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Summary. +e linear active disturbance rejection control (LADRC) is mainly applied for tracking a step signal, and it is
inadequate to realize satisfactory performance in the control of a single-phase inverter whose reference signal is sinusoidal.
In this paper, an improved voltage control strategy based on compound synchronous reference frame proportional-integral
(SRFPI) control and LADRC is proposed. +e SRFPI and LADRC remain relatively independent without complicating the
control parameter design. Detailed theoretical analyses on the compound strategy and its performance are presented,
indicating that it inherits the advantages of the two controllers. Moreover, contrast experiments are carried out to verify the
feasibility and superiority of the proposed control strategy. +e results show that the system achieves a small steady-state
error, voltage tracking error, fast transient response, and low total harmonic distortion (THD) when feeding a highly
nonlinear load.

1. Introduction

Single-phase inverters, as core components, are extensively
employed in various applications including industrial fa-
cilities such as uninterrupted power supply (UPS) [1,2] and
renewable energy fields in terms of distributed generations
(DGs) and microgrids (MGs) [3, 4]. To summarize, it is
mainly adopted to supply a stable and high-quality sinu-
soidal voltage for ac loads. [5, 6] +erefore, a proper control
technique for regulating the output voltage of single-phase
inverters is quite important.

Recently, a variety of control methods have been in-
vestigated for better performance of inverters. +anks to
implementation simplicity and high reliability, conventional
single or dual closed-loop control systems are going with the
proportional-integral-derivative (PID) regulators [7, 8].
However, it is difficult to maintain the optimality of system
performance in terms of steady errors and total harmonic
distortion (THD), especially under nonlinear load condi-
tions. Surrounding the above problems, the deadbeat control
(DBC), the proportional-resonant (PR) control, and the

repetitive control (RC) are the main solutions. Owing to
direct regulation of the instantaneous output voltage and
optimal tuning, the DBC provides superior dynamic per-
formance [9, 10]. Despite that, it is more prone to produce a
steady-state error and suffers from the sensitivity of pa-
rameter variation.+e PR control possesses excellent steady-
state performance by introducing an infinite gain at the
fundamental frequency. [11, 12] Note that multiple resonant
units are required for harmonic suppression, which inevi-
tably leads to complexity or even instability, and PR control
is also constrained by sensitivity to deviations of sensed
signals [13]. On the basis of the internal model principle, the
RC can get rid of distortions and steady-state errors in the
periodic output voltage [14, 15]. However, it exhibits in-
adequate performance such as slow transient response and
poor tracking accuracy in the presence of aperiodic dis-
turbances, which intensely affects its applications. In addi-
tion, some optimal controllers such as the model predictive
control (MPC), the linear quadratic Gaussian (LQG) con-
troller, and the optimal PID controllers are presented in the
literature.+eMPC has been extensively implemented in the
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control of inverters due to its simplicity and robustness [16].
Nevertheless, the computation and time cost need to be
further improved for the real-time and online control
platform. +e LQG combines the advantages of the Kalman
state estimation and the optimal linear quadratic regulator.
+us, it exhibits improved robustness and provides a fast
transient response [17]. Moreover, intelligence algorithms
have been introduced to realize optimal parameters for the
self-turning of PID controllers for inverters [18]. However,
these methods show higher complexity and cannot remove
the steady-state tracking error.

Currently, the synchronous reference frame propor-
tional-integral (SRFPI) control has been broadly adapted
and maturely developed in three-phase inverters. +is
method also increasingly appears in single-phase inverter
applications [13, 19, 20]. +e steady-state error can be re-
moved by employing PI regulators in the synchronous
reference frame (SRF) [21]. However, generating a virtual
orthogonal signal, particularly the orthogonal current signal,
may result in slow dynamic performance. Meanwhile, it has
limited rejection ability with disturbances. Table 1 shows the
comparison of the typical control schemes for single-phase
inverters.

