
Research Article
Fault Classification with Convolutional Neural Networks for
Microgrid Systems

Prateem Pan ,1 Rajib Kumar Mandal ,1 and Md. Mojibur Rahman Redoy Akanda 2

1Department of Electrical Engineering, National Institute of Technology, Patna 800005, India
2Department of Computer Science and Engineering, Prime University, Dhaka, Bangladesh

Correspondence should be addressed to Md. Mojibur Rahman Redoy Akanda; redoy.akond@primeuniversity.edu.bd

Received 30 November 2021; Accepted 29 March 2022; Published 28 April 2022

Academic Editor: Pawan Sharma

Copyright © 2022 Prateem Pan et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

)e microgrid (MG) networks require adaptive and rapid fault classification mechanisms due to their insufficient kinetic energy
reserve and dynamic response of power electronic converters of distributed generation (DG) systems. To achieve this requirement,
this study explores the issues in standalone (SA) and grid-connected (GC) operating modes of MG and develops a near-real-time
intelligent disturbance detection and protective solutions for their stable operation. In the proposed approach, an intelligent fault
classification mechanism is developed using the advantages of wavelet transform and convolutional neural networks (CNNs).
Initially, the voltage and current outcomes for each and every possible fault in the MG network are identified and the wavelet
transforms are applied for preprocessing and image conversion. )e converted images are identified as scalograms which are
further trained with the CNNs. To assess the development of the proposed approach, the IEEE 13 bus system is considered for data
gathering. To replicate the real-time behavior of the MG network, the additive white Gaussian noise (AWGN) and additive
impulsive Gaussian noise (AIGN) are injected at various levels during the classifier development process.)e trained classifier has
an average training accuracy of 99.1% for SA MG and 97.7% for GCMG, and the average testing accuracies are 98.9% for SA MG
and 97.1% for GC MG.

1. Introduction

In the microgrid (MG) operation, detecting and locating
faults is a critical procedure to ensure system protection,
smooth operation, and service restoration. Successful de-
tection of faults results in accurate operation of the pro-
tective relays which further isolates the faults and de-
energizes the faulted section. Furthermore, the protection of
MGs proved to be a difficult task due its multiple modes of
operation and diverse power generation technologies [1].
Given that MGs rely on distributed generation (DG) systems
at the load end for a stable operation, it is important to avoid
the generation capacity loss while isolating the faults. Hence,
for the MGs to sustain an operation during the unbalanced
faults, several factors such as the inverter internal protection
schemes designed to meet the protection requirements of
standalone (SA) operation and to trip during unbalanced

conditions need to be considered [2]. Besides, the MGs must
be equipped with DGs that can operate through unbalanced
faults for developing the smart MG network. Failing to
adhere with any of the above factors, any asymmetrical fault
may result in the shutdown of SA MGs. )erefore, smart
MGs should be capable of identifying the phases, which can
account for the majority of failures that occur in the system
during unbalanced faults [3].

