoltaic Power. Wind or
solar energy is a random quantity. �erefore, it is difficult to
establish an accurate cost model for these energy sources.
�e authors in [41] have been introduced a model of costs
for RES energy sources which is owned by ISO, no fuel costs.
However, the excess or lack of this energy at a time is related
to the overall operation cost of the power system. �us, the
correctly assessment of the scheduled capacity compared to
the actual capacity of the RES sources will reduce the op-
eration costs of the power system. �ere are two cases when
constructing of the cost function for the RES sources. �e
actual capacity of the RES is less than the scheduled capacity,
and the independent system operator (ISO) must dispatch
power from other plants to make up for the shortfall of these
sources. �e cost of committing the reserve generating
plants to meet over estimated amount is termed as reserve
cost. Opposite, the scheduled capacity is less than the actual
power of the RES, and the surplus power of RES will be
wasted. �is case needs to reduce power output from
conventional generators if not possible to utilize RES. �e
ISO is required to pay a penalty cost corresponding to the
surplus amount of RES.�e steps to calculate the production
cost of RES are described as shown in Figure 1.

2.1.1. Direct Cost of Wind and Solar Photovoltaic Power.
Normally, wind or solar farms are owned by private oper-
ators. �erefore, the grid operator ISO incurs the cost of
scheduled purchases of electricity from these private oper-
ators, and this cost is treated as a direct cost.

�e direct cost of the jth wind power plant in terms of
scheduled power is modelled as follows:

Cw,j Ps.wind,j􏼐 􏼑 � gjPs.wind,j, (1)

where gj is coefficient of direct cost and Ps.wind,j is
scheduled power of the jth wind power plant.
�e direct cost of the kth solar power plant in terms of
scheduled power is modelled as follows:

Cs,k Ps.solar,k􏼐 􏼑 � hkPs.solar,k, (2)

where hk is the direct cost coefficient and Ps.solar,k is the
scheduled power of the kth solar power plant.

2.1.2. Penalty Costs of Wind and Solar Plants. �e overes-
timation of RES occurs when the actual power output is
lower than the scheduled power output. �erefore, ISO
needs to mobilize from other energy sources and additional
costs are incurred. �e incurred costs for this mobilization
are shown as follows:

Reserve cost for the jth wind plant is

CwL,j �KwL,j · fw,j Pwind,j <Ps.wind,j􏼐 􏼑

· Ps.wind,j − EPwind,j <Ps.wind,j
Pwind,j􏼐 􏼑􏼒 􏼓,

(3)
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where CwL,j is the incurred cost for the shortfall of wind
power output, Pwind,j is the actual capacity of the wind
farm that is less than the scheduled capacityPs.wind,j,
fw,j(Pwind,j <Ps.wind,j) is probability of wind power
shortage, EPwind,j <Ps.wind,j

(Pwind,j) is the scheduled wind
power output according to Pwind,j <Ps.wind,j, the
scheduled value of the left half-plane in Figure 2, and
KwL,j is the coe�cient of the incurred cost.
Reserve cost for the kth solar plant is

CsL,k � KsL,k · fs,k Psolar,k <Ps.solar,k( )

· Ps.solar,k − EPsolar,k <Ps.solar,k
Psolar,k( )( ),

(4)

where CsL,k is the incurred cost for the shortfall of solar
power Ps.solar,k, Psolar,k is the scheduled and actual solar

power output, fs,k(Psolar,k <Ps.solar,k) is the probability
of a solar power shortageEPsolar,k <Ps.solar,k

(Psolar,k) is the
scheduled power output of solar below
Psolar,k <Ps.solar,k, the scheduled value of the left half-
plane in Figure 3, and KsL,k is the coe�cient of the
incurred costs.

2.1.3. Opportunity Cost of Wind and Solar Power Surplus.
Similarly, the underestimation of RES occurs when the
actual energy is higher than the estimated value. As a result,
ISO incurs a penalty fee. �is cost can be expressed as
follows:

Penalty cost for the underestimation of jth wind plant is
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CwH,j � KwH,j · fw,j Pwind,j >Ps.wind,j􏼐 􏼑

· EPwind,j >Ps.wind,j
Pwind,j􏼐 􏼑 − Ps.wind,j􏼒 􏼓,

(5)

where CwH,j is the penalty cost of wind power surplus,
fw,j(Pwind,j >Ps.wind,j) is the probability of a wind
power surplus, EPwind,j >Ps.wind,j

(Pwind,j) is the scheduled
of power wind output under Pwind,j >Ps.wind,j, the
scheduled value of right half-plane in Figure 2 (in kW),
and KwH,j is penalty cost of wind power surplus.
Penalty cost for the underestimation of kth solar plant is

CsH,k � KsH,k · fs,k Psolar,k >Ps.solar,k􏼐 􏼑

· EPsolar,k >Ps.solar,k
Psolar,k􏼐 􏼑 − Ps.solar,k􏼐 􏼑,

(6)

where CsH,k is the penalty cost of the solar surplus,
fs,k(Psolar,k >Ps.solar,k) is the probability of a solar
surplus; EPsolar,k >Ps.solar,k

(Psolar,k) is the scheduled of solar
power output under Psolar,k >Ps.solar,k, the scheduled
value of right half-plane in Figure 3 (in kW), and KsH,k

is penalty cost of solar surplus.
�e total cost of wind power generated from a wind
farm and solar power is described as follows:

Cwind � 􏽘

Nwind

j�1
Cw,j Pws,j􏼐 􏼑 + CwL,j + CwH,j􏼐 􏼑,

Csolar � 􏽘

Nsolar

k�1
Cs,k Pss,k􏼐 􏼑 + CsL,k + CsH,k􏼐 􏼑.

(7)

2.2. Objective Function. In the study, three different ob-
jective functions including generation cost, total emission,
and power losses are considered in the OPF problem in-
tegrating wind and solar power on the traditional grid.

2.2.1. Generation Cost.

FC � FC + Cwind + Csolar· (8)

where FC is cost function of thermal power generators.
Cwind, Csolar are the costs of wind and solar energy,
respectively.

Fuel costs for thermal power plants using fossil fuels can
be approximated according to the quadratic function as
follows:

FC � 􏽘

NTG

i�1
ai + biPTGi + ciP

2
TGi􏼐 􏼑 ·

$

h
􏼠 􏼡. (9)

In fact, thermal power generators with multivalve steam
turbines exhibit a greater variation in the fuel-cost functions.
�erefore, the valve-point effect in terms of absolute value of
the sinusoidal function needs to be considered in formula
(9):

FC � 􏽘

NTG

i�1
ai + biPTGi + ciP

2
TGi + di + sin ei · P

min
TGi − PTGi􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ·
$

h
􏼠 􏼡,

(10)

where ai, bi, ci, di, and ei are fuel cost coefficients of the ith

generator, while NTG represents the total number of thermal
power plants.

2.2.2. Total Emission. �e total emissions FE (ton/h) of
thermal power plants are given by

FE � 􏽘

NTG

i�1
αi + βiPTGi + ciP

2
TGi􏼐 􏼑 + ξi exp λiPTGi( 􏼁 ·

ton
h

􏼒 􏼓,

(11)

where αi, βi, ci, ξi, and λi are emission factors of ith thermal
power plant.

2.2.3. Total Transmission Loss. �e total power loss Ploss in
the transmission network can be calculated according to the
following formula:

Ploss � 􏽘

NG

i�1
PGi − 􏽘

NL

j�1
PLj(MW). (12)

2.3. Constraints

2.3.1. Equality Constraints. Constraints on real and reac-
tive power balance:

PGi − PLi � Vi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

NB

j�1
Yij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 Vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌cos δi − δj − θij􏼐 􏼑,

QGi − QLi � Vi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

NB

j�1
Yij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 Vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌sin δi − δj − θij􏼐 􏼑.

