
Retraction
Retracted: Model-Predicted Control System for the Real-Time
Operation of an Urban Drainage System to Mitigate Urban Flood
Risk: A Case Study in the Liede River Catchment,
Guangzhou, China

International Transactions on Electrical Energy Systems

Received 12 December 2023; Accepted 12 December 2023; Published 13 December 2023

Copyright © 2023 International Transactions on Electrical Energy Systems. Tis is an open access article distributed under the
Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided
the original work is properly cited.

Tis article has been retracted by Hindawi, as publisher,
following an investigation undertaken by the publisher [1].
Tis investigation has uncovered evidence of systematic
manipulation of the publication and peer-review process.
We cannot, therefore, vouch for the reliability or integrity of
this article.

Please note that this notice is intended solely to alert
readers that the peer-review process of this article has been
compromised.

Wiley and Hindawi regret that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our Research Integrity and Research
Publishing teams and anonymous and named external re-
searchers and research integrity experts for contributing to
this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] X. Quan, Z. Chen, T. Jiang, W. Liu, Y. Mo, and B. Chen,
“Model-Predicted Control System for the Real-Time Operation
of an Urban Drainage System to Mitigate Urban Flood Risk: A
Case Study in the Liede River Catchment, Guangzhou, China,”
International Transactions on Electrical Energy Systems,
vol. 2022, Article ID 8199192, 20 pages, 2022.

Hindawi
International Transactions on Electrical Energy Systems
Volume 2023, Article ID 9791037, 1 page
https://doi.org/10.1155/2023/9791037

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9791037


RE
TR
AC
TE
DResearch Article

Model-Predicted Control System for the Real-Time Operation of
an Urban Drainage System to Mitigate Urban Flood Risk: A Case
Study in the Liede River Catchment, Guangzhou, China

Xing Quan,1 Zhile Chen,1 Tao Jiang,2 Weifei Liu,1 Yaojun Mo,1 and Bing Chen 1

1School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510640, China
2School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China

Correspondence should be addressed to Bing Chen; chenbing@zcmu.edu.cn

Received 25 June 2022; Revised 12 August 2022; Accepted 25 August 2022; Published 11 October 2022

Academic Editor: Raghavan Dhanasekaran

Copyright © 2022 Xing Quan et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A model-predicted control (MPC) system, which is based on a storm water management model (SWMM) and uses a multi-
objective particle swarm optimization algorithm, is developed and applied to optimize the real-time operation of an urban
drainage system (UDS) in the Liede River catchment, Guangzhou, China. By comparing the results of three control scenarios (i.e.,
the original control scenario, the current MPC, and the ideal MPC) under three typical rainfall events, the results demonstrate that
the MPC system can effectively mitigate urban flood risk in engineering applications and the decision-making of the MPC system
is valid. By comparing the control results of the MPC system under different rainfall return periods (e.g., 1, 2, 3, 5, and 10 years), it
is found that compared with the original control scenario, the total overflow is reduced by 10%, the total overflow time is reduced
by 10%, or the node overflow start time is delayed by an average of 10minutes, and the real-time control of theMPC system is only
effective when the return period of the rainfall is less than three years. It is important to explore different ways of combining the
MPC system and feasible capital measures to cope with urban flood risk and challenges of climate change in future works (e.g.,
mean sea level rise and intense rainfall).

1. Introduction

Urban flood appears to be one of the major life- and
property-threatening challenges for humans worldwide
[1–3]. Many factors, such as climate change, urbanization,
and the aging of drainage systems, contribute to urban
flooding [4–7]. Capital measures (e.g., urban drainage sys-
tem rehabilitation) and adaptive measures (e.g., detention
tanks [DT] and low-impact development [LID] control) are
effective for urban flood risk mitigation [8–10]. For example,
Koudelak and West [11] analyzed the local urban drainage
system (UDS) condition using Storm Water Management
Model 5.0 (SWMM5.0) and InfoWorks CS to support the
upgrading of local UDS to cope with continuous urban flood
events and pollution. Yazdi et al. [12] integrated the copula
method, Monte Carlo simulation (MCS), multi-objective
evolutionary algorithm (EA), and hydro-dynamic models

for UDS reconstruction in order to tackle floods arising from
rainfall uncertainties [12]. Based on SWMM and modified
particle swarm optimization (PSO), Li et al. and Duan et al.
explored the effectiveness of detention tank (DT) and low-
impact development (LID) measures in managing urban
flood and water quality and then analyzed the uncertainty of
those models. (ey reported that both DT alone and the
combination of DT and LID could effectively control urban
floods and reduce flood nodes. Relative to DT alone, LID
might be more appropriate because it can reduce more flood
nodes and pollution [13–16]. (ese evaluations suggest that
the small hydropower (SHP) development in UDS is feasible
and the implementation of DT measures can effectively
reduce the urban flood risk and consistently generate
electricity through SHP [17]. In the context of climate
change, Hellmers et al. [18] evaluated how SUDS measures
(e.g., infiltration, retention, and storage devices) could
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mitigate flood risk under different future land-use scenarios
[18]. To address the uncertainty of future flood risk, Babovic
and Mijic [19] proposed the application of the adaptation
tipping points (ATP) in the process of developing adaptive
strategies and provided a structured approach for long-term
UDS planning. Nevertheless, capital measures might not be
feasible in some cases because of the high cost and long
implementation time [20].