To achieve this, in recent years, signal processing and
data driven approaches have become increasingly popular
for detection and classification of faults in MGs. In [4], the
authors use discrete wavelet transform (DWT) [5] to extract
features from the branch current signals. )ese features are
used to detect faults and are further fed into a neural
network comprising of gated recurrent units for fault
classification. )e authors tested their proposed scheme on
the Consortium for Electric Reliability Technology
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Solutions (CERTS) MG test bed [6] and the IEEE-34 bus
system, to achieve high accuracy in fault classification. In
[7], the authors developed a protection scheme using CNN
approach for PV-based MGs to improve their robustness
during varying irradiance levels. )e developed scheme
utilized spatiotemporal features obtained by modelling the
uncertainty in the irradiance levels over a period. )is
approach has drawbacks due to diverse data analysis aspects
which resulted in various challenges during the process of
exploiting the hidden data patterns. Furthermore, in [8], the
authors extracted the relative wavelet energy of the signals
using DWT-based multiresolution analysis (MRA) of the
input signals for achieving fault detection in DC MGs. A
simple feedforward neural network (NN) is used for
training these input features and for developing the fault
classifier. Various similar instances of applying wavelet
transforms along with the NN approaches for developing
fault classification algorithms have been further illustrated
in [9–13]. In addition to NNs, k-nearest neighbors (k-NNs)
and decision trees (DTs) are widespread approaches used in
the development of fault classification algorithms. In [12],
the authors used two DTs for fault classification in trans-
mission lines based on fifteen features extracted using
DWT. )e results identified that the trained classifier was
able to achieve a classification accuracy of 94% using the
random forest method. However, the method suffers from
major drawbacks as 12% of the line-to-line to ground (LLG)
faults were classified as line-to-ground (LG) faults. Also, the
method fails to identify the faulted phases. Furthermore,
DTs were also used in [14] to classify the faults in trans-
mission lines. In [10], a semisupervised machine learning
approach is used to handle both labelled and unlabeled data
by co-training DTs and k-NN classifiers to classify faults in
both transmission and distribution systems including MGs.
In [15], the series arc faults in PV systems are classified by
generating different types of series arc faults by training the
corresponding data with the light convolution neural
network. )is approach heavily relied on expert-designed
characteristics from the simulations and is identified to be
difficult while training models with strong generalization.
Similarly, in [16], the series AC arc fault detection is
achieved with an adaptive asymmetric convolutional neural
network. Furthermore, this method used generative
adversarial networks (GANs) to enhance the data used in
the arc fault detection approach. )e major drawback with
the developed approach is its unstable training associated
with the GANs, where different types of data need to be
continuously provided to check the accurate working of the
method.

In addition to the techniques discussed, some other
novel approaches to fault classification are as follows. In
[17], the authors used the principal component analysis
(PCA) to classify faults based to the phase current values
in only one fourth of a cycle. In [18], a fault classification
and change detection approach is developed using Tea-
ger–Kaiser energy operator for AC MGs. )e method-
ology extracted the signatures from the summation of
squared three-phase currents measured at the end of a line
in the MG.)e developed scheme is capable of identifying

the operating state of the network in both grid-connected
(GC) and standalone (SA) modes, but faced drawbacks
due to the wraparound effects at the ends of the record
data. Furthermore, the work done in [19] develops a
classification scheme based on Discrete Fourier Trans-
form (DFT) and fuzzy logic (FL). In [20], a data-mining-
based fault classification approach for microgrid pro-
tection is developed to resolve the issues of high pene-
tration of distributed generation units in the network. )e
developed approach used voltage and current signals
measured at the system output to extract the features
using Hilbert transform and train the AdaBoost classifier.
)e developed approach has disadvantages due to em-
pirical evidence form of AdaBoost classifier and its vul-
nerability to uniform noise. )ese aspects lead to low
margins and overfitting during the data training process.
In the literature surveyed so far, only few studies paid
consideration to the quality of the simulated signals. )e
authors in [4] tested the proposed scheme on data gen-
erated with 30 − 40 dB signal-to-noise ratio (SNR). Fur-
thermore, the authors in [21] tested the used of deep
learning classifiers on perfect signals and signals with
20 dB SNR. Since the machine learning and deep algo-
rithms are data driven, it is essential that considerable
attention is paid to train the network on data that is as
close as possible to the real-world data. Failing to adhere
with these aspects could result in a significant difference in
the performance of the scheme when implemented in the
field.