(13)

2.3.2. Inequality Constraints. �e limits of power
generation:

PGi,min ≤PGi ≤PGi,max, i � 1, 2, . . . , NG, (14)

QGi,min ≤QGi ≤QGi,max, i � 1, 2, . . . , NG. (15)

�e limits of generator voltage bus and load voltage
bus:

VGi,min ≤VGi ≤VGi,max, i � 1, 2, . . . , NG, (16)

VLj,min ≤VLj ≤VLj,max, j � 1, 2, . . . , NL. (17)

�e limits of transmission line:

Sl ≤ Sl,max, l � 1, 2, . . . , NLine. (18)

�e limits of switchable capacitor capacity:

International Transactions on Electrical Energy Systems 5



Qci,min ≤Qci ≤Qci,max, i � 1, 2, . . . , NC. (19)

�e limits of transformer tap:

Tk,min ≤Tk ≤Tk,max, k � 1, 2, . . . , NT. (20)

3. Uncertainty and Power Model of Wind and
Solar PV Power Plants

3.1. Uncertainty and Power Model of Wind Power Plants.
Unlike conventional thermal power generators, the char-
acteristic of the output power generated by the wind turbine
is a random variable depending on wind speed. �e wind
speed distribution follows the Weibull probability density
function with a scale factor (C) and a shape factor (k). �e
probability of wind speed v (m/s) is given by

fv(v) �
k

C
( )

v

C
( )

(k− 1)
e− (v/C)

k

for 0≤ v< +∞. (21)

�e average wind speed is determined by

Mean(v) � C · Γ 1 + k− 1( ), (22)

where Γ(x) is gamma function and is described as follows:

Γ(x) � ∫
∞

0
e− ttx− 1dt. (23)

Wind speed following the Weibull distribution can be
calculated as follows:

v � C · (− ln(r))1/k, (24)

where r is a random number uniformly distributed in the
range [0,1].

Figures 4 and 5 show the best �t of the Weibull dis-
tribution and the frequency of wind output at bus 5 and bus
11 using 10000 Monte-Carlo scenarios, respectively. In the
study, the value of the shape parameter (k) and scale pa-
rameter (C) for the simulation of wind farms is chosen as
reference [41]. For the modi�ed IEEE-30 bus system, C� 9
and C� 10 are assumed for two wind farms located at bus 5
and bus 11.�e average wind speed of the two farms is 7,976
(m/s) and 8,862 (m/s), respectively, which is completely
consistent with the design standards for wind turbine in-
stallations speci�ed in [48], when the maximum allowable
average wind speed is 10m/s.

Relationship between power output of wind turbine and
wind speed (v) is described as

Pwind(v) �

0, for v< vin and v> vout,

Pwr
v − vin
vr − vin
( ), for vin < v< vr,

Pwr, for vr < v< vout,




(25)

where vin, vout, and vr are the cut-in wind speed, cut-out
wind speed, and rated wind speed of the turbine, respec-
tively. �e rated output power of the wind turbine is Pwr.

According to formula (25) and the frequency distribu-
tion of wind speed, the distribution of power output of the
wind farm at bus 5 can be described by the frequency
distribution graph as shown in Figure 2. �e dotted line
shows the scheduled output power needed to supply to the
grid.

3.2. Uncertainty and Power Model of Solar PV Power Plants.
Similarly, the power model of wind plants, the random
nature of solar radiation (H) is modelled according to a log-
normal distribution function. �e solar irradiance proba-
bility depends on the standard deviation (µ) and the mean
(σ) as follows:
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Figure 4: Wind speed distribution for wind farm #1 at bus 5 (C� 9,
k� 2).
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Figure 5: Wind speed distribution for wind farm #2 at bus 11
(C� 10, k� 2).
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fH(H) �
1

Hσ
���
2π

√ e− (log(H)− μ)2/2σ2( ). (26)

�e average solar irradiance is determined by

Mean(H) � e μ+ σ2/2( )( ). (27)

Figure 6 shows the �t between the log-normal distri-
bution curve and the solar radiation frequency using 10000
Monte-Carlo scenarios. �e solar irradiance (H) to energy
conversion for solar PV is given by

Psolar(H) �

Psr
H2

HstdRc
( ), for 0<H<Rc,

Psr
H
Hstd
( ), forH≥Rc,




(28)

where Hstd is the solar irradiance in standard environment,
Rc is a certain irradiance point, and Psr is the rated output
power of the solar PV unit. In this study, Hstd andRc are set
to 800 (W/m2) and 120 (W/m2), respectively [41].

Similar to the wind farm, the distribution of power
output from the solar power plant at bus 13 can be depicted
by a histogram as shown in Figure 3.

3.3. Conditional Probabilities of Wind and Solar Energy
Sources. In this paper, the calculation probability of wind
power is proposed as equation (29). Based on the number of
RES output power samples obtained from Monte-Carlo
simulation, we can calculate the probability of the RES
output power when the RES output power is smaller or
larger than the scheduled capacity. �e probability of RES
output power is described as follows:

fx(A<K orA>K) �
∑P(A<K of A>K)

NMontecarlo
, (29)

where X set is the output power of the RES determined
through Monte-Carlo simulation, K is the scheduled power
obtained from the algorithm’s solutions, fx(A<K of A>K)
is the probability that the RES power is less than or greater
than the scheduled power value K, and NMontecarlo is the
number of Monte-Carlo samples.

4. Proposed Optimization Algorithm

4.1. Equilibrium Optimizer Algorithm. �e equilibrium
optimizer (EO) algorithm [47] is based on determining the
dynamic equilibrium for the mass equilibrium model. �e
mathematical formula is described as follows:

G
dX
dt

� QXeq − QX + P, (30)

where matter concentration (X) represents the optimized
search space. In the EO algorithm, the new particle con-
centration is updated based on the equilibrium concentra-
tion group Xeq, the exponential E, and the rate of generation
P.�e four main stages of EO can be summarized as follows.

4.1.1. Initialization. In this stage, the concentration of a
particle is randomly initialized for the D-dimensional
problem and the number of Npop samples as follows:

Xi,j � rand[0, 1] · Xmax ,j − Xmin ,j( ) + Xmin ,j, (31)

where iε 1, 2, . . . , Npop{ }, jε 1, 2, . . . ,Dim{ } and rand [0, 1] is
a random number between 0 and 1.

4.1.2. Determine the Equilibrium Group. �e four candi-
dates in theXeq,i equilibrium are considered to contribute to
a better EO for exploration, while the average is for mining.
�e candidates at equilibrium including the four best so-
lutions in the current population are represented in the
following equation:

Xpool � Xeq1, Xeq2, Xeq3, Xeq4, Xavg{ }, (32)

where Xeq1, Xeq2, Xeq3, Xeq4 is the best, second best, third
best, and fourth best solution in the population; Xavg is the
average candidate (average solution) of the four best indi-
viduals and obtained by the following equation:

Xavg �
Xeq1 + Xeq2 + Xeq3 + Xeq4

4
. (33)

4.1.3. Exponential Term (E). �e exponential term (E) is one
of several that changes over time that will help EO strike the
right balance between exploration and exploitation:

E � α1sign(r − 0.5) · e− ψt − 1( ). (34)

Here, time is de�ned as a change function of repetition
(It) and maximum number of iterations (Max_It), and ψ has
a value in the range [0, 1]:

t � 1 −
It

Max It
( )

α2(It/Max It)( )
. (35)
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Figure 6: Solar irradiance distribution from solar power plant at
bus 13 (µ� 6, σ � 0.6).
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α1, α2 are the two parameters that manage the explo-
ration and exploitation capabilities of the algorithm.