Adaptive measures should be analyzed by comparing the
achieved goals against the associated costs because such
measures might be unfit for cities/regions with a high-
density of buildings and populations [16,20]. In such cities/
regions, effective management of existing infrastructure
might be a desirable alternative. (is can be achieved
through real-time control technology. (e model-predicted
control (MPC) is a widely used real-time control technology
for reducing combined sewer overflows and flood events in
UDS [21–24]. For example, some previous studies applied a
linear controller linked with the SWMM model to optimize
flood levels [25–27]. However, the implementation of a
linear real-time controller might not always guarantee the
best control scheme for each real-time decision. Some recent
studies have examined the ability of an MPC technology
(based on SWMM and evolutionary algorithms) to mitigate
urban flood risk in real time and confirmed that it can
provide more accurate real-time control strategies compared
to a linear controller [20]. For example, based on SWMM
and genetic algorithm (EA), AbouRjeily et al. [28] applied a
high-performance computer (HPC; which was configured as
Xeon ® e5-2670 V3 processors with a total of 60 parallel
computing cores at Lille University) to compute the MPC
system and control UDS in order to mitigate flooding. (at
study reported that the model performance was stable and
the applied algorithm was robust. Based on SWMM and
PSO, Jafari et al. [29] divided an MPC model into two sub-
models, namely, the upstream and downstream sub-models.
(e upstream sub-model contained complex and consid-
erable pipelines, but its computation results were stable and
had little influence on the downstream sub-model, whereas
the downstream sub-model contained few pipelines but it
included all UDS actuators. (us, the upstream sub-model
operated only once, while the downstream sub-model
iterated an adequate number of times in a decision period.
(is approach ensured the output result of the MPC system
was stable and cut the computational time of the MPC
system by approximately 11 minutes. Relative to the original
policy, the implementation of an MPC cut the peak water-
level violation from the target water level by 32.25% and
decreased the number of pump switches by 28.5% [29].
Sadlera et al. [30] applied three types of servers (personal
computers, HPCs, and cloud-based computers) to run a
simulated MPC system for minimizing flood risk caused by
intense storms and sea level rise. (at study suggested that
having a target water level of a storage unit and tidal
boundary conditions in UDS would reduce the flood risk by
74% (compared to a passive scenario or rule-based control).
(at study also confirmed that the HPC and cloud com-
puting can reduce the computation time of the MPC system
greatly, whereas the cloud-based computer, such as Amazon

web services (AWS), was recommended because of its low
cost, flexible computation demands, and free from cyber-
attacks [30]. While these studies demonstrated the effec-
tiveness of the MPC system in reducing flood risk, they were
based on historical or simulated rainfall data. In a sense,
those outcomes reflected the ideal effect of the MPC system
[28–30]. With the development of industrialization, the
distribution of urban drainage systems has become more
and more complex, and flood risk has become more and
more unpredictable. Previous studies still have some limi-
tations in this regard.

(us, this study develops an MPC system (involving a
functional human interface) using SWMM and evolutionary
algorithms (PSO algorithm) to optimize the real-time oper-
ation of UDS gates in a real system in the Liede River
catchment, Guangzhou, China. (e aim is to investigate the
application effect and evaluate the developedMPC system in a
real system. First, we evaluate the application effect of the
MPC system by comparing the results of three control sce-
narios during three different typical rainfall events (i.e., the
original control scenario, the real MPC, and the ideal MPC),
and examine the efficiency of the decision-making of theMPC
system in practical application. (e model predictive control
system using the multi-objective particle swarm optimization
algorithm in this article can put forward new ideas for urban
flood control measures and can also provide a new direction
for research on the application value of the multi-objective
particle swarm optimization algorithm. To further examine
the effectiveness of the MPC system, we analyze the control
results of the original control scenario and the ideal MPC
under different rainfall return periods (e.g., 1, 2, 3, 5, and 10
years). (is article is organized as follows. Section 2 describes
themethods andmaterials of this study. Section 3 presents the
construction of real-time monitoring and control system
networks. Section 4 shows the result and discussion of the
application of the MPC system. (e final section summarizes
and concludes the application of the MPC system and puts
forward potential for future work.