Han comprehensively and systematically introduced the
active disturbance rejection control (ADRC)method in 1999
[22]. It does not require the exact system mathematical
model. After that, Gao proposed linear ADRC (LADRC)
based on the linearization of the extended state observer
(ESO) and the controller, which greatly simplified the pa-
rameter setting [23, 24]. It treats internal and external
disturbances as the total disturbance and utilizes the input
and output targets to estimate the disturbances for distur-
bance rejection [25]. In addition, as a general-purposed
control structure [26], the LADRC has been widely used in
control systems with step reference signals such as servo
systems [27, 28] and three-phase inverters in the SRF [29, 30]
but relatively few in single-phase inverters [31–33].+emain
reason is that it is unable to eliminate the steady-state error
when tracking a sinusoidal signal. In Ref. 31, a step-by-step
analysis of the classic LADRC for a single-phase inverter is
presented. However, there exists a non-negligible steady-
state error in the output voltage. An improved control law
using reference differential feedforward for a grid-tied in-
verter is proposed in Ref. 32 to reduce the steady-state error.
Its performance used in off-grid inverters needs further
verification. In Ref. 33, a repetitive learning controller is
embedded in LADRC to achieve a high-quality output
voltage and robustness. However, this approach adds
complexity to the LADRC design.

To improve the performance of LADRC used in an off-
grid single-phase inverter, in this paper, an improved voltage
control strategy based on compound SRFPI and LADRC is
proposed. +e performance verification of this method is
focused on the inverter under resistive load, nonlinear load,
and step load (no load to resistive load). +e salient features
of the proposed method are as follows:

(1) +e output of SRFPI serves as the voltage reference of
LADRC. In terms of control structure, SRFPI and

LADRC are relatively independent, which does not
complicate the controller design of LADRC.

(2) +e proposed method does not contain current
loops. +erefore, it does not need to generate the
current quadrature signals that may affect the dy-
namic response. Moreover, high precision and high-
cost current sensors are not required for waveform
control under normal conditions. It is still necessary
to measure the inductor current for overcurrent
protection, but more economical ways can be
adopted. +is part is out of the scope of this paper.

(3) +e compound method fuses the merits of both two
controllers. +eoretical analysis, simulation, and
experimental results are provided to confirm that the
proposed scheme brings an overall performance
improvement in terms of tracking error, steady-state
error, dynamic response as well as voltage THD,
especially when feeding highly nonlinear loads.

+is paper is organized as follows: the implementation of
LADRC in a single-phase inverter is introduced in Section 2.
+e proposed compound control strategy and corre-
sponding theoretical analysis are given in Section 3. Ex-
perimental results are discussed in Section 4. Finally,
conclusions are summarized in Section 5.

2. Implementation of LADRC in Single-
Phase Inverters

2.1. Modelling of Single-Phase Inverters. A single-phase in-
verter that consists of the insulated-gate bipolar transistor
(IGBT) full-bridge frame with an LC output filter is shown in
Figure 1. Vdc, vin, vo, iL, and iodenote the dc link voltage,
input voltage, output voltage, inductor current, and output
current; re, L, and C denote the equivalent series resistance,
filter inductor, and filter capacitor, respectively. According
to Kirchhoff’s laws, the differential equations describing the
dynamics of a single-phase inverter can be written as

L
diL
dt

� vin − vo − reiL

C
dvo

dt
� iL − io

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

+e relation between the sinusoidal modulation signal
vm and vin can be derived as a PWM proportional gain:
KPWM= vin/vm =Vdc/Vt, where Vt is the amplitude of the
triangular carrier, and its value is set to 1. To obtain a better
voltage regulation, a proportional gain 1/Vdc is connected in
series with the control signal u. Considering io as the input
disturbance, the equivalent model of the inverter is illus-
trated in Figure 2. +e transfer function of the plant can be
obtained as

Gp(s) �
vo(s)

vin(s)
�

vo(s)

u(s)
�

1
LCs

2
+ reCs + 1

. (2)

According to (2), the differential form of the transfer
function of the inverter can be described as
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€vo � −a1 _vo − a0vo + b0u, (3)

where a0 � b0 �1/LC and a1 � re/L.

2.2. Design of LESO. +e core idea of LADRC is to imple-
ment a linear extended state observer (LESO) for estimating
state variables and total disturbance of the system, and then a
forward feedback rejection is built for disturbance
compensation.