4.1.4. Generation Rate P. As one of the most important
terms in the proposed algorithm to provide the correct
solution by improving the exploitation phase,

P � P0E, (36)

where P0 is the initial value de�ned as follows:

P0 � PM Xeq − ψX( ), (37)

PM �
0.5r1, r2 ≥EP,
0, r2 ≤EP,

{ (38)

in which, r1, r2 are random values in the range [0, 1] and EP
is a parameter that adjusts the exploration or exploitation
ability of the algorithm EP� [0,1]. EP� 1, the algorithm only
implements the exploration phase, leading to the di�culty of
�nding a globally optimal solution. When EP� 0, the al-
gorithm implements the exploitation phase, which easily
leads to a local optimal search. �erefore, to balance ex-
ploration and exploitation, the EP value is chosen to be 0.5.

Finally, updating the concentration in the algorithm
(EO) will be as follows:

Xk+1 � Xeq + Xk − Xeq( )E +
P

ψG
(1 − E). (39)

Xeq is the random choice in equilibrium pool and G is
considered as unit index, which is normally set to 1.

4.2. Improved Equilibrium Optimizer Algorithm (IEO).
�e exploration and exploitation in the optimal algorithm
greatly impact the solution result. �e unbalance between
the exploration and exploitation strategy of the algorithm
easily leads to fast convergence (nonoptimal solution
quality), or slow convergence, and it takes a long time to �nd

a good solution. �erefore, the balance between exploration
and exploitation during the optimal search of each algorithm
is extremely important. In the EO algorithm, the exponential
term E is de�ned as balance between exploration and
exploitation.

However, this balance is not uniform throughout the
optimization process. �e way to generate the exponential
term (E) from formulas (34) and (35) shows that the term (E)
is dominated by the number of iterations. �e relationship
between the value of (E) and the number of iterations is
shown in Figure 7. �e size of the received limit region of E
gradually decreases to zero as it approaches Max_It. �is
means that the algorithm’s exploration will decrease
according to the number of iterations. So, the result gets
stuck at the local optimal solution. Although the coe�cient
(ψ) in equation (39) plays a role in helping (EO) to induce
the mutation, the probability of mutation is very low since
the coe�cient ψ must be relatively small. �erefore, to strike
a balance between the exploration and exploitation capa-
bilities of the EO, this paper is proposed two adjustments for
creating the new solution. First, replace the exponential term
(E) in EO with the random value given by equation (40).�e
periodicity of the sine function allows the creation of a
solution around the previous solution. �is helps exploit the
space between the two solutions. In addition, when the
component of 3/2.rand.sign (rand-0.5) has a value >1, it
helps the algorithm to explore the space outside two
solutions:

E � 3/2 · rand · sign(rand − 0.5)sin(rand). (40)

Furthermore, to increase the exploitation ability around
the best solution of IEO, equation (41) is proposed to
generate solutions that locate near the best equilibrium
solution. �e probability of a solution that is generated by
this technique or the technique described from equations
(34) to (38) is the same:

Xk+1 � Xk
eq1 + rand · randp1 X

k
pool( ) − randp2 X

k
pool( )( ),

(41)

where rand is a vector of size [1 dim] containing random
values distributed over the interval [0, 1], and randp1(Xk

pool)
and randp2(Xk

pool) are random individuals in the equilib-
rium pool population of kth loop.

�e implementation of the proposed IEO algorithm to
solve the OPF problem can be summarized as follows.

To apply the algorithm (IEO) to the OPF problem, each
candidate is a vector consisting of control variables such as
the scheduled power of the generators (excluding the slack
generator) and the voltage at generator buses:

Xi,j � PG2, . . . , PGNG
, VG1, . . . , VGNG

[ ], i

� 1, . . . , Npop and j � 1, . . . , D.
(42)

Initially, each candidate is randomly generated in the
upper and lower values as expression (31). �e upper and
lower values in expression (31) are taken from expressions
(14) and (16).
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Step 1. Determine the system data including branch and bus
data as well as the limits of buses voltage, branches power,
and generators power.

Step 2. Set the parameters for the algorithm IEO including
population size Npop, maximum number of iterations Max-
It, and number of simulation samples Monte-Carlo.

Step 3. Calculate NMontecarlo sample Monte-Carlo, for wind
speed and solar radiation according to Weibull and Log-
normal distributions respectively. �en, using equations
(25) and (28), calculate the power sample set PWind and
PSolar, respectively.

Step 4. Randomly initialize the Npop initial candidates
using equation (29). With the control variable found in
equation (42).

Step 5. Set up four equilibrium candidates and assume each
candidate’s target is extremely large.

Step 6. Use the Matpower toolbox to run the power flow for
each candidate, and evaluate the corresponding objective
function for each candidate as in equation (8), (11), or (12).
In this study, the penalty coefficient method is used for
inequality constraints to reject unfeasible solutions. �e new
objective function will be redefined through the objective
functions combined with the penalty function given by (43).
�e penalty function for all state variables in the OPF
problem is as follows:

Fobj � F FC, FE, Ploss( 􏼁 + Penalty, (43)

Penalty � λPsl
Psl − P

lim
sl􏼐 􏼑

2
+ λQ􏽘

NG

i�1
QGi − Q

lim
Gi􏼐 􏼑

2

+ λV􏽘

NL

j�1
VLj − V

lim
Lj􏼐 􏼑

2
+ λL 􏽘

NLine

l�1
Sl − S

lim
l􏼐 􏼑

2
,

(44)

where λPsl
, λQ, λV, λL are the penalty coefficients for the real

power at the slack busPsl, reactive power at all generator
buses QGi, voltage magnitude at all load bus VLj, and ap-
parent power transmitted on branchesSl,
respectively.Plim

sl , Qlim
Gi , Vlim

Lj , Sliml are the limits of the above
variables, respectively.

Step 7. Update candidates in the balance group using
equations (32) and (33)

Step 8. Update the respective candidate for the best solution
XBest �Xeq1.

Step 9. Update the new candidates as follows:

X
k+1

�
using to Eq.(36)fromEq.(40), if rand< 0.5,

using Eq.(41), otherwise.
􏼨

(45)

Step 10. Update the candidate limit according to

X
k+1
i

Xmin ,i, if X
k+1
i <Xmin ,i,

Xmax ,i, if X
k+1
i >Xmax ,i,

X
k+1
i , otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

i � 1, . . . , D. (46)

Step 11. �e new candidate will be kept to replace the old
candidate, if the objective function value is better, otherwise,
it will be discarded.

Step 12. Repeat Steps from 6 to 11 until the Stopping
Condition Is Satisfied

Step 13. �e candidate with the smallest objective function
value is considered the optimal solution.

5. Simulation Results

�e proposed IEO algorithm is tested on the IEEE 30-bus
and IEEE 118-bus systems [49, 50]. �e simulation results
are done using MATLAB software and performed on a
computer with Intel Core i5 CPU@ 2.7GHz and 4GB RAM.
�e study cases and control parameters of algorithms are
described in Table 1, 2, respectively.