2. Materials and Methods

2.1. Study Area. (e study area, the Liede River catchment
(16.2 km2; 113°19′–113°20′E and 23°06′–23°09′N; Figure 1),
is located in the Tianhe District of Guangzhou city, China. It
has a total length of about 4.3 kilometers and is an important
regional location. It is the only watershed in Tianhe District
that flows through the central business district of Zhujiang,
New Town. In recent years, Guangzhou city has been fre-
quently affected by flooding due to climate change, ur-
banization, and the aging of drainage networks [31]. It has
caused great inconvenience to people’s travels, and seriously
affected people’s daily life and drinking water safety. (e
frequent occurrence of waterlogging also affected many
buildings and caused a lot of property losses. Statistical
reports suggested that from 1980 to 2010, the number of
flood events in the city increased from 7 to 113, which
seriously threatened lives and properties [32]. Located in the
central area of Tianhe district, Guangzhou city, the Liede
River catchment is the most frequent and serious area
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Figure 1: Continued.
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threatened by urban floods in Guangzhou city. (e causes of
flooding in the Liede River catchment include natural and
man-made causes. Natural causes involve the intensification
of extreme weather conditions driven by climate change and
the river level rise caused by the characteristics of the river
(e.g., low elevation, narrow channel, and shallow riverbed in
the river’s downstream area). (ese characteristics limit the
drainage into the downstream river. Man-made causes in-
clude the population surge, the rise in impervious areas due
to urbanization, low design capacity of UDS, and inadequate
maintenance of UDS. We note that some problems occurred
in the original construction process of UDS in the study
catchment, such as staggered connections, and mixed
connections among some drainage pipelines in UDS. To
better reflect the actual conditions of the study catchment,
some adjustments have been made to the boundaries of the
catchment and sub-catchments (see Figure 1).

2.2. Structure of the MPC System. (e MPC system con-
sisted of field devices, a cloud database backend, and
application software (see Figure 2). It is realized by
establishing the model of the optimization problem and
solving the optimization problem to obtain the output of
the controller. Field devices included sensors and actu-
ators, a remote terminal unit (RTU), and a transmitter.
Sensors, such as water-level gauges, rain gauges, and flow
meters, were used to collect field data. Actuators (sluice
gates, pumps, valves, etc.) were applied to control UDS.
(e RTU is a data acquisition and control unit which is
mainly used to collect and upload the heterogeneous
sensors’ data and execute the control commands issued
by the application software. It consists of operating
systems, monitoring software, and functional application
software, and can reasonably allocate CPU time among
different tasks according to the priority of each task. (e
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Figure 1: Study area. (a) Location of Guangzhou City in China, (b) location of the Liede River Basin in Tianhe District of Guangzhou City,
and (c) Liede River catchment.
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transmitter was a wireless network transceiver that used
the General Packet Radio Service (GPRS) wireless net-
work to realize the communication between the field
devices and the cloud database backend. (e database
backend adopted the PostgreSQL 9.2 (continuously
updated open-source software; https://52north.org/)
[33]. (e application software included two parts,
namely, client software and the MPC model, which
communicated with the database back-end directly. (e
TCP/IP protocol was applied as the communication
protocol in this system. (e database backend, client
software, and the MPC model were all deployed on a
cloud-based computer, which was configured as Xeon ®Intel Xeon e5-2699 V5 processors with a total of 32
parallel computing cores and provided by the Aliyun
Computer Company.

2.3. Client Software. Client software consisted of a front-end
website and a mobile application. (e front-end website
used the react framework and was written in the IIS +ASP
language; while the mobile application applied the Mina
framework and was coded in the Java language. Client
software contained the following four functions. Figure 3
shows the main interface of the front website and the mobile
application:

(i) Real-time data, such as sensors and actuators data
(e.g., rainfall precipitation, water level, and gate-
opening ratio) and status data of field devices were

viewed (e.g., battery power status and signal in-
tensity of communication networks).

(ii) Field devices were configured and maintained, such
as the configuration of field devices and the re-
placement of damaged field sensors and RTU.

(iii) Real Time Alert. Historical data collected in the
system over a long period of time were analyzed
through predictive analytics to create flood-related
trends, and users were notified in real time once a
state of emergency is reached. For example, when a
public emergency occurred, users would be notified
about the urban flood inundation.

(iv) Manual Control. (e manual control could be used
for sensor and actuator maintenance and emer-
gency. (e manual control is superior to the MPC
system control.

2.4. MPC Model

2.4.1. Objective Functions and Boundary Condition. To re-
duce the adverse impact of urban floods, three objective
functions were adopted in the MPC system, namely, min-
imum total overflow, minimum total overflow time, and
maximum average overflow start time. (e maximum av-
erage overflow start time is targeted to gain sufficient time
for the deployment and prevent flood inundation. (e gate-
opening ratio was provided with 0, 10, 20, . . ., 90, 100%
possibilities.
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Figure 2: (e MPC system. (e left panel shows the structure of the MPC system, and the right panel shows the RTU and the sensors and
actuators connected to each interface in the RTU.
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In Equations (1)–(3), W is the total overflow of water-
shed nodes, m3; ΔT is the total overflow time, min; J is the
number of overflow nodes, T is the entire time period of a
rainfall event, min; Xit is the overflow flow of the ith node at
t time period, m3; Δtit is the overflow time of the ith node at t

time period, min; and TiStart is the start time of overflow at
the ith node, hh: mm: ss.

In the MPC model, the boundary condition was set as
the water level of the outer river outside the outfall. (e
water level of the outer river was affected by the tide in this
study, which occurred irregularly. Due to the tidal forces of
the Moon and Sun on the oceans, there are two high tides
and low tides that occurred on a lunar day and were
often affected by extreme storms (e.g., large typhoons).
(erefore, the water-level data of the boundary condition
were obtained from the real-time monitoring system (see
Section 3).