As seen in (2) and (3), the control object is a second-
order system, and it is a nonstandard integral series system
(€vo �b0u). In general, LESO takes full advantage of the
system model to calculate control variables and treats the
parts different from the standard integral series system as
disturbances. +us, the known disturbances can be
expressed as f0( _vo,vo)� −a1 _vo−a0vo, where a0 and a1 are the
known parameters. +ere are many unknown internal and
external disturbances such as parameter perturbation,
sampling noise, and unmodeled dynamics during the actual
operation of the inverter. +e unclear disturbances are
denoted by d. +e value of b0 can be directly obtained from
the actual inverter system while the unclear part of the
system model is described as b1. To sum up, the actual total
unknown disturbance can be defined as f1 � d+ b1u. Re-
garding f� f1+ f0( _vo,vo) as the total disturbance of the system,
the actual inverter system can be rewritten as

€vo � b0u + f. (4)

Let x= [x1x2x3]T = [vo _vof ]
T and y= vo. +e disturbance

can be added to the following state space representation by
introducing an extended state as

_x � Apx + Bpu + Ep
_f1,

y � Cpx,

⎧⎨

⎩ (5)

where

Ap �

0 1 0

0 0 1

0 −a0 −a1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Bp �

0

b0

−a1b0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ep �

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Cp � 1 0 0􏼂 􏼃.

(6)

From (5), system matrix Ap contains the known model
coefficients (a0, a1). Let 􏽢x � 􏽢x1 􏽢x2 􏽢x3􏼂 􏼃

T
� 􏽢vo

􏽢_vo
􏽢f􏽨 􏽩

T

and Lp � lp1 lp2 lp3􏽨 􏽩
T
. +e model-assisted LESO (MA-

LESO) is designed as
_􏽢x � Ap􏽢x + Bpu + Lp(y − 􏽢y) � Ap − LpCp􏼐 􏼑􏽢x + Bpu + Lpy,

􏽢y � Cp􏽢x,

⎧⎨

⎩

(7)

where 􏽢x and Lp denote the observed state variable and gain
matrix of the LESO. +e eigenvalues of Ap-LpCp determine
the decay rate of the observed error. To simplify the analysis,
its poles are arranged at the same position as

λ(s) � sI − Ap + LpCp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � s + ωo( 􏼁
3
, (8)

where ωo is the bandwidth of the observer. It can be derived
that

l1 � 3ωo − a1,

l2 � 3ω2
o − 3a1ωo − a0 + a

2
1,

l3 � ω3
o − 3a1ω

2
o + 3 a

2
1 − a0􏼐 􏼑ωo + 2a0a1 − a

3
1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

By selecting an appropriate ωo, the LESO can realize
rapid real-time estimations of system state variables and the
total disturbance.

2.3. Design of the Control Signal. Based on the observed state
variables and disturbance, the control signal u and error
feedback control law uc are designed as shown in Equation
(10). Substituting u into Equation (4), the system turns into
standard integral series type (€vo � b0u + f ≈ uc).

u �
−􏽢x3 + uc

b0
�

−􏽢x3 + k1 r − 􏽢x1( 􏼁 − k2􏽢x2

b0
, (10)

where r is the reference signal, and k1 and k2 denote the error
feedback gain coefficient. +e bandwidth tuning method in
Ref. 24 is adopted to further simplify the controller

u (s)
Gp (s)

+ +-
-1

Ls+re
KPWM

vm (s) iL (s) vo (s)
io (s)

ic (s)vin (s)1
Vdc

1
Cs

Figure 2: Equivalent block diagram of the single-phase inverter.

Table 1: Feature comparison of control schemes for single-phase inverters.

Comparative item Deadbeat control PR control Repetitive control MPC SRFPI control
Hardware cost High Low Low Low Low
Sensitivity of parameter variation Strong Medium Low Medium Medium
Steady-state performance Medium Medium Good Medium Good
Transient performance Good Medium Worse Good Good
Virtual orthogonal signals Not required Not required Not required Not required Required

T1

Vdc

T3
iL io

C Load

re
L

T2 T4

+ +

- -
vin vo

Figure 1: Single-phase inverter with the LC filter.
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parameter design, where k1 = 2ωc
2, k2 = 2ωc, and ωc denotes

the controller bandwidth.
In summary, the control block diagram of LADRC for a

single-phase inverter mainly contains the error feedback
control law, the disturbance compensation block, and MA-
LESO, which can be illustrated in Figure 3. For investigating
the performance of the LESO, the input disturbance δu and
the observation noise δy are considered, as advised in Ref. 32.