5.1. %e Modified IEEE-30 Bus Test System. �e data of the
modified IEEE 30-bus system are summarized in Table 3.
�e modified IEEE 30-bus system with RES is shown as
Figure 8. �e thermal power plants at bus 5, bus 11, and bus
13 are replaced by two wind farms and a solar power plant,
respectively. �e data of wind farms and solar power plant
are given in Table 4 [41]. In addition, the cost factors of RESs
for direct costs, penalty costs, and reserve costs are shown as
Table 5. �e cost and emission coefficients of thermal
generators for the IEEE 30-bus system are reported in Ta-
ble 6.�e simulation results of the proposed IEOmethod are
compared to AEO, ABC, CSA, TLBO, and EO methods and
the exiting other methods with three objective functions
including generator cost, total emission, and power loss. To
compare and evaluate methods, the study is based on criteria
as follows:

(1) Compared the minimum value obtained from the
methods with aims of evaluating the quality of the
best solutions. To clearly compare, an improvement
index (IF) of percentage is used:

IF(%)method �
min .of anothermethod − minof IEO

min .of anothermethod
.100%,

(47)

International Transactions on Electrical Energy Systems 9



where the IF index has a (+) sign which means that
the proposed method is better than other methods.
Opposite, the IF index has a (− ) sign which means
that the proposed method is not better than other
methods.

(2) Compared the standard deviation value with aims of
evaluating the stability of the methods

(3) Compared the simulation time. �e simulation of
methods depends on the two factors: the first, the
level of complexity in the way of creating new so-
lutions of methods. Each method has its own way to
generate a new solution, so the calculation time is
also different. With this factor, there has not been a
specific study that offers a suitable comparative so-
lution. �e second, comparing the total number of
solutions generated after the method meets the
stopping criterion. �e total number of solutions
generated depends on the number of populations

Table 1: �e description of study cases.

Section Implemented method Test system Objective function

5.1 EO, AEO, ABC, CSA, TLBO,
proposed IEO method IEEE 30-bus system

Minimize with RES
(1) generation cost
(2) total emission
(3) power loss

5.2 EO, AEO, ABC, CSA, TLBO,
proposed IEO method IEEE 118-bus system

Minimize generation cost
(1) without RES
(2) with RES

Table 2: �e control parameters of the algorithms for the study cases.

Methods
Control parameters value

Value Description
AEO — —
ABC FoodNumber�Np/2 Number of food sources
TLBO TF selected randomly between 1 and 2 —
CSA Pa� 0.25 Mutation probability
EO a1� 2, a2�1 GP� 0.5 —
IEO GP� 0.5 Mutation probability

Common parameters

Population size� 30 for all cases of IEEE 30-bus system.
Population size� 50 for all cases of IEEE 118-bus system.

Maximum number of iterations� 300 for all cases of IEEE 30-bus system.
Maximum number of iterations� 1000 for all cases IEEE 118-bus system.

Table 3: Summary of the modified IEEE 30-bus system.

Terms Quantity Details
Buses 30 [3, 49, 50]
Branches 41 [3, 49, 50]
Shunts 2 At bus 5 and bus 24
Transformers 4 At branch (6–9, 6–10, 4–12, 27–28)
�ermal generators 3 Buses: 1 (slack), 2, and 8
Wind generators 2 Buses: 5 and 11
Solar PV unit 1 Bus: 13

Control variables 11 Scheduled real power for 5 generators excluding the
one at the slack bus. Bus voltage of all generator buses (6 nos.)

Connected load 283.4 + j126.2 (MVA)
Generator bus voltage limits 6 [0.95–1.1] p.u.
Load bus voltage limits 24 [0.95–1.05] p.u.
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Figure 8: Modified IEEE 30-bus system with RES.
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and the maximum number of iterations. A study in
the literature [51] has shown that number of higher
population and iterations can significantly improve
quality solution, but simulation time will be longer.
Especially, for the OPF problem, each new solution is
performed by solving the power flow problem
through iterative methods. �is increases the sim-
ulation time when the number of solutions is more.
In general, the total number of solutions of the

methods is calculated according to one of the fol-
lowing three formulations:

TNFs � Npop ∗ (Max − It), (48)

TNFs � 2∗Npop ∗ (Max − It), (49)

TNFs � Npop + Nb􏼐 􏼑∗ (Max − It), (50)

Table 4: PDF parameters of wind and solar power plants for the IEEE 30-bus system.

Wind power generating plants Solar PV plant

Wind farm No. of
turbines

Rated power,
Pwr (MW)

Weibull PDF
parameters Weibull mean Rated power,

Psr (MW)
Lognormal PDF

parameters Lognormal mean

1-(bus 5) 25 75 C� 9, k� 2 v � 7.976m/s 50-(bus 13) µ� 6, σ � 0.6 H � 483(W/m2)

2-(bus11) 20 60 C� 10, k� 2 v � 8.862m/s

Table 6: Cost and emission coefficients of thermal generators for the IEEE 30-bus system.

Generator bus a b c d e α β c ξ λ
TG1 1 0 2 0.00375 18 0.037 4.091 − 5.554 6.49 0.0002 6.667
TG2 2 0 1.75 0.0175 16 0.038 2.543 − 6.047 5.638 0.0005 3.333
TG3 8 0 3.25 0.00834 12 0.045 5.326 − 3.55 3.38 0.002 2

Table 7: �e control parameters and optimal value obtained of the proposed IEO algorithm and other methods for the IEEE 30-bus system
with case 1.

Control parameters
Limits Case 1

Min Max AEO CSA TLBO ABC EO Proposed IEO
P1 (MW) 50 200 134.9051 134.9148 134.9086 134.9079 134.9079 134.9079
P2 (MW) 20 80 28.5464 27.7752 27.6340 27.3108 27.3404 27.8087
P5 (MW) 15 50 43.7470 44.2036 44.2176 44.4118 44.5123 44.0873
P8 (MW) 10 35 10.0034 10.0294 10.0041 10.0000 10.0000 10.0000
P11 (MW) 10 30 36.2741 36.6828 36.4583 36.7607 36.4178 36.2702
P13 (MW) 12 40 35.9285 35.8012 36.1450 35.9642 36.1761 36.3030
V1 (p.u.) 0.95 1.1 1.0630 1.0817 1.0647 1.0704 1.0622 1.0766
V2 (p.u.) 0.95 1.1 1.0462 1.0636 1.0469 1.0533 1.0457 1.0592
V5 (p.u.) 0.95 1.1 1.0206 1.0395 1.0220 1.0287 1.0223 1.0338
V8 (p.u.) 0.95 1.1 1.0216 1.0283 1.0216 1.0262 1.0215 1.0299
V11(p.u.) 0.95 1.1 1.0998 1.0850 1.1000 1.0943 1.0999 1.0887
V13(p.u.) 0.95 1.1 1.0549 1.0421 1.0532 1.0497 1.0553 1.0494
Fuel cost — — 440.7292 438.3081 437.7190 436.6351 436.7325 438.2770
Wind cost — — 243.3587 246.3213 245.6025 247.3081 246.4845 44.5129
Solar cost — — 97.9940 97.5707 98.7158 98.1128 98.8197 99.2444
Total cost ($/h) — — 782.082 782.2001 782.0373 782.0560 782.0367 782.0343
Total emissions 0.1601 0.1603 0.1604 0.1604 0.1604 0.1603
PLoss (MW) — — 6.0044 6.0070 5.9677 5.9554 5.9545 5.9771

Table 5: Energy source cost factor (RES) for the IEEE 30-bus system.