In light of this requirement, this research aims to gen-
erate data that are close to the real-world data. )us, in
addition to 20 dB SNR with additive white Gaussian noise
(AWGN) [22–24], the additive impulse Gaussian noise
(AIGN) [24–26] is added to mimic the impulses generated
due to random switching of loads in the MG and impulses
created from the switching operation of inverters [27, 28].
Furthermore, this research adapts the widely used DWT
along with the convolutional neural networks (CNNs) to
develop the fault classification approach. )e application of
CNNs to fault classification is an interesting approach in the
sense that the signals are not directly used as inputs to the
classifier. Similar approaches were adapted in [29] to detect
the single-phase Earth faults and in [30] for estimating and
classifying the voltage sag where the inputs to the CNNs
were matrices of selected variables formed using the concept
of system area mapping. )e role of CNN is to make the
input data easier to process without losing the essential
functionality of good prediction. )is is important not only
for learning features but also for designing extensible ar-
chitectures for large datasets.)e purpose of the convolution
operation is to extract high-level features from the input
data. Besides, the CNN does not have to be limited to just
one convolutional layer. Traditionally, the first ConvLayer is
responsible for capturing low-level features, and with ad-
ditional layers, the architecture also adapts to higher levels of
functionality, providing a comprehensive understanding of
the dataset. Furthermore, by adapting the implementation
principles developed in the literature, the major contribu-
tions of this research are as follows:

2 International Transactions on Electrical Energy Systems



(i) Develops a fault classification approach for MG
networks operating under both SA and GC modes

(ii) Examines the behavior of the proposed classifica-
tion process with real-time signals by replicating
their behavior using AWGN and AIGN

(iii) Localizes the faults in the system according to the
zone of occurrence

(iv) Improves fault classification accuracy and fault
detection speed for different faults that can occur in
a MG network

Furthermore, sections of this study are organized as
follows. Section 2 identifies the faults and challenges faced by
the MG network. Section 3 discusses the requirements for
developing the proposed fault classification approach, and
the methodology is discussed in Section 4. )e results are
discussed in Section 5, and the conclusion and future work
are given in Section 6.

2. Faults and Challenges in Microgrid

Microgrids, which are defined as a small entity in a power
system network, usually comprise of loads, microgenerators,
some local energy storage, and an intelligent control system
along with associated protection devices and energy man-
agement software. A brief overview of MG architecture is
shown in Figure 1. )ese networks are capable of coordi-
nating andmanaging distributed energy resources (DERs) in
a more decentralized way and reduce the need for the
centralized coordination and management. )ey, thus, be-
have as a net load or a net generator to the broader grid [31].
In general, faults can be classified into two types. In the first
type called shunt faults, insulation failure results in a short
circuit between two ormore live conductors when they come
into contact with each other. )ese types of faults occur due
to overstressing and degradation of insulation over time or
due to a sudden over voltage condition. )e second type of
faults leads to an interruption of current flow and is called
open circuit faults or series faults. Shunt faults that involve
all three phases (LLL) or all three phases and the ground
(LLL-G) are called symmetrical faults since all three phases
are affected. Shunt faults that occur between two phases
(LL), two phases and the ground (LL-G), or any single phase
and the ground (L-G) are called unsymmetrical faults, since
the phase balance is disrupted and involves unsymmetrical
current components.

Furthermore, when two or more faults occur at the same
instant, then such faults are called simultaneous faults.
Sometimes, these faults may be of the same type and can
occur in the same location, or a different type of faults that
occur in the same location. In some cases, one type of fault
may evolve into other types known as the cross-country
faults. A brief overview on the classification of faults is given
in [32, 33] and depicted in Figure 2. )is work aims to
classify the five types of symmetrical and asymmetrical shunt
faults and identify the phases involved.

Generally, these electrical faults in the MGs can occur
due to diverse reasons such as equipment failures, weather

conditions, human operation errors, and other factors. )e
effect of these faults in a MG ranges from over current flow
to disturbances in the interconnected active circuits and also
involves damage to equipment and dangers to operating
personnel. Apart from the above, there are many other
challenges that need to be addressed while developing a fault
classification approach for MGs. When a MG is inter-
connected in the grid, the protection system must make sure
that the MG is isolated in case of a fault in the main grid. For
any case if the fault occurs in theMG itself, it must make sure
that no or minimum number of consumers is only affected
by the fault. )e major challenges faced by the protection
system in a MG are

(i) Smaller and intermittent magnitude of fault cur-
rents are due to high penetration of inverter-
interfaced DG systems