2.4. Performance Analysis of LESO. +e deviations between
observed values and actual state variables directly affect the
control performance of LADRC. +e observation error of
the output voltage is defined as xe1 � 􏽢x1 − x1. To analyze the
effect of the bandwidth ωo on LESO performance, the ob-
servation accuracy of output voltage can be studied with the
transfer function of xe1/f1. Moreover, the disturbance re-
jection performance can be investigated through the transfer
functions of 􏽢x1/δu and 􏽢x1/δy. According to Equations
(5)–(10), the following three transfer functions can be ob-
tained as

xe1

f1
� −

s

s + ωo( 􏼁
3,

􏽢x1

δu

�
b0s

s + ωo( 􏼁
3,

􏽢x1

δy

�
3ωo + a1( 􏼁s

2
+ a0 + 3ωo

2
􏼐 􏼑s + ωo

3

s + ωo( 􏼁
3 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

In this study, the inverter parameters are chosen as
L� 0.7mH, C� 40 μF, and re � 0.1Ω. +e Bode diagrams of
xe1/f1, 􏽢x1/δu, and/δy with ωo ranging from 8000 to 14000 rad/
s are depicted in Figures 4 and 5, respectively. From Figure 4,
it can be seen a largerωomakes the observed value 􏽢x1 close to
x1. In other words, f1 is well estimated and compensated due
to the tiny gain in the low-frequency region. However, the
estimated ability gets ordinary when the disturbances

contain high-frequency signals. As shown in Figure 5(a),
when a larger ωo is chosen, the LESO achieves enhanced
input disturbance rejection in the low-frequency band, but it
has little impact on the high-frequency domain. Clearly, as
seen from Figure 5(b), the high-frequency observation noise
will be amplified as ωo increases, while the LESO represents
insensitivity to observation noise in the low-frequency re-
gion. +erefore, a proper bandwidth of the LESO should
compromise the disturbance estimation performance and
the measurement noise sensitivity. In this study,
ωo � 10000 rad/s is selected.

2.5. Analysis of the Steady-State Error. +e tracking error of
the inverter system is defined as e= r−vo. According to (4)
and (10), the transfer function of e can be obtained as

e(s) �
s
2

+ k2s

s
2

+ k2s + k1
r(s). (12)

Clearly, the LADRC-based voltage control for a single-
phase inverter cannot eliminate the steady-state error since
the reference signal r is sinusoidal.

linear error feedback
control law

r k1

uc

u

u

δu

δy

k2

a1

a1 b0

a0

+- + +

++

+++

1/b0

1/s

1/s

1/s

b0

l1

l2

l3

Gp (s)
y (vo)

- +

+

+

++

+
+

-
-

-

+
-

disturbance
compensation

observation
noise

input disturbanceLADRC

MA-LESO

x1 = vô ̂

x2 = vô
·̂

x3 = f̂
̂

Figure 3: Control block diagram of LADRC for the single-phase inverter.
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3. Design and Analysis of SRFPI-LADRC

As described above, a single-phase inverter with LADRC is
contaminated by the steady-state error. In this paper, a
compound control strategy is proposed as shown in Figure 6,
where the output voltage vcα of SRFPI is employed as the
voltage reference of LADRC. In terms of control structure,
the SRFPI and the LADRC are relatively independent. +e
control structure combines the superiority of both con-
trollers, namely disturbance resisting ability and cancellation
of the steady-state error.

3.1. Analysis of the SRPFIController. Control of single-phase
inverters in direct-quadrature SRF is not as well developed as
three-phase applications. More complicated structures and
the demand for virtual orthogonal signals are the main
reasons. +e conventional orthogonal-signal-generation

(OSG) approach utilizes a delay block to produce an
imaginary orthogonal signal. In this study, the all-pass filter
(APF)-based OSG is adopted. It is straightforward and at-
tenuates no higher-order components. [34] +e structure of
the first-order AFP is illustrated in Figure 7, and its transfer
function is as follows:

HAPF(s) �
vβ(s)

vα(s)
�
ωf − s

ωf + s
, (13)

where ωf is the fundamental angular frequency.
To conquer the difficulties of stability analysis of the

system when the voltage loop serves in the SRF, the advised
method in Ref. 19 is used. +e equivalent control block of
SRFPI is depicted in Figure 8, where vr, kp, and ki are the set
reference, proportional, and integral coefficient of the PI
controller, respectively.+e SRFPI can be derived in the time
domain as
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vcα(t)

vcβ(t)
⎡⎣ ⎤⎦ �

cos ωft􏼐 􏼑 −sin ωft􏼐 􏼑

sin ωft􏼐 􏼑 cos ωft􏼐 􏼑

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ ·
GPI(t) 0

0 GPI(t)
􏼢 􏼣∗

cos ωft􏼐 􏼑 sin ωft􏼐 􏼑

−sin ωft􏼐 􏼑 cos ωft􏼐 􏼑

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
eα(t)

eβ(t)
⎡⎣ ⎤⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (14)

where ∗ is the convolution operator.
Taking Laplace transform and substituting GPI(s)

= kp+ ki/s, (14) can be described in the s-domain as

vcα(s)

vcβ(s)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

kp +
kis

s
2

+ ω2
f

−
kiωf

s
2

+ ω2
f

kiωf

s
2

+ ω2
f

kp +
kis

s
2

+ ω2
f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eα(s)

eβ(s)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (15)

By substituting Equation (13) into (15), the transfer
function H(s) can be written as

H(s) �
vcα(s)

eα(s)
�

c3s
3

+ c2s
2

+ c1s + c0

s
2

+ ω2
f􏼐 􏼑 s + ωf􏼐 􏼑

, (16)

where c3 = kp, c2 = kpωf+ ki, c1 = kpωf
2+2ωfki, c0 = kpω3

f−

kiω2
f. According to (16) and Figure 8, the transfer function e(s)/

vr(s) can be derived. Substituting s= jωf into e(s)/vr(s) yields

e(s)

vr(s)
|s�jωf

�
1

1 + H(s)Gpc(s)
|s�jωf

� 0. (17)

(15) clearly shows that the system realizes zero funda-
mental voltage tracking error based on the SRFPI control
strategy in a steady state.

3.2.Designof SRPFI-LADRC. To obtain the transfer function
of the whole system, the following equations can be obtained
by substituting Equations (11) into (7).

_􏽢x1

_􏽢x2

_􏽢x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

−l1 1 0

−l2 − k1 −k2 0

−l3 + a1k1 −a0 + a1k2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢x1

􏽢x2

􏽢x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

0 l1

k1 l2

−a1k1 l3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r

y

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(18)

Taking the Laplace transform from both sides of
Equations (18), G1(s) and G2(s) can be derived as

G1(s) �
−vo(s)

r(s)
�

h3s
3

+ h2s
2

+ h1s + h0

g2s
2

+ g1s + g0
,

G2(s) �
u(s)

−vo(s)
,

�
g2s

2
+ g1s + g0

b0s
3

+ b0k2 + b0l1( 􏼁s
2

+ b0k1 + b0l2 + b0k2l1( 􏼁s
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where h3 = k1, h2 = a1k1+k1l1, h1 = a0k1+k1l2+a1k1l1, and
h0 = k1l3+a0k1l1+a1k1l2. g2 = l3+k1l1+k2l2, g1 = k1l2+k2l3−
a0l2+a1k1l1+a1k2l2, and g0 = k1l3+a0k1l1+a1k1l2, respectively.

+- 2 +
vβ

-∫

ωf

vα (vo)

Figure 7: Structure of a first-order APF.

e eα vcα Gp (s)

e β vcβ

voSRFPI
+-

vr

ωf ωf t ωf t

dq

dq αβ

αβHAPF (s)

kp+ki /s

kp+ki /s

Figure 8: +e equivalent control block of SRFPI.

e r u vovr
H (s) G1 (s)

io (d)

G2 (s)

Gd (s)

Gp (s)

Figure 9: Block diagram of the proposed control system.
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According to (16) and (19), the control block diagram of
the proposed method can be equivalently depicted in Fig-
ure 9. According to the superposition theorem, the closed-
loop system can be represented as

vo(s) � Gc(s)vr(s) + Z(s)io(s)

�
H(s)G1(s)G2(s)Gp(s)

1 + G2(s)Gp(s) + H(s)G1(s)G2(s)Gp(s)
vr(s)

+
Gd(s)

1 + G2(s)Gp(s) + H(s)G1(s)G2(s)Gp(s)
io(s),

(20)

whereGc(s) and Z(s) denote the no-load voltage gain and the
equivalent output impedance, respectively.