Cost factor for RES
Wind power generating plants Solar PV plant

(bus 5) (bus 11) (bus 13)
Direct cost factor 1.6 1.75 1.6
Penalty cost factor 1.5 1.5 1.5
Reserve cost factor 3 3 3
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where formulation (48) is applied to calculate TNFs
for methods that generate a new solution in each
iteration such as EO or IEO. Equation (49) is applied
to methods that generate 2 new solutions in each
iteration such as CSA, AEO, TLBO, or ABC. For-
mulation (50) applies to methods with probability of
creating 2nd solution in each iteration such as ISSO.
Nb is the number of second solutions generated in
each iteration, and it is not a �xed value in each
iteration. �e methods, which calculate TNFs
according to formulation (50), will normally calcu-
late the average value of Nb in the total number of
runs, from which the TNFs value will be calculated.

Case1. Generation cost minimization
In this case, the fuel cost for the thermal power gen-

erators is minimized based on formula (10). Table 7 presents
the control parameters and optimal value obtained using the
AEO, CSA, TLBO, ABC, and EO algorithm and the pro-
posed IEO method with objective of fuel cost. Table 8

provides the best, worst, average, and standard deviation
results of the AEO, CSA, TLBO, ABC, and EO and the
proposed IEO method after 50 independent runs. It can be
noted that from Table 8, the total fuel cost minimization of
methods SHADE-SF [41], JS [42], GWO [43], FPA [44],
GWO [45], and MFO [46] give better results than the IEO
method in terms of the best result. However, the voltage at
the load buses is violated voltage limit. �e voltage limit at
the load buses of these methods is considered in [0.95
p.u.–1.1 p.u.], while the voltage limit at the load buses of the
proposed IEO method is [0.95 p.u.–1.05 p.u.]. Furthermore,
to obtain the best value, these methods are used the number
of solutions lager than the number of solutions of the
proposed IEO method from 1,667 to 16,667 times, equiv-
alent to 15000 solutions for GWO [45] and 150000 solutions
for SHADE-SF [41] and FPA [44]. �e �ve remaining
methods, which are listed in Table 8, have the same system
data. It is a necessary condition for the evaluation of so-
lutions to be fair. �e result in Table 8 shows that the total
fuel cost is achieved 782.0343 ($/h) using the IEO algorithm,
which are better than EO (782.0367 $/h), AEO (782,082 $/h),

Table 8: �e obtained results of the proposed IEO method and other exiting methods for the IEEE 30-bus system after 50 runs with case 1.

Method Min Average Max SD Npop Max-it TNFs CPU times (s) IF (%)
SHADE-SF [41] 782.503 — — — — — 24000 — +0.059897
JS [42] 781.6387 — — — 100 1000 100000 — −0.0506116
GWO [43] 781.40 — — — 30 1000 30000 429 −0.0811748
CSA [43] 784.77 — — — 30 1000 30000 668 +0.348599
ABC [43] 783.81 — — — 30 1000 30000 704 +0.226547
FPA [44] 777.3298 — — — 30 5000 150000 — −0.6052129
GWO [45] 780.995 — — — 30 500 15000 — −0.1330738
MFO [46] 780.485 — — — 40 500 20000 — −0.1985048
AEO 782.082 782.3551 782.8942 0.1982 30 300 18000 53.01 +6.099E-03
CSA 782.2001 782.5745 783.0720 0.1943 30 300 18000 47.18 +0.021196
TLBO 782.0373 782.3001 785.1228 0.5949 30 300 18000 52.95 +3.8361E-04
ABC 782.0560 782.3940 784.8091 0.5875 30 300 18000 44.48 +2.7747E-03
EO 782.0367 782.7271 789.3457 1.4318 30 300 9000 17.21 +3.0689E-04
Proposed IEO 782.0343 782.0918 782.2878 0.0396 30 300 9000 14.73 0
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CSA (782.2001 $/h), TLBO (782.0373 $/h), and ABC
(782.0560 $/h) methods. IF (%) of all methods are (+) sign. It
indicates that the proposed IEO method has better im-
provement in the quality of the optimal solution with shorter
time from 2 to 2.67 times compared to EO, AEO, CSA,
TLBO, and ABC methods. In addition, the evaluation of the
stability level of themethods is also carried out.�e results of
the fuel cost target with the minimum value obtained in 50
runs using IEO and other methods are also given in Table 8
and Figure 9. From Figure 9 and the standard deviation
values in Table 8, the IEO has higher stability than other
methods.�e standard deviation value of the IEO (0.0396) is
lower than EO (1.4318), AEO (0.1982), CSA (0.1943), TLBO
(0.5949), and ABC (0.5875). �e convergence speed of the
IEO and other methods is shown in Figure 10. As observed,
the convergence speed curve of IEO and EO shows that the
EO converges earlier than the IEO. However, the EO tends
to fall into the local optimum. It can be seen in Figure 10 that
from the 250th iteration to the end of the iteration, the EO
could not generate a better new solution. Meanwhile, the
proposed IEO method still creates many new and better
solutions from the 250th iteration to the end of the iteration.
In addition, it is noted that using formula (31) in this study
to calculate the indirect penalty cost and the reserve cost of
the RES greatly reduces the optimal calculation time. As
observed from Table 8, the run time of the proposed IEO

method is 14.73 s which is smaller than the AEO (53.01 s),
CSA (47.18 s), TLBO (52.95 s), ABC (44.48 s), and EO
(17.21 s) methods.

Table 9: �e obtained results of the proposed IEO method and other exiting methods for the IEEE 30-bus system after 50 runs with case 2.

Method Min Average Max SD TNFs CPU times (s) IF (%)
AEO 0.091059953 0.091061197 0.091084359 8.42e − 02 18000 54.61 +9.598e − 9
CSA 0.091060033 0.091061869 0.091066950 1.93e − 06 18000 45.58 +8.684e − 5
TLBO 0.091059966 0.091060119 0.091061027 1.79e − 07 18000 54.65 +1.396e − 5
ABC 0.091063397 0.091236106 0.091824601 1.65e − 04 18000 46.61 +3.782e − 3
EO 0.091059953 0.091399058 0.099533732 1.68e − 03 9000 16.64 +7.964e − 9
Proposed IEO 0.091059953 0.091060288 0.091062167 5.38e − 07 9000 13.28 0

Table 10: �e control parameters and optimal values obtained from the algorithms for the IEEE 30-bus system with case 2.

Control parameters
Limits Case 2

Min Max AEO CSA TLBO ABC EO IEO
P1 (MW) 50 200 50.0000 50.0007 50.0001 50.0270 50.0000 50.0000
P2 (MW) 20 80 46.6298 46.6219 46.6227 46.4385 46.7613 46.6378
P5 (MW) 15 50 58.6991 71.2959 74.9598 46.9926 52.1059 64.9722
P8 (MW) 10 35 35.0000 35.0000 35.0000 35.0000 35.0000 35.0000
P11 (MW) 10 30 58.7034 42.0089 60.0000 58.2529 53.7063 56.0415
P13 (MW) 12 40 38.0266 42.4524 20.3004 50.0000 49.9796 35.5051
V1 (p.u.) 0.95 1.1 1.0554 1.0745 1.0548 1.0615 1.0754 1.0989
V2 (p.u.) 0.95 1.1 1.0411 1.0596 1.0304 1.0459 1.0364 1.0554
V5 (p.u.) 0.95 1.1 1.0093 1.0364 0.9834 1.0186 0.9978 1.0266
V8 (p.u.) 0.95 1.1 0.9900 1.0039 0.9825 1.0152 1.0034 0.9982
V11 (p.u.) 0.95 1.1 1.0285 0.9500 1.0546 1.0926 1.0609 1.0095
V13 (p.u.) 0.95 1.1 1.0785 1.0752 1.0446 1.0582 1.0098 1.0403
Fuel cost — — 377.3874 377.3601 377.3616 376.7612 377.8749 377.4170
Wind cost — — 388.7138 373.3715 463.5692 341.7264 341.0717 403.1322
Solar cost — — 105.1171 120.9926 57.6198 150.2402 150.1583 96.5911
Total cost ($/h) — — 871.2182 871.7242 898.5506 868.7278 869.1050 877.1403
Total emissions 0.09105995 0.09106003 0.09105996 0.09106339 0.09105995 0.09105995
PLoss (MW) — — 3.6589 3.9798 3.4830 3.3110 4.1532 4.7565
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Figure 11: �e emission after 50 runs of IEO and other methods
for the IEEE 30-bus system.
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Case 2. Generation emission minimization
�e best, worst, and average value, and standard devi-