2.4.2. UDS Model. (e UDS model is a one-dimensional
model established by the SWMM. SWMM is an open-
resource dynamic rainfall-runoff simulation model, de-
veloped by the Environmental Protection Agency, United
States (US-EPA), which is used for urban storm event
management worldwide [34, 35]. (e data resources for

the establishment of the UDS model included the field
inspection, maintenance, and supplementary measure-
ment data of UDS (provided by Guangzhou Sewage
Treatment Co., Ltd.), original computer-aided design
(CAD) of UDS (sourced from the Guangzhou Municipal
Engineering Design & Research Institute), a digital ele-
vation map (downloaded from Google Earth), land-use
data (obtained from the Guangzhou Land and Resources
Bureau), and the tables in the appendices of the SWMM
manual. (e dynamic wave was selected as its path
simulation, and the simulation time step was set to 1
minute. (e water-level data of nodes J5, J35, and J41 (i.e.,
the nodes of twelve consecutive rainfall precipitation
events in UDS; node locations refer to Section 3) were
selected for model calibration (from April 6, 2018, to April
24, 2018) and model verification (fromMay 5, 2018 to May
21, 2018). For nodes J5, J35, and J41, their model cali-
bration-averaged Nash–Sutcliffe efficiency (NSE) values
were 0.849, 0.862, and 0.874, respectively; their model
validation averaged NSE values were 0.843, 0.856, and
0.862, respectively (see detailed information in Table 1,
Figure 4 and Figure 5). Figure 6 displays a comparison of
the modeled and measured values at node J41 during
calibration on April 9, 2018, and verification on May 21,
2018.

2.4.3. Realization of PSO Algorithm Optimization. (e de-
cision-making of the abovementioned objective function in
this study involved the nonlinear decision-making of dis-
crete variables. (e discreteness of variables makes the
objective function and constraint function of the problem
neither continuous nor differentiable in its feasible set,
which makes it difficult to implement analytical methods.
Earlier studies suggested that the key advantages of the PSO
algorithm include simple structure, few parameters, easy
realization in engineering, and suitability in solving the
nonlinear discrete variable problem. Its rapid search speed
could reduce the computation time of a model [36, 37].(us,

Figure 3: Real-time data interface in the front-end website and manual control interface in the mobile application.
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Table 1: Nash–Sutcliffe efficiency (NSE) results for verification and calibration of the UDS model on different rainfall events.

Rainfall event Nash–Sutcliffe efficiency (NSE)
Node J5 Node J35 Node J41

Verification

20180406 0.812 0.899 0.849
20180409 0.832 0.837 0.890
20180414 0.875 0.834 0.904
20180415 0.873 0.876 0.862
20180416 0.853 0.861 0.869
20180424 0.846 0.862 0.870

Calibration

20180505 0.871 0.891 0.869
20180507 0.832 0.802 0.842
20180511 0.874 0.895 0.858
20180513 0.820 0.831 0.843
20180515 0.832 0.854 0.851
20180521 0.833 0.861 0.906
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Figure 4: Continued.
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Figure 4: Modeled and measured water-level values for verification of the UDS model on the (a) 20180406, (b) 20180409, (c) 20180414, (d)
20180415, (e) 20180416, and (f) 20180424 rainfall events.
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Figure 5: Continued.
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Figure 5: Continued.
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this algorithm was selected to perform decision optimization
in this model. (is algorithm first obtained an initial gen-
eration of a particle swarm with a random position vector
X1
�→

(t) and velocity vector V1
�→

(t). Next, it updated the position
and the velocity vectors of the particle swarm through the
velocity (4) and position (5) vector formulas. (e second
generation of iterative particles, called individual extremum,
was obtained by comparing the position of particles after the
iteration with that before the iteration. (e best particle from
the second generation of particles was selected as the global
extremum. (e iteration continued to the end. (e fitness
function was applied to evaluate the quality of particles. In
this study, the computation results of the SWMMmodel were
used as the fitness function to evaluate the quality of the
particles. (e model adopted the Python library to send
control commands, and MatSWMM was used to realize the

interaction between the SWMM model and the Python li-
brary, which is an open-source toolbox developed by Briceno-
Riano et al. [38]. Since NumPy has fast array processing
capabilities and its data structures can store and manipulate
data more efficiently, the specific type of Python library used
in this article is NumPy. (e part parameter values of PSO
were determined in accordance with a previously reported
summary and recommendation [39]. (e inertia weight in
this model was set as 1, and the personal and global learning
constants were set as 2.(emaximum andminimum velocity
vectors were set as 20 and −20, respectively. (e numbers of
particle swarms and iterations were obtained from the
convergence test of the PSO algorithms. Eventually, the
number of particle swarms and iterations in this study were
set to 30 (see detailed information in Figure 7). (e overall
framework of the MPC model is shown in Figure 8.
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Figure 5: Modeled and measured water-level value for calibration of the UDS model on the (a) 20180505, (b) 20180507, (c) 20180511, (d)
20180513, (e) 20180515, and (f) 20180524 rainfall events.
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Figure 6: Modeled and measured water level in node J41. Events of (a) 09/04/2018 (NSE� 0.890) and (b) 21/05/2018 (NSE� 0.906).
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Vi