By replacing io(s) with vo(s)/Zl (s), where Zl (s) denotes
the load, the transfer function e(s)/vr(s) can be obtained.
Substituting s= jωf into it gives

e(s)

vr(s)
|s�jωf

� 0. (21)

+erefore, the proposed control strategy can effectively
eliminate the fundamental voltage tracking error, which
means the advantage of SRFPI can be retained.

3.3. Stability and Dynamic Performance. Based on the sta-
bility criteria, the system in Figure 9 is stable if the closed-
loop transfer function has no right half plane (RHP) poles.

Table 2: Parameters of the inverter system.

Parameters Values Parameters Values
Switching frequency, fs 20 kHz DC-link voltage, Vdc 190V
Fundamental angular frequency, ωf 100π rad/s +e bandwidth of the controller, ωc 5500 rad/s
Filter inductance, L 700 μH +e bandwidth of the observer, ωo 10000 rad/s
Filter capacitance, C 40 μF +e proportional factor of the PI controller, kp 1.5
ESR of the inductance, re 0.1Ω Integral factor of the PI controller, ki 100
Voltage reference, v∗d/v

∗
q 156V/0V Dead time, td 1.3 μs
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Figure 10: Generalized root locus diagram with a variation of ki (10≤ki≤ 500, kp � 1.5, and ωc � 5500 rad/s).
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Figure 11: Generalized root locus diagram with a variation of kp (0.1≤kp≤ 1.5, ki � 100, and ωc � 5500 rad/s).
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From (20), the characteristic polynomial of the closed-loop
system can be derived as

s
5

+ m4s
4

+ m3s
3

+ m2s
2

+ m1s + m0 � 0, (22)

where m4 = k2+ωf, m3 =ωf
2 + k2ωf+ k1+k1kp, m2 = k1ki+

k1ωf+ k2ω2
f+ω3

f+ k1kpωf, m1 = 2k1kiωf+ k1ω2
f+ k1kpω2

f+
k2ω3

f, and m0 = k1ω3
f−k1kiω2

f+ k1kpω3
f, respectively.

+e stability and dynamic performance of the system
with varied control parameters are given. +e parameters of
the inverter system are listed in Table 2. Figure 10 shows the
root locus of the system under varied integral gain ki, which
changes from 10 to 500. +e system remains stable since no
poles exist in RHP.+e dominant poles λ1 and λ2 move from
right to left while λ1 moves towards the imaginary axis
indicating that the stability and dynamic performance of the
system is improved with increased ki within a certain range.

Figure 11 shows the root locus of the system under
varied kp, which changes from 0.1 to 1.5. +e roots of
characteristic polynomials all lie in the left half plane (LHP),
which manifests the system and keeps stable. +e system
becomes more oscillatory since poles λ2 and λ3 are getting

close to the imaginary axis, leading to the reduction of the
damping ratio.

+e root locus with ωc increasing from 2000 to 8000 rad/
s is shown in Figure 12. +e system maintains stability. +e
damping ratio of the system is almost constant since the
positions of the dominant poles λ2 and λ3 change little. +e
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Figure 12: Generalized root locus diagram with a variation of ωc (2000≤ωc≤ 8000 rad/s, ki � 100, and kp � 1.5).
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locus of pole λ1 indicates that the settling time slightly gets
shorter.

3.4. Disturbance Immunity Analysis. +e disturbance re-
jection characteristics of the closed-loop system are inves-
tigated. +e output current io is regarded as the external

disturbance d. +e transfer function vo(s)/d(s) can be ob-
tained as

vo(s)

d(s)
�

Gd(s)

1 + G2(s)Gp(s) + H(s)G1(s)G2(s)Gp(s)
. (23)

tFigure 13 shows the amplitude-frequency diagram of
vo(s)/d(s) with different controller parameters. As shown
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Figure 15: Generalized root locus diagram of Gc(s) with a variation of n.
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Figure 16: Perturbation of parameters under nominal resistive load conditions.

Figure 17: Experimental setup.
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in Figure 13(a), with increase in the observer bandwidth
ωo and the controller bandwidth ωc, the disturbance
suppression ability of the system is enhanced. Further-
more, the parameters of kp and ki have little effect on the
disturbance rejection as can be seen from Figure 13(b).
Based on the above analysis, in this work, ωc � 5500 rad/s,
ωo � 10000 rad/s, ki � 100, and kp � 1.5 are chosen, as listed
in Table 2.