ation after 50 independent runs are shown as Table 9. Ta-
ble 10 presents the control parameters and optimal values of
the AEO, CSA, TLBO, ABC, and EO methods and the

proposed IEOmethod. As observed from Table 10, the AEO,
TLBO, and EO algorithm, and the IEO method obtained
total emission of 0.091059953 (ton/h). Meanwhile, the CSA,
TLBO, and ABC algorithms have the best emissions of
0.091060033 (ton/h), 0.091059966 (ton/h), and 0.091063397
(ton/h), respectively. In general, for total emissions target,

Table 11: �e control parameters and optimal values obtained from the IEO and other methods for the IEEE 30-bus system with case 3.

Control parameters
Limits Case 3

Min Max AEO CSA TLBO ABC EO IEO
P1 (MW) 50 200 50.0000 51.2286 50.0000 50.2162 50.0000 50.0010
P2 (MW) 20 80 29.4940 23.7634 26.5574 26.7452 25.8421 26.3951
P5 (MW) 15 50 74.9430 74.8910 74.9998 75.0000 74.9969 75.0000
P8 (MW) 10 35 34.8609 35.0000 34.9995 35.0000 34.9894 35.0000
P11 (MW) 10 30 57.0431 58.5492 57.9401 60.0000 58.2962 57.9242
P13 (MW) 12 40 39.2941 42.2208 41.1246 38.7373 41.4995 41.3009
V1 (p.u.) 0.95 1.1 1.0407 1.0471 1.0435 1.0349 1.0459 1.0430
V2 (p.u.) 0.95 1.1 1.0350 1.0392 1.0370 1.0288 1.0393 1.0366
V5 (p.u.) 0.95 1.1 1.0236 1.0293 1.0257 1.0158 1.0269 1.0256
V8 (p.u.) 0.95 1.1 1.0241 1.0265 1.0259 1.0156 1.0272 1.0257
V11 (p.u.) 0.95 1.1 1.1000 1.0963 1.0999 1.0766 1.0983 1.1000
V13 (p.u.) 0.95 1.1 1.0592 1.0561 1.0574 1.0538 1.0561 1.0579
Fuel cost — — 316.0890 301.6589 306.9304 308.2045 304.5591 306.4052
Wind cost — — 450.4822 456.8491 454.6500 463.7457 456.2010 454.5809
Solar cost — — 109.5512 120.1371 116.1236 107.5912 117.4901 116.7652
Total cost ($/h) — — 876.1223 878.6450 877.7040 879.5414 878.2502 877.7513
Total emissions 0.0930 0.0947 0.0938 0.0937 0.0940 0.0938
PLoss (MW) — — 2.2352 2.2530 2.2214 2.2986 2.2242 2.2211

Table 12:�e obtained results of the proposed IEOmethod and other exiting methods for the IEEE 30-bus system after 50 runs with case 3.

Method Min Average Max SD TNFs CPU times (s) IF (%)
AEO 2.2352 2.3088 2.4970 0.0621 18000 50.11 +0.630816
CSA 2.2530 2.2926 2.3712 0.0212 18000 42.38 +1.41589
TLBO 2.2214 2.2517 2.3072 0.0261 18000 53.89 +0.013505
ABC 2.2986 2.4852 2.8910 0.1153 18000 43.17 +3.371618
EO 2.2242 2.3179 3.0075 0.1197 9000 14.84 +0.139376
Proposed IEO 2.2211 2.2300 2.2614 0.0085 9000 12.47 0
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Figure 12: Power loss after 50 runs of IEO and other methods for
the IEEE 30-bus system.
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Figure 13: Power ®ow in branch of three cases for the IEEE 30-bus
system.
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the IEO method approximates the other methods. However,
the IEO algorithm with standard deviation 5.38×10− 7 that is
more stability than other methods is shown in Table 9 and
Figure 11.

Case 3. Power loss minimization
�e control parameters and results of power loss ob-

tained using the proposed IEO algorithm and other methods
are shown in Table 11. �e results of the solutions obtained
after 50 independent runs are presented in Table 12. Fig-
ure 12 presents stability level of the IEO method compared

with other algorithms after 50 independent runs. From
Table 11, it can be seen that the power loss of the IEO
(2.2211MW) is lower than AEO (2.2352MW),
CSA(2.2530MW), TLBO (2.2214MW), ABC (2.2986MW),
and EO (2.2242MW). Moreover, the standard deviation of
IEO algorithm is better than compared to other methods as
shown in Figure 12. Besides, Figure 13 and 14 present the
branch power ®ow and reactive power of generator buses for
three cases. From these �gures, it can be noted that the
branch power ®ow and reactive power of generator buses are
within allowable limit.
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Figure 14: Reactive power of generator buses of the three cases for the IEEE 30-bus system.

Table 13: �e data of the modi�ed IEEE-118 bus system.

Terms Quantity Details
Buses 118 [3, 49, 50]
Branches 186 [3, 49, 50]
Shunts 14 Buses 5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83, 105 107, and 110
Transformers 11 Branches (8, 32, 36, 51, 93, 95, 102, 107, 127, 134, and 183)
�ermal generators 46 Bus: 69 (slack)
Wind generators 5 Buses: 1, 15, 27, 34, and 36
Solar PV unit 3 Buses: 54, 55, and 56

Control variables 107 Scheduled real power for 54 generators excluding
the one at the slack bus. Bus voltage of all generator buses (54 nos.)

Connected load 4242.0 + j1438.0 (MVA)
Generator bus voltage limits 54 [0.94–1.06] p.u.
Load bus voltage limits 64 [0.94–1.06] p.u.

Table 14: PDF parameters of wind and solar power plants for the IEEE-118 bus system.

Wind power generating plants Solar PV plant

Wind farm No. of
turbines

Rated power,
Pwr (in MW)

Weibull PDF
parameters

Weibull
mean

Rated power,
Psr (in MW)

Lognormal PDF
parameters Lognormal mean

1—(bus 1) 25 75
C� 9, k� 2 v � 7.976m/s

50—(bus 54)
µ� 6, σ � 0.6 H � 483(W/m2)2—(bus 15) 25 75 50—(bus 55)

3—(bus 27) 25 75 50—(bus 56)
4—(bus 34) 20 60 C� 10, k� 2 v � 8.862m/s5—(bus 35) 20 60
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5.2. �e IEEE 118-Bus System. �e IEEE 118-bus system is
used to test the performance of the IEO in terms of global
optimal value and stability ability for a large system. Besides,
a modi�ed IEEE 118-bus system with the participation of
RES is also considered in this case. �e IEEE118-bus system
includes 54 thermal units, 99 load buses, 186 branches, 9
transformers, and 12 reactive power compensators
[3, 49, 50]. In the modi�ed IEEE 118-bus system, the thermal
power plants are replaced by wind farms and solar power
plants. �e thermal power plants at buses 1, 15, 27, 34, and
36 are replaced by wind farms, while three solar power plants
are replaced for thermal power plants at buses 54, 55, and 56.
�e data of IEEE 118 bus system and the parameters of wind
farm and solar plants are given in Table 13 and 14, re-
spectively. �e direct cost coe�cients, penalty costs, and
storage costs of the RES are given in Table 15. In this case, the
fuel cost for the thermal power generators is minimized
based on formula (9).