�→
(t + 1) � Y(t) Vi

�→
(t) + random[0, 1]C1

· pBesti
������→

(t) − Xi

�→
(t)  + random[0, 1]C2

· gBesti
������→

(t) − Xi

�→
(t) ,

(4)

Xi

�→
(t + 1) � Xi

�→
(t) + Vi

�→
(t + 1). (5)

In Equations (4) and (5), Y is the inertia weight at it-
eration t; random[0, 1] is a random number in [0, 1]; C1 and
C2 are personal and global learning constants, respectively;
pBesti
������→

(t) is the best personal experience of the ith particle at
iteration t; and gBesti

������→
(t) is the best experience among all

particles at iteration t.

2.5. Model-Running Process. In the model-running process,
the whole period of the rainfall event [t1, tend] was divided
into H time periods according to the amount of rainfall. In
one of the time periods[t1, t2], the precipitation forecasts in
time periods [t1, tend] and the current UDS situation were
input into the model to derive the decision rule R1. (is rule
was then used for real-time UDS control. In the new time
period [t2, t3], the rainfall forecasts in the time period
[t2, tend] and the current UDS situation were input into the
model to derive the decision rule R2. (is rule was also
implemented for real-time UDS control. (e current UDS
situation data were gathered through the field sensors and
actuators, including the sensor-observed water level data of
the UDS nodes, the rainfall precipitation data, and the gate-
opening value in the time period [t1, t2]. In the new time
period [t3, t4], the rainfall forecasts in the time period

0 10 20 30 40 50
10000

10400

10800

11200

11600

12000

To
ta

l O
ve

rfl
ow

 (m
3 )

Iteration
Particle Number 10
Particle Number 20
Particle Number 30

Particle Number 40
Particle Number 50

Figure 7: Performance of the PSO algorithm with different particle numbers.
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[t3, tend] and the current UDS situation were channeled into
the model in order to derive the decision rule R3. Such a rule
was further implemented for real-time UDS control. (e
UDS situation data are the sensor-observed water level data
of the UDS nodes, the rainfall precipitation data, and the
gate-opening value in the time period [t1, t3] gathered
through the field sensors and actuators. (is process was
continued until tend. Hence, R1, R2 , . . ., RH, total H decision
rules were utilized for real-time UDS control in the whole
rainfall event. Figure 9 shows the timeline of the model-
running process. Since the minute-level precipitation fore-
casts of the National Weather Center in the next two hours
were updated at every 6-minute time step, they were adopted
as the model precipitation forecasts input in the system
(http://radar.tianqi.cn/), the model computational time
depends on the MPC system server, with 9.6 minutes for a
model run once in this system.

2.6. Evaluation of Decision-Making Validity of the MPC
System. (e output result of the UDS model was the fitness
function of the PSO algorithm, which means that if the UDS
model can properly simulate the practical situation of the
UDS in the field in the decision-making stage of the MPC
system, the decision-making of the algorithm is based on the
practical situation of the UDS in the field and the decision-
making of the MPC system is reliable. (e simulated values
of the UDS model in the decision-making stage of the MPC
system and the sensor-measured values by the field sensors
were compared to examine the decision-making validity of
the MPC system. It can be evaluated using (6). From (6),
when EDes value exceeded 0.75, the UDS model would
adequately simulate the practical situation of the UDS in the
field and the decision-making of the MPC system would be
reliable. When the EDes value surpassed 0.9, the UDS model
would accurately simulate the practical situation of the UDS
in the field and the decision-making of the MPC system
would be very effective [40].

EDes � 1 −


T
t�1 L

t
Mod − L

t
Mea 

2


T
t�1 L

t
Mod − LMod 

2. (6)

In (6), T is the total duration, min; t is the t-th time
period, min; Lt

Mod is the simulated water level value of the
UDS model in the t-th time period, meter; Lt

Mea is the
sensor-measured water-level values in the t-th time period,
meter; and LMod is the average simulation water-level value
of the UDS model in the total duration, meter.

3. Real Time Monitor and Control
System Networks

Real-time monitoring and control system networks are the
bases of the MPC system. Real-time monitor and control
system includes one rainfall-monitoring station (installed
rain gauge), three UDS node water level monitoring sta-
tions (installed water level gauge; for J5, J35, and J41 nodes’
locations, refer to Figure 10), and a boundary condition

monitoring station (installed water level gauge; outside the
outfall), and seven actuators stations (seven sluice gates at
the study catchment). (e data collection interval of sen-
sors was set to 5 minutes in this study.(e selection of three
UDS node stations was based on Guo et al. [41]. Seven
sluice gates are the original actuators of the study catch-
ment. Figure 10 presents the establishment of the real-time
monitor and control system networks at the study
catchment.