(ii) Different modes of operation, i.e., GC and SAmode,
may produce different levels of fault current

(iii) )e irregular connections and unplanned discon-
nections of the MG components will result in to-
pological changes to the MG network

(iv) )e intermittent nature of DERs means that the
assessing the level of fault current may prove to be
challenging

(v) )e power electronics converters that connect the
generation and storage systems has a very limited
tendency to generate short-circuit currents, i.e., not
more than 1.2 or 2 times the rated current of the
generator in the case of a fault

)us, a data-driven approach combined with signal
processing techniques could help in overcoming the above
challenges as it does not rely on set thresholds used in
traditional protection systems. Using signal processing
techniques such as MRA allows us to detect faults with the
smallest change in voltage or current thus reducing our
dependence on large magnitude of fault currents for de-
tection. In this work, we consider the classification of shunt
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Figure 1: Overview of microgrid architecture.
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faults; i.e., given that a fault has occurred, we aim to identify
the phases involved which will allow the control system to
trip only the faulted phases so as to avoid unnecessary
islanding of the MG. We aim to classify the five types of
symmetrical and asymmetrical shunt faults and identify the
phases involved.

3. Requirements for Developing a
Fault Classifier

3.1. Wavelet Transforms. Analyzing digital signals in dif-
ferent domains of representation allows us to better un-
derstand its salient features such as its periodicity,
autocorrelation, and power spectrum of the signal which
may be hard to extract from any single domain. Wavelets are
an effective tool for analyzing and processing signals and
have been used widely in fields such as computer vision,
music, and digital signal processing to analyze and transform
data. A wavelet is any wave that satisfies certain conditions.
A wavelet is a small wave, which must be an oscillating zero-
average function that is confined in a short period of time. A
wavelet function that gives rise to a number of similar waves
that are translated (shifted) or dilated (stretched or com-
pressed) in time is called a mother wavelet. Any signal can be
expressed by a summation of identical wavelets that have
different translation and dilation factors, which are also
called the wavelet coefficients. Furthermore, the Fast Fourier
transform (FFT) and the wavelet transform share many
similarities. In terms of signal representation, the FFT
represents the signal as a sum of sine and cosine waves of
different frequencies; while, wavelet transform utilizes a
mother wavelet as a basis function in the transform domain.
Mathematically, the inverse transformation matrix of both
methods is the transpose of the original transformation
matrix. )us, both methods can be viewed as a rotation in
function space to a different domain. Additionally, the basic
functions of both methods are localized in frequency which
can be leveraged by mathematical tools such as scalograms
to calculate the power distribution among the frequencies.

Analyzing digital signals in different domains of rep-
resentation allows better understanding of its salient features
such as its periodicity, autocorrelation, and power spectrum.
)ese features are hard to extract for a signal from any single

domain. Hence, wavelets are identified as an effective tool for
analyzing and processing signals [34]. Wavelet transforms
(WTs) represent the signal as a set of wavelet coefficients in
the time-frequency domain that can be manipulated to
achieve various signal processing effects. )ese coefficients
have been used widely in fields such as computer vision,
music, and digital signal processing to analyze and transform
data. In the research, the DWTs are developed to extract the
features of the various faults identified in a MG network for
training with the classifier.

For a continuous-time signal x(t), the wavelet transform
Wx(a, b) is defined as

Wx(a, b) �
1
���
|a|

√ 
∞

−∞
x(t)

t − b

a
 dt. (1)

Here, the inner product of x(t) and the translated and
scaled variation of a single function ψ(t) are computed to
estimate the wavelet transform. )e bandwidth and center
frequency of the wavelet can be varied by changing the
scaling parameter a. Hence, when a is fixed, the transfor-
mation is a convolution of x(t) with the scaled and time-
reversed wavelets. Furthermore, the transforming of the
signal into different domains of representation should also
ensure a perfect reconstruction of the signal. To achieve this,
the WT needs to satisfy the admissibility condition for the
wavelet ψ(t) as follows:

Cψ � 
∞

−∞

ψ(ω)
2


|ω|
dω<∞, (2)

where |ψ(ω)| is the transformation ability of the wavelet.
Furthermore,

ψ(0) � 
∞

−∞
ψ(t)dt � 0. (3)

Moreover, |ψ(ω)| must decrease rapidly for |ω|⟶ 0
and for |ω|⟶∞. )e above conditions imply that, in a
time domain, the average value of the wavelet must be zero
and should be oscillatory.