Case 4. �e IEEE 118-bus system without RES
�e control parameter and fuel cost obtained from the

proposed IEO algorithm for the IEEE 118-bus system
without RES are presented in Table 16. Table 17 shows the
best, average, and worst results after 50 independent runs, as
well as the simulation time and number of new solutions to
obtain the best result of the proposed IEO algorithm and

other methods for case without RES. Figure 15 presents
convergence characteristic of the proposed IEO method and
other methods for the IEEE118-bus system without RES.

Table 15: Energy source cost factor (RES) with the IEEE118-bus system.

Cost factor for energy source RES
Wind power generating plants Solar PV plant

(bus 1) (bus 15) (bus 27) (bus 34) (bus 35) (bus 54) (bus 55) (bus 56)
Direct cost factor 15 15 15 15 15 15 15 15
Penalty cost factor 20 20 20 22 22 18 20 20
Reserve cost factor 40 40 40 40 40 40 40 40

Table 16: �e results obtained after 50 independent runs for the 118-bus system without RES of the proposed IEO method and other
algorithms.

Method Min Average Max SD Npop Max-It TNFs CPU times (s) IF (%)
AEO 129821.5088 130675.3582 131305.6505 442.83023 50 1000 100000 541.21 +0.000604
CSA 129869.6693 131081.6882 132295.4056 690.62946 50 1000 100000 512.76 +0.037687
TLBO 129834.0084 130263.1053 130820.2169 300.04403 50 1000 100000 550.43 +0.010231
ABC 131035.1913 132761.3158 135201.9193 1216.3549 50 1000 100000 478.02 +0.926824
BBO [50] 135263.7289 135622.6172 136611.2731 335.0166 90 2500 225000 — +4.023994
ICBO [29] 135121.570 135175.672 — — 90 2500 225000 — +3.923019
BSA [50] 135333.4743 135502.6493 135689.1275 93.1975 90 2500 225000 — +4.073456
EO 129876.0705 130728.6536 136398.2541 1566.9101 50 1000 50000 168.82 +0.042614
Proposed IEO 129820.7252 130025.2172 131153.2047 245.13772 50 1000 50000 132.04 0

Table 17: �e results obtained after 50 independent runs for the 118-bus system with RES of the proposed IEO method and other
algorithms.

Method Min Average Max SD Npop Max-it TNF CPU times (s) IF (%)
AEO 129493.8171 138800.0481 148865.3491 6091.0705 50 1000 100000 628.13 +0.23759
CSA 129757.5576 140077.2324 148943.7147 5701.9366 50 1000 100000 579.64 +0.44036
TLBO 129409.2005 133942.2353 139174.8786 2796.3609 50 1000 100000 605.16 +0.17235
ABC 132472.8857 149873.3151 170494.0097 10438.8178 50 1000 100000 562.11 +2.48106
EO 129251.2277 138703.0949 184497.4137 14185.9052 50 1000 50000 216.47 +0.05034
IEO 129186.1520 130831.7454 139865.8795 1900.8865 50 1000 50000 178.84 0
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Figure 15: Convergence characteristic of the proposed IEO
method and other methods for the IEEE118-bus system without
RES.
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Besides, the results obtained after 50 independent runs of the
proposed IEO method and other methods are shown in
Figure 16. From Table 17, it can be seen that the IF index of
the methods is signed (+). �is shows that the proposed IEO
method has the best obtained value of (129820.7252) with
only 50000 new solutions which is smaller than AEO, CSA,
TLBO, ABC, EO, and BBO [50], ICBO [29], and BSA [50].
�e standard deviation achieved from the proposed IEO
(245.13772) is smaller than the original EO algorithm
(1566.9101). In addition, observed average simulation time
of the methods in Table 17 also shows the robustness of the
IEOmethod compared to other methods.�e proposed IEO
method takes only 132.04(s) time per run while AEO
(541.21 s), CSA (512.76 s) TLBO (550.43 s), ABC (478.02 s),
and EO (168.82 s).

Case 5. Modi�ed IEEE 118-bus system with RES
A modi�ed IEEE 118 bus system with RES is used to test

the proposed IEO algorithm. �e control parameters and
fuel cost obtained from the IEEE 118-bus system with
RES using the IEO method are presented in Table 16.
Figure 17 shows convergence characteristic of the pro-
posed IEO method and other methods for the IEEE118-
bus system with RES. Besides, the results obtained after
50 independent runs from the proposed IEO method and
other algorithms also are given in Table 18 and Figure 18.
From Table 18, it can be seen that the total fuel cost of IEO
(129186.1520) is better than EO (129251.2277), AEO
(129493.8171), CSA (129757.5576), TLBO (129409.2005),
and ABC (132472.8857). As observed from Table 18 and
Figure 17 and 18, the IEO algorithm can obtain better
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Figure 17: Convergence characteristic of the proposed IEO method and other methods for the IEEE118-bus system with RES.
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Figure 16: �e generator cost after 50 runs of the proposed IEO and other methods for IEEE 118-bus systems without RES.
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Table 18: �e control parameters and fuel cost obtained from the IEEE 118-bus system without RES and with RES using the proposed IEO
method.