4. Results and Discussion

4.1. Application of the MPC System. In this section, the
control effect of the MPC system is evaluated by comparing
the flood inundation situation controlled by three control
scenarios during three typical rainfall events (i.e., the
original control scenario, currentMPC, and ideal MPC).(e
total rainfall of the three rainfall events is similar. (e
boundary conditions, that is, the water level in the outer
river, are in the low, late high, and storm surge tide periods,
which are representative of evaluating the application effect
of the MPC system. (e original control scenario is the real-
time control scenario in the studied catchment before the
application of MPC. It is a simple binary setting (off and on)
based on the water level in front of the gate, determined by
practical experience, and the specific control rules are shown
in Table 2. (e current MPC is a time series of control
settings, and the control time step is 10min with a control
horizon of 120min (the time scale of rainfall forecast data is
120min, refer to Subsection 2.5), In each time step, it
provides 11 possible choices for gate opening (refer to
Subsection 2.4) and the model-running processes (refer to
Subsection 2.5). (e ideal MPC is the result of an MPC
whose actual rainfall precipitation is known and actual
rainfall precipitation is taken as the model input to get the
best control rules [28–30]. (us, the control rules of an ideal
MPC are ideal real-time control rules, and the result of an
ideal MPC is mainly used to confirm the application effect of
the MPC system in practical applications (the current MPC)
in this study. (e sensor-measured rainfall precipitation,
and tide level data of the three rainfall events are shown in
Figure 11.

Table 3 indicates that for the rainfall event on June 24,
2018, the current MPC (ideal MPC) reduced the total
overflow by 37.3% (43.1%), cut the total overflow time of
nodes to 43.6% (48.9%), and delayed the average time of
node overflow start time by approximately 18.1minutes
(20.5 minutes) compared with the original control scenario.
For the rainfall event on August 7, 2019, the current MPC
(ideal MPC) lowered the total overflow by only 10.8%
(12.2%) and total overflow time to 35.4% (39.1%) and
dragged the average time of node overflow start time by
approximately 9.67minutes (10.54minutes) compared with
the original control scenario. Although the reduction of the
total overflow is limited, the total overflow time is greatly
reduced. For the rainfall event on September 16, 2018, the
current MPC dropped the total overflow of nodes and total
overflow time by 5.4% (6.06%) and 11.4% (12.4%), re-
spectively. Relative to the original control scenario, it

12 International Transactions on Electrical Energy Systems
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Figure 9: Timeline of the MPC model-running process.
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Figure 11: Sensors-measured rainfall precipitation and tide level of the (a) 20180624, (b) 20190807, and (c) 20180916 rainfall events.

Table 2: (e control rules of the original control scenario (the location and number of gates are in accordance with Figure 10).

R1 R2 R3 R4 R5 R6 R7
Gate height (m) 3.0 3.0 2.0 3.0 3.0 2.0 3.0
Gate-on (m) 3.0 2.1 1.8 2.8 3.0 1.2 3.0
Gate-off (m) 1.9 0.9 1.7 2.4 2.5 1.0 2.7

Table 3: Results of the original control scenario, the current MPC, and the ideal MPC.

20180624 20190807 20180916

(e original control scenario

Rainfall precipitation (mm) 67.53 67.95 70.43
Total node overflow (m3) 4635.4 6972.3 10756.6

Total node overflow time (min) 94 485 907
Average time of node overflow start time (hh:mm:ss) 13 :14 : 25 18 : 24 : 50 18 : 20 :13

(e current MPC
Total node overflow (m3) 2906.2 6219.3 10175.7

Total node overflow time (min) 53 313 804
Average time of node overflow start time (hh:mm:ss) 13 : 32 : 31 18 : 34 : 30 18 : 38 : 56

(e ideal MPC
Total node overflow (m3) 2637.7 6121.7 10104.6

Total node overflow time (min) 48 295 794
Average time of node overflow start time (hh:mm:ss) 13 : 34 : 55 18 : 35 : 23 18 : 40 :11
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postponed the average time of node overflow start time by
approximately 18.78 minutes (19.97 minutes). Whilst the
total overflow flow and total overflow time decrease are
limited, the average time of node overflow start time can be
delayed to a certain degree, which in turn gains some time
for taking feasible measures to prevent flood inundation.(e
above results show that the MPC system can effectively
reduce urban flood risk compared to the original control
scenario, and its results are close to those of the ideal MPC.
Table 4 and Figure12 indicate that all EDes values are greater
than 0.75 and the simulated water levels of the UDS model
match well with the sensors-measured values at nodes J5,
J35, and J41. (erefore, the UDS model of the MPC system
can sufficiently simulate the practical situation of the UDS in
the field, and the decision-making of the MPC system is
reliable. (erefore, the MPC system is an effective tool for
managing urban flood risk in practical application.