Furthermore, to overcome the challenges due to map-
ping of a signal in different time domains, the DWT are
introduced [5, 35, 36]. )e DWT scales and translates the
signal in discrete steps and holds sufficient information

Fault Type 
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Figure 2: Classification of fault types in a power system network.
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related to analysis and synthesis of the signal. It also reduces
the computational time and is considerably easy to imple-
ment. )e DWT is applied to a signal as follows:

dj,k �
1
���
a

j
0





 
∞

−∞
x(t)ψ∗

t − kb0a
j
0

a
j
0

⎛⎝ ⎞⎠dt, (4)

where j and k are the integers reflecting the level and lo-
cation, respectively, and bo > 1 is a fixed dilation step.

Furthermore, the DWT evaluates the signal by decom-
posing it into approximation and detailed coefficients with
different resolutions at different frequency bands. )is
process is achieved with successive low-pass and high-pass
filtering of the time-domain signal. Generally, this filtering is
executed with the wavelet and scaling functions associated
with the low-pass and high-pass filters, respectively. Initially,
the original signal x[n] is passed through a half-band low-
pass filter g[n] and high-pass filter h[n]. )is eliminates half
the samples from the original signal, which further halves the
time resolution and doubles the frequency resolution.)is is
because the frequency band of the filtered signal spans only
half the frequency band of the original signal. Figure 3 shows
a three-level decomposition of a signal showing the fre-
quencies being split after each level of decomposition
[37, 38].

)e output of the high-pass filter is called the approx-
imation coefficients and the output of the low-pass filter is
called the detail coefficients. )is procedure, also called
subband coding, is repeated with the detail coefficients until
such only two samples are left in the signal. At each level, the
subsampling will lead to half the time resolution and half the
frequency band thus doubling the frequency resolution.)is
procedure can be visualized, as shown in Figure 3. Math-
ematically, the multiresolution decomposition of a signal
x(t) at level M can be achieved by

x(t) � 
k

aM,k

1
���
2M

 φ
t

2M
− k  + 

M

j


k

dj,kψ
t

2j
− k ,

(5)

where aM,k are the approximation coefficients at level M and
φ(t) is the scaling function. At each level of decomposition,
the most prominent frequencies present in the signal will
appear with high amplitudes in the respective region of the
DWT signal that contains those frequencies.

In this study, the Daubechies 5 (db5) mother wavelet
with two-level decomposition and reconstruction is used.
)is choice of mother wavelet provides a set of highly well-
located elements that which when scaled with a set of 5
integer coefficients provides a representation that can act as a
reference to any fault type occurring in the MG. )ereafter,
the two-level decomposition is identified to provide the
maximum value for energy and Shannon entropy which is
depreciated if any other level is used. Furthermore, these set
coefficients for the mother wavelet carry the asymmetric,
orthogonal, and biorthogonal properties which provide a
better scaling and wavelet functions for sine wave repre-
sentations. An example of how a measured variation in

voltage and faulty voltage signal of phase a behave when
subjected to db5 is presented in Figure 4.