+e comparison of disturbance-resistant performance
under three control strategies is shown in Figure 14. +e
SRFPI control includes an inner capacitor current pro-
portional loop [20], and the corresponding proportional
gain is set as 3. Notice that the proposed SRFPI-LADRC has
a better inhibition effect on disturbance at the low-frequency
region, especially at the fundamental frequency.

3.5. Robustness Analysis. In practice, the parameters of the
LC filter may vary because of aging and different operating
conditions, which may deteriorate the system’s

performance. Considering the mismatch between the actual
values (LA, CA) and nominal values (L, C), the robustness of
the system is investigated. +e parameter mismatch factor is
defined as n� LA/L�CA/C. Considering that the parametric
perturbation is usually within ±20%, [35] the generalized
root locus under varied LA and CA, where n varies from -20%
to +20%, is shown in Figure 15. +e movement trajectory of
the poles indicates that the system remains stable, which
means the proposed controller is robust to parametric
variations.

To verify the robustness of the proposed control
strategy, a simulation model of a single-phase inverter
system is built in MATLAB/Simulink environment, using
the parameters listed in Table 2. +e mismatch of LC
parameters is considered under nominal resistive load
(20Ω). +e results are shown in Figure 16, where the
tracking error e � vo−vr, and e(RMS) denotes the root
mean square (RMS) value of e. +e system is robust
against filter parameter perturbation.
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Figure 18: Steady-state waveforms of different control strategies under rated linear load (20Ω). (a) SRFPI, (b) LADRC, and (c) proposed
SRFPI-LADRC.

(a) (b) (c)

Time (4ms/div) Time (4ms/div) Time (4ms/div)

i o 
(5

A
/d

iv
)

i o 
(5

A
/d

iv
)

i o 
(5

A
/d

iv
)

v o 
(5

0V
/d

iv
)

v o 
(5

0V
/d

iv
)

v o 
(5

0V
/d

iv
)

vo

io

vo

io

vo

io

Figure 19: Transient waveforms in response to no load to rated load (20Ω) step change. (a) SRFPI, (b) LADRC, and (c) proposed SRFPI-
LADRC.

10 International Transactions on Electrical Energy Systems



Table 3: Performances of the three methods.

Load type
SRFPI LADRC SRFPI-LADRC

THD(%) erms(V) Vorms(V) THD(%) erms(V) Vorms(V) THD(%) erms(V) Vorms(V)
No load 1.60 1.65 110.52 2.20 13.40 111.74 0.87 1.38 110.52
Nominal resistive load 2.44 2.89 110.45 2.78 16.19 110.86 1.87 2.81 110.47
Highly nonlinear load 2.91 9.52 110.54 4.95 15.40 111.47 2.14 3.48 110.56

No load to rated load Voltage restore time(ms)
1.6 1.2 0.8
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Figure 20: Steady-state waveforms of different control strategies under highly nonlinear load conditions. (a) SRFPI, (b) LADRC, and
(c) proposed SRFPI-LADRC.
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Figure 21: Steady-state waveforms with different LA. (a) LA/L�1.2 and (b) LA/L� 0.8.

International Transactions on Electrical Energy Systems 11



4. Experimental Results

According to the previous analysis, the output current caused by
the loads or load variations can be seen as the main external
disturbance, while the internal disturbances mainly refer to the
dead time, parasitic parameters, parameter perturbation, and so
on. +ese disturbances will deteriorate the system’s
performance.

To verify the effectiveness of the proposed control strategy, a
605-W single-phase inverter prototype was established as
shown in Figure 17. +e experimental setup is composed of a
programmable dc power supply, a full-bridge IGBTmodule, an
LC filter, an auxiliary power module, and a set of linear and
nonlinear loads.+e control algorithm is implemented in aDSP
chip (TMS320F28335), and the digital oscilloscope is used to
record the output voltage and current waveforms. +e related
parameters can be found in Table 2. +e SRFPI control, the
conventional LADRC, and the compound SRFPI-LADRC are
tested and compared, and the SRFPI control includes an inner
capacitor current proportional loop with a proportional gain of
3. To make the comparison persuasive, parameters of the
overlapping parts of the three schemes stay consistent
intentionally.

Figure 18 shows the experimental steady-state wave-
forms under a rated resistive load (20Ω). Compared with the
SRFPI and LADRC, the proposed method has the lowest
THD (2.44% vs. 2.78% vs. 1.87%).