4.2. MPC Results under Different Rainfall Return Periods.
To further examine the effectiveness of the MPC system, the
results of the original control scenario and the ideal MPC
under a range of rainfall return periods (e.g., 1, 2, 3, 5, and
10 years) are used. (e boundary condition is set at the high
tidal level period. (e rainstorm intensity for rainfall events
design can be estimated using Equation (7). (e Chicago
approach is adopted to distribute the rainfall amounts [34].
(is method recommends generating a hydrograph with a
rainstorm with the same average intensity of uniform
rainfall and peaking at a selected time, and the humidity
conditions before peaking are related to the maximum
runoff intensity. (e design rainfall duration (t) is
120minutes, and the rainfall peak coefficient (r) is 0.4 (as
recommended by the Guangzhou Municipal Water Bureau
in the detailed rules for the implementation of Guangzhou
drainage management measures). Figure 13 displays the
simulated rainfall process timeline of different rainfall re-
currence periods. Regarding the boundary condition, we
adopt the tidal level process line of 17 : 00–19 : 00 (provided
by the General Urban Drainage Plan of Guangzhou City, and
compiled by the Guangzhou Municipal Engineering Design
& Research Institute). Figure 14 shows the 1-day average
annual tidal-level data of the boundary conditions in the
catchment.

q �
2424.17(1 + 0.553lgP)

(t + 11.0)
0.668 . (7)

In (7), q is the rainstorm intensity, L/s·ha; t is the rainfall
duration, min; and P is the design return period, year.

Table 5 indicates that the control effect of the MPC
system is gradually limited because of the increase in
rainfall return periods. When the catchment encounters
rainfall at its 20-year return period, the usage of MPC
results barely reduces the total overflow (by 1.23%) and
total overflow time (by 1.93%), and delays the average time
of node overflow start time by 3.45minutes compared
with the original control scenario. Suppose the control
criterion is set to one of the following three criteria: re-
ducing the total overflow by 10%, the total overflow time

by 10%, or delaying the average time of node overflow
start time by 10minutes compared with the original
control scenario, the results show that the MPC system is
only effective when the catchment encounters a rainfall
return period of less than three years. (erefore, the MPC
system cannot significantly mitigate flood risk in this
catchment.

5. Discussion

From Subsections 4.1 and 4.2, we deduce that the MPC
system can effectively reduce urban flood risk under dif-
ferent tidal levels for rainfall events with return periods
<3 years. However, for rainfall events with return periods
>3 years, the effect is limited at the high tidal levels because
of the low design capacity of UDS and inadequate main-
tenance. (e effectiveness of the MPC system is closely
related to the specific characteristics of a catchment, in-
cluding the maximum surplus capacity of the UDS, the
layout of UDS networks and affiliated gates, and the char-
acteristics of tide level. For a watershed with limited flood
risk, suppose it has a suitable layout of UDS networks and a
large surplus capacity of UDS, the application of the MPC
system for real-time control of UDS in urban flood risk
mitigation should be more effective. For instance, Celestini
et al. [42] demonstrated that flood inundation could be fully
mitigated by simple control rules. Also, AbouRjeily et al. [28]
suggested that flood inundation driven by a rainfall event
with a return period of 5 years could be alleviated effectively
by the real-time UDS control of the MPC system. Never-
theless, for an urban catchment characterized by an un-
suitable layout of UDS networks and a low surplus capacity
of UDS (usually in developing countries; also the case in the
current study), the application effect of the MPC system is
rather limited. In practical applications, it is very likely that
there will be mismatches, transmission timeouts, or the
maximum limit of data after the end is different from the
actual transmission bits and misalignments during trans-
mission. In a sense, capital measures and adaptive measures,
such as proper expansion and reconstruction of the UDS,
control of rainwater runoff in the source (e.g., DT, LID
control, and green infrastructure (GI) control measures), are
vital for managing urban flood risk in those catchments [11,
43, 44].

However, the MPC system remains important for
mitigating urban flood risk because

(i) (e MPC system can mitigate urban flood risk. For
example, the real-time alert of client software can
notify residents about the upcoming urban flood
inundation. In this study, the MPC system remains
effective when it encounters a rainfall event with a
return period of <3 years.

(ii) It provides assistance for capital measures and
adaptive measures. Large real-time data (real time
rainfall and tide levels) collected by the MPC system
can support the implementation of capital measures
and adaptive measures, thus saving some imple-
mentation cost and time.
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(iii) It improves water resource management of the
catchment by combining with other advanced
systems (Geographic Information System, Flood
Early Warning and Forecasts system).

In future studies, we would explore various ways of
combining the MPC system and feasible capital or adaptive
measures to tackle urban flood risk. In the context of climate
change, the global mean sea level rise would cause the tidal
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Figure 12: Comparison between simulated water level of UDS model and sensors-measured water level in three nodes on the (a) 20180624,
(b) 20190807, and (c) 20180916 rainfall events.

Table 4: Decision-making validity of the MPC system.

Decision-making validity value Rainfall event
UDS node

J5 J35 J41

EDes

20180624 0.883 0.849 0.829
20190807 0.876 0.869 0.871
20180916 0.870 0.862 0.854
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level to increase, which might weaken the effectiveness of the
MPC system in coastal cities [45]. (is effect is not only
reflected in the change of drainage time, but also in the
submerged outflow state, and the instantaneous flow rate
will also be reduced. It is important to explore measures to
reduce the impact of sea level rise, and ensure the effec-
tiveness of the MPC system in real-time control of UDS for

reducing urban flood risk for these cities. Since Guangzhou
is also a coastal city, we plan to rigorously explore this aspect
in a future study.