3.2. Convolutional Neural Networks. Similar to the regular
feedforward networks, the CNNs make an explicit hy-
pothesis that the input to the network layer is always
images. )e CNNs are designed to attribute certain
properties to neural networks that make its work with
image inputs easier and efficient at extracting features.
CNNs are primarily used for 2D image recognition. In this
process, the color information carried by individual pixel
of an image is usually represented through multiple
channels. Furthermore, CNNs consist of different types of
layers that perform the function of feature extraction,
reducing architecture size and finally the classification.
Here, we take a deeper look at the network architecture
and elucidate the functioning of the CNNs’ model. )e
three main layers used in CNNs’ architectures are the
convolutional layer, the pooling layer, and the fully
connected layer. Furthermore, a CNN is learned by
updating a set of trainable filters that slide across the input
matrix spatially and compute dot products between the
input values and the filter values. Furthermore, a 2D
activation map is formed as the filters which slide across
the width and height of the input image. )is provides the
response at each spatial position for the filter. Besides,
when the filters are activated and encountered visual
features such as colors or edges of the input image, the
network iteratively learns them. Furthermore, the con-
volutional layer is tailed by a ReLu function so as in-
troduce nonlinearity and help the network to converge
[39]. In between each convolutional layer, a pooling layer
is added to reduce the size of the input image and the
number of input parameters to the next convolutional
layer which helps to reduce overfitting. Neurons in a fully
connected layer have connections to all activations in the
previous layer, as seen in regular neural networks. )e
function of the fully connected layer is to take the features
extracted by the convolutional layers as inputs and classify
them. )e pooling layer operates along the depth of the
input image and resizes it by performing the MAX op-
eration without changing the depth of the image [39]. )e
operation of CNNs is depicted in Figure 5.

Furthermore, to accommodate the change in network
topology with the architecture of the CNN, the parameter
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Figure 3: )ree-level decomposition of a signal with discrete
wavelet transform.
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selection and optimization are achieved such that there is
a better tradeoff between computation speed, network
depth, and accuracy. Generally, it is highly speculated that
more layers will offer high accuracy without the need for
achieving flexibility of the network architecture. However,
this approach will make the network run slower and can
also lead to overfitting and under fitting of the input data.
Hence, to avoid the overfitting and achieve this during the
algorithm development, the features of automatic dif-
ferentiation, shared weights, and custom training loops
provided by the deep learning toolbox of MATLAB are
utilized.

4. Design and Implementation

)is section provides an overview of the proposed method to
classify faults in MGs using neural networks. )e method is
designed such that it addresses the challenges posed by MGs
as discussed in Section 2. It is designed so as to be scalable
and adaptable to MGs of different sizes that operate at
different voltages to be able to provide classification with
high accuracy and confidence and facilitate its safe opera-
tion, in case of a fault. )e goal is to employ deep learning
methods to identify fault types in a MG rather than hard
coding the values. )e process involves the MG design and
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implementation, data generation, data preprocessing, and
fault type classification, as shown in Figure 6.

4.1. Microgrid Implementation. For the purpose of this re-
search, a MG that is a modified version of the IEEE 13 bus
feeder [40] is designed and implemented. Figure 7 shows the
one-line diagram of the feeder. It is an unbalanced system
that models many of the typical characteristics of a standard
distribution network [41].

To implement the proposed fault classification approach
with the various types of DGs in the MG, the network in
Figure 7 is modified to include by adding two photovoltaic
(PV) systems at nodes 680 and 602. Besides, at node 675, an
energy storage system (ESS unit for DG (DG-ESS) is as-
sociated in the network. To model the coupling point, a
three-phase voltage source is utilized in a star configuration
with ground connection. Furthermore, the variable is to
model the point of common coupling (PCC) in the network.
)e variable loads are connected at the same nodes as the
PV-DGs. )e ESS is developed as a system level model that
can be used for hybrid-phasor electro-magnetic transient
studies. )is is set to current control mode when the MG is
GC and voltage control mode in the SA operation. )e MG
has several types of loads such as constant impedance,
constant current, and constant power in star or delta con-
figuration. In addition to the spot loads, a distributed load is
present between nodes 632 and 671. )e parameters of the
DG-BESS are provided in Table 1. )e storage system is
operated in current control mode or voltage control mode
depending on whether the MG is in GC mode or in SA
mode, respectively. )e parameters of the GC PV array and
the transformer are also provided in Table 1. )e complete
IEEE-13 bus feeder as implemented in MATLAB/Simulink
is shown in Figure 7.

4.2. Data Generation. As the control system of a MG is
responsible for the safe operation of the system in both the
GC as well as the SAmode.)emicrogrid may be controlled
from a central controller or may have the control system
imbedded as autonomous parts in each DER. In the islanded
mode, the control system needs to maintain a constant
voltage and frequency while injecting and absorbing the real
and reactive power difference between the generation and
loads. Here, frequency control may prove to be challenging
due to the unavailability of rotating masses that are usually
present in larger system and are essential for their stability.
On the contrary, MGs are vastly dependent on power
electronic devices whose control systems must be adapted to
provide the frequency response and voltage regulation which
was previously obtained from directly connected rotating
masses. Without proper voltage regulation, MGs are prone
to experience oscillations in voltage and power. Hence, the
fault classification approach is analyzed in both GC and SA
modes. Before the classifier can be used to classify faults,
their learning parameters need to be trained as explained in
the previous chapter. To obtain the data for developing the
proposed approach, eleven fault types are simulated under
various conditions. )ese conditions include the location,

resistance, and inception angle for the faults. Furthermore,
the three-phase voltage and the three-phase line currents are
measured from the simulation models.

From Table 2, there are 11 types of faults with 8 fault
inception angles in 3 faults zones, as shown in Figure 7. Fault
zone 1 is chosen as the PCC considering its distance from the
grid. )is zone experiences large fault currents in case of
fault from the grid while operating in a GCmode. Nodes 680
and 602 were chosen as fault zone 2 and fault zone 3, re-
spectively, as they are connected to the DERs. )e fault
resistances are varied from 1 ohm to 0.001 ohm, thus giving
us a total of 1848 fault cases. )e simulations were per-
formed using MATLAB/Simulink 2019a. )e 3-phase
voltage and current signals were measured at a sampling rate
of 10 kHz at nodes 602, 631, and 680.)e sample voltages for
GC and SA modes of operation of the MG network under
various faults are shown in Figure 8.

To replicate the noise present in power lines in the real
world, the AIGN along with the AWGN is added to the
simulated signals. )e AIGN noise was added by creating a
vector of impulses of random amplitudes with random
interarrival time.)e noise vector was then passed through a
bandpass filter to obtain the impulse response. )e resultant
noise vector was then added to the measured voltage signals.

4.3. Signal Preprocessing. Besides the abovementioned
steps to denoise the signals, in order to train the CNNs,
the signal sequences must be converted into images for the
CNNs to process. )is is achieved by using the wavelet-
based signal analyzer available in MATLAB.)e functions
in the tool display any data in an array as an image using
the full range of the colormap. For a 3-column array, the
colormap defines color from the standard RGB triplets in
which each element of the row will have a different color
intensity or pixel value. Hence, for an input array C of size
(m, n), the resulting output image will be of the same size.
)e sample scalogram for voltages for GC and SA modes
of operation of the MG network under LG and LL faults is
shown in Figure 9.

4.4. Fault Classification. In the fault classification process,
the processed fault data, as shown in Figure 9, are labelled for
their corresponding faults and trained with the classification
algorithm. Initially, the data are randomized and split into
training data, validation data, and testing data. Seventy
percent of the randomly selected data are used for training
and the rest is equally divided between validation and testing
data. )e input to the CNNs is the images of size
224× 224× 3 representing sequences of 3-phase voltages. As
the number of layers increase, the feature extraction capa-
bility of the network improves, but the number of param-
eters required for training also increases. )ere is no
theoretical framework to determine the right number of
layers. )us, a number of network layers must be evaluated.
)e architecture of the CNNs used in this study is depicted
in Figure 10.

)e first layer is the image input layer that accepts the
input images and holds the value for each pixel of the

International Transactions on Electrical Energy Systems 7



input image. )is is followed by a convolutional layer
which has F number of filters that traverse through the
input vertically and horizontally with