Bus no. Control parameter Without RES With RES Control parameter Without RES With RES
1 PG01 (MW) 29.9754 34.2786 V01 (p.u.) 0.9711 1.0007
4 PG04 (MW) 0.0002 0.0000 V04 (p.u.) 0.9993 1.0274
6 PG06 (MW) 0.0000 0.4252 V06 (p.u.) 0.9885 1.0178
8 PG08 (MW) 0.0002 0.0004 V08 (p.u.) 1.0207 1.0295
10 PG010 (MW) 400.0368 394.7797 V10 (p.u.) 1.0600 1.0600
12 PG012 (MW) 85.7587 84.5533 V12 (p.u.) 0.9848 1.0172
15 PG015 (MW) 20.2632 35.2944 V15 (p.u.) 0.9818 1.0302
18 PG018 (MW) 0.0000 0.0175 V18 (p.u.) 0.9868 1.0349
19 PG019 (MW) 27.4302 11.8650 V19 (p.u.) 0.9791 1.0289
24 PG24 (MW) 0.0000 0.0000 V24 (p.u.) 1.0235 1.0525
25 PG25 (MW) 193.5861 190.2270 V25 (p.u.) 1.0569 1.0600
26 PG26 (MW) 280.3155 275.1830 V26 (p.u.) 1.0369 1.0246
27 PG27 (MW) 11.6272 34.4155 V27 (p.u.) 1.0144 1.0451
31 PG31 (MW) 7.2303 7.1524 V31 (p.u.) 0.9995 1.0326
32 PG32 (MW) 16.4180 0.0133 V32 (p.u.) 1.0095 1.0421
34 PG34 (MW) 9.4437 29.7483 V34 (p.u.) 1.0055 1.0287
36 PG36 (MW) 10.8060 29.6131 V36 (p.u.) 1.0013 1.0231
40 PG40 (MW) 51.2751 59.9937 V40 (p.u.) 0.9945 1.0164
42 PG42 (MW) 44.0729 37.4122 V42 (p.u.) 1.0014 1.0152
46 PG46 (MW) 19.0633 18.8211 V46 (p.u.) 1.0187 1.0119
49 PG49 (MW) 192.7917 191.8848 V49 (p.u.) 1.0363 1.0265
54 PG54 (MW) 49.9969 33.7510 V54 (p.u.) 1.0192 0.9959
55 PG55 (MW) 31.8831 32.3740 V55 (p.u.) 1.0186 0.9929
56 PG56 (MW) 34.2560 32.3598 V56 (p.u.) 1.0185 0.9942
59 PG59 (MW) 149.2530 150.1249 V59 (p.u.) 1.0329 1.0114
61 PG61 (MW) 148.5864 147.0525 V61 (p.u.) 1.0308 1.0186
62 PG62 (MW) 0.0020 0.0581 V62 (p.u.) 1.0292 1.0158
65 PG65 (MW) 349.3146 348.1722 V65 (p.u.) 0.9977 0.9948
66 PG66 (MW) 348.6932 339.5984 V66 (p.u.) 1.0506 1.0381
69 PG69 (MW) 453.3021 450.1949 V69 (p.u.) 1.0447 1.0450
70 PG70 (MW) 0.0000 0.0004 V70 (p.u.) 1.0069 1.0223
72 PG72 (MW) 0.0000 0.2237 V72 (p.u.) 1.0101 1.0600
73 PG73 (MW) 0 0.0578 V73 (p.u.) 1.0065 1.0289
74 PG74 (MW) 16.6077 14.7015 V74 (p.u.) 0.9923 0.9981
76 PG76 (MW) 19.3987 17.8025 V76 (p.u.) 0.9823 0.9806
77 PG77 (MW) 0.0000 0.2165 V77 (p.u.) 1.0197 1.0115
80 PG80 (MW) 431.6642 426.6092 V80 (p.u.) 1.0342 1.0199
85 PG85 (MW) 0.0005 0.0000 V85 (p.u.) 1.0263 1.0309
87 PG87 (MW) 3.6555 3.6864 V87 (p.u.) 1.0273 1.0598
89 PG89 (MW) 500.0391 502.9658 V89 (p.u.) 1.0418 1.0458
90 PG90 (MW) 0.0046 0.0001 V90 (p.u.) 1.0183 1.0211
91 PG91 (MW) 0.0000 0.0022 V91 (p.u.) 1.0196 1.0227
92 PG92 (MW) 0.0005 0.0000 V92 (p.u.) 1.0260 1.0242
99 PG99 (MW) 0.0000 0.0181 V99 (p.u.) 1.0232 1.0044
100 PG100 (MW) 230.7860 228.6403 V100 (p.u.) 1.0258 1.0109
103 PG103 (MW) 38.2256 38.4942 V103 (p.u.) 1.0201 1.0026
104 PG104 (MW) 0.0000 0.0000 V104 (p.u.) 1.0108 0.9970
105 PG105 (MW) 4.6184 0 V105 (p.u.) 1.0092 0.9968
107 PG107 (MW) 30.3030 38.6618 V107 (p.u.) 1.0030 0.9973
110 PG110 (MW) 8.7753 8.0400 V110 (p.u.) 1.0171 0.9907
111 PG111 (MW) 35.0925 35.3071 V111 (p.u.) 1.0295 0.9939
112 PG112 (MW) 38.0497 36.1964 V112 (p.u.) 1.0109 0.9831
113 PG113 (MW) 0.1055 0.0326 V113 (p.u.) 1.0021 1.0431
116 PG116 (MW) 0.0005 0.0000 V116 (p.u.) 0.9945 0.9942
Fuel cost ($/h) — 119790.1728
Wind cost ($/h) — 6163.7140
Solar cost ($/h) — 3232.2652
Total cost ($/h) 129820.7252 129186.1520
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values with smaller standard deviations than the EO,
AEO, CSA, TLBO, and ABC methods. �e simulation
results demonstrate the e°ectiveness and robustness of
the IEO method in solving the OPF problem with RES for
large systems. In addition, from Table 18, it can be seen
that the run time of the proposed IEO method for solving
the OPF problem with RES is 178.84(s) which is smaller
than EO (216.47 s), AEO (628.13 s), CSA (579.64 s), TLBO
(605.16 s), and ABC (562.11 s) methods. It is con�rmed
that using proposed probability equation (31) for cal-
culating the cost indirectly of RES can reduce the sim-
ulation time compared to the other approaches.

6. Conclusion

Finding the best solution for OPF problem with RES is
one of challenges for many algorithms, especially in
complex systems. In this paper, the IEO algorithm is
proposed to deal with OPF problem with RES for three
other objective functions. �e suggested IEO technique is
tested on IEEE 30 and IEEE 118 bus system. �e obtained
results of suggested approach are compared with EO,
AEO, CSA, TLBO, and ABC algorithms and other exiting
methods. For the IEEE 30-bus system with RES, the total
fuel cost is achieved 782.0343 ($/h) using the IEO al-
gorithm, which are better than EO (782.0367 $/h), AEO
(782,082 $/h), CSA (782.2001 $/h), TLBO (782.0373 $/h),
and ABC (782.0560). Besides, simulation time of the IEO
is smaller from 2 to 2.67 compared to EO, AEO, CSA,
TLBO, and ABC methods. In addition, the standard
deviation value of the IEO (0.0396) is lower than EO
(1.4318), AEO (0.1982), CSA (0.1943), TLBO (0.5949),
and ABC (0.5875). For large-scale IEEE 118-bus with RES
systems, using proposed probability equation (29) in the
proposed IEO method decreases the run time higher
compared to other methods. �e simulation results show
that, the proposed IEO algorithm also is one of e°ective

and reliable methods for dealing problem of OPF with
RES in large-scale and complex systems.

Nomenclature

FC: Total generation cost ($/h) of thermal
units

NTG,Nwind, Nsolar: Number of thermal power plants, wind
power plants, and solar power plants

Cwind: �e cost of wind power
Nmontecarlo: Number of simulations Monte-Carlo
Csolar: �e cost of solar power
PG,i, QG,i: Power at the ith generator node
FE: Total emission
PL,i, QL,i: Power at the jth load node
Ploss: Power losses
VG, VL: Voltage magnitude at the generator and

load buses
gj, hk: Direct cost coe�cients of the jth wind

power and the kth solar power plant
PGi,min, QGi,min: Minimum output power for power ith

plant
KwL,j, KsL,k: Reserve cost coe�cients of jth wind

power plant and kth solar power plant
PGi,max, QGi,max: Maximum output power for power ith

plant
KwH,j, KsH,k: Penalty cost coe�cients of jth wind

power plant and kth solar power plant
VGi,min, VGi,max: Voltage magnitude limit at generator

nodes
PTG,i, QTG,i: Real power and reactive power of the ith

thermal power plant
VLi,min, VLi,max: Voltage magnitude limit at load nodes
Ps.wind,j: Scheduled power of the jth wind power

plant
Sl, Sl,max: Transmission capacity and line limit
Ps.solar,k: Scheduled power of the kth solar power

plant v wind speed (the wind speed
random variable) (m/s)

NG,NL,NLine: Number of power plants, load nodes,
and transmission lines vin cut-in wind
speed (m/s)

NC,NT: Number of transformer tap and
switchable capacitor capacity vr rated
wind speed (m/s)

δi, δj: Voltage phase angle of node ith and node
jth vout cut-out wind speed (m/s)

θi,jL: �e angle of the bus conduction matrix
Y with two nodes ith and jth.
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Figure 18: �e generator cost after 50 runs of the proposed IEO
method and other methods for the IEEE 118-bus system with RES.
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