5.1. Uncertainties Analysis. (e model uncertainties of the
MPC system lie in input data and simulations [30]. Input
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Figure 13: Design rainfall hydrograph under different rainfall return periods.
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Figure 14: One-day average annual tide level data of boundary constraint conditions.

Table 5: Results of original control scenario and the ideal MPC under different rainfall return periods.

1-year return
period

2-year return
period

3-year return
period

5-year return
period

10-year return
period

(e original
control scenario

Rainfall precipitation (mm) 67.4 78.67 85.23 93.45 104.72
Total node overflow (m3) 8,767.3 1,2173.5 19,183.3 27,117.4 43,262.2

Total node overflow time (min) 824 989 1,125 1,284 1,563
Average time of node overflow

start time (hh:mm:ss) 18 : 25 : 24 18 : 21 : 31 18 :19 : 03 18 :12 :17 18 : 07 : 46

(e ideal MPC

Total node overflow (m3) 8,022.4 11,466.9 18,377.6 26,114 42,730
Total node overflow time (min) 708 898 1,060 1,227 1,533
Average time of node overflow

start time (hh:mm:ss) 18 : 40 : 41 18 : 34 : 32 18 : 30 : 30 18 : 20 : 40 18 :11 :13
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data include the precipitation forecasts, updated time of the
rainfall precipitation forecasts, time period of the rainfall
precipitation forecasts, and real-time sensor data, whereas
simulation uncertainty covers the simulation accuracy of the
UDS model and the determination of the MPC system
server.(e simulation accuracy of the UDSmodel is affected
by the underlying surface factors of the study catchment,
elevation data, UDS data, and other basic data of the study
catchment [46–48]. (e MPC system server determines the
computation time of theMPC system, affecting the real-time
control operation of the MPC system [28]. (us, the
implementation effect of the MPC system for real-time
control of UDS in urban flood risk mitigation is affected by
various factors. In the application of the MPC system for
real-time control of UDS to mitigate urban flood risk, it is
the key to control model uncertainties to ensure the final
control effect of the MPC system. Any deviation from the
above factors might even worsen the final results. In this
study, updated rainfall forecast data at every 6-minute time
step in the next 2 hours were adopted to reduce data input
uncertainties. High-precision basic data of the study
catchment were used to establish the UDS model, and real-
time sensor data were adopted to adjust the UDS model
error in the decision-making stage of the MPC system,
ensuring the accuracy of real-time control strategies. Cloud-
based computer, configured with the Xeon ® Intel Xeon e5-
2699 V5 processors and a total of 32 parallel computing
cores, speeds up the computational time of the MPC system
by about 9.6 minutes, meeting the recommended require-
ment of Sadlera et al. [30]. From Subsection 4.1, we can see
that the application of the MPC system to real-time control
of UDS can mitigate urban flood risk.

Moreover, the uncertainties of system information can
significantly affect the application of the MPC system to
real-time control of UDS in urban flood risk mitigation.
(ese uncertainties include the uncertainty of rainfall
events (e.g., rainfall peak coefficient and distribution of
rainfall amount); the uncertainty of boundary conditions
(e.g., tidal level); and the uncertainty of drainage system
parameters (e.g., the layout of the UDS network, size,
slope, and resistance coefficient of drainage conduits) [13,
14]. At a high tidal level, the application effect of the MPC
system in the study catchment is limited to a rainfall
return period of less than three years (see Subsection 4.2).
(erefore, in future work, the uncertainties of system
information (i.e., rainfall events, drainage boundary
conditions, and drainage system parameters) need to be
analyzed and reduced. Especially, the analysis of model
uncertainties and system information uncertainties
should be integrated into the overall design framework of
the MPC system.

6. Conclusions

(is study emerged from a lack of understanding about the
effectiveness of implementing an MPC system based on
the SWMM model and evolutionary algorithms for a real
UDS in reducing urban flood risk. Given this knowledge
gap, the current study presented a case study of applying

an MPC system based on the SWMM model and evolu-
tionary algorithms (involving a functional human inter-
face) to operate UDS gates for the purpose of mitigating
flood inundation in a real system in the Liede River
catchment, Guangzhou, China. (e results showed that
the system can effectively mitigate urban flood risk
compared to the original control scenario. Examination of
the decision-making validity of the MPC system indicated
that all EDes values were greater than 0.75; thus, the de-
cision-making of the system was effective. (erefore, the
MPC system based on SWMM and evolutionary algo-
rithms to real-time control UDS is an effective tool to
mitigate urban flood risk in engineering applications. (e
analysis of the effect of the MPC system under different
rainfall return periods (e.g., 1, 2, 3, 5, and 10 years)
suggested that when the tidal level of the outer river is
high, the application of the MPC system to real-time
control of UDS can effectively mitigate urban flood risk
for a rainfall event with a return period of less than three
years. Nonetheless, the control effect is rather limited for a
rainfall event with a return period of more than three
years. In this sense, future work should explore new
approaches to combining the MPC system with capital
measures or adaptive measures in order to fully address
the challenges of urban flooding (e.g., appropriate re-
construction of UDS, DT, and LID control), and whether
these approaches could be further adapted in the context
of climate change (e.g., mean sea level rise and intense
rainfall) for the study catchment.
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