Figure 19 depicts the dynamic responses under a step load
from no load to a rated load. +e proposed method possesses
the shortest transient response time (1.6ms vs. 1.2 vs. 0.8ms).
In addition, it is noted that the voltage amplitude of the
proposed method recovers in one period, which further il-
lustrates its great performance against load disturbances.

Figure 20 shows the waveforms of output voltage and
output current when feeding a highly nonlinear load, which
consists of a 1-Ω resistor in series and a diode rectifier bridge
feeding a 2700-μF capacitor in parallel with a 30-Ω resistor.
All the output currents are significantly distorted with a crest
factor approaching 3. Despite that, compared with SRFPI
and LADRC, the output voltage of the proposed strategy
represented a very small distortion (THD� 2.14%).

To verify the robustness of the proposed method, the
waveforms under nonlinear load with LA parameter variations
(±20%) are shown in Figure 21. +e steady-state waveforms
indicate that the system remains stable and has small voltage
THD (2.18% and 2.23%). In short, the SRFPI-LADRC has good
robustness against system parameter perturbation.

+e performances of the three methods, measured in
terms of voltage THD, RMS values of output voltage,
tracking error, and transient response time under a step load
(from no load to a full load), are summarized in Table 3. It
shows that the proposed SRFPI-LADRC scheme obtains
overall performance improvement.

5. Conclusions

In this paper, a novel SRFPI-LADRC-based voltage control
strategy is designed for an off-grid single-phase inverter. +e
main work and conclusions are summarized as follows:

(1) Inadequate ability to track a sinusoidal signal of
traditional LADRC was analyzed. +en, an SRFPI
controller is combined with LADRC to overcome its
shortcomings. +e proposed method includes only
capacitor voltage loops. +us, it does not require the
generation of current quadrature signals and high-
precision current sensors.

(2) +e equivalent model of the inverter with the pro-
posed compound control strategy is provided. +e
system stability, dynamic performance, and ro-
bustness are analyzed by means of the generalized
root locus method, which show the superiority of the
proposed scheme.

(3) Experimental results verified that the performances
of the single-phase inverter with the proposed
SRFPI-LADRC were markedly improved in com-
parison to conventional SRFPI and LADRC. +e
system achieved a very small steady-state error and
voltage tracking error, as well as a fast dynamic
response under load variations, and low THD (close
to 2%) with highly nonlinear load.

(4) As a low-cost but high-performance solution, the
proposed method is suitable for off-grid single-phase
inverter applications, such as UPS inverters, outdoor
portable power supplies, and vehicle inverters.

+e performance verification of the proposed scheme for
single-phase inverters mainly considers resistive loads and
nonlinear loads. In future work, its performance under motor
loads and during line-to-ground fault and the postfault recovery
capability can be investigated. Furthermore, considering a single
SRFPI controller only achieves satisfactory voltage control at the
fundamental frequency; LADRC and multi-SRFPI-based
compound control can be studied to achieve better harmonic
compensation performance.

Abbreviations

vo: Output voltage
i o: Output current
f1: Unknown system disturbance
f: Total system disturbance
u: Control signal
δu: Input disturbance
δy: Observation noise
ωo: Observer bandwidth
ωc: Controller bandwidth
x1, 􏽢x1,
xe1:

Output voltage, observed voltage, and
observation error

ωf: Fundamental angular frequency; e, output voltage
tracking error

r, vr: Input reference voltage
L, C: Nominal filter inductance and capacitance values
LA, CA: Actual filter inductance and capacitance values
RMS: Root-mean-square
Vorms,
erms:

RMS values of output voltage and tracking error

ADRC: Active disturbance rejection control
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LADRC: Linear ADRC
SRF: Synchronous reference frame
SRFPI: Synchronous reference frame proportional-

integral
THD: Total harmonic distortion
PID: Proportional-integral-derivative
DBC: Deadbeat control
PR: Proportional-resonant
RC: Repetitive control
MPC: Model predictive control
LQG: Linear quadratic Gaussian
ESO: Extended sate observer
LESO: Linear extended state observer
MA-
LESO:

Model-assisted LESO

OSG: Orthogonal-signal-generation
APF: All-pass filter
UPS: Uninterrupted power supply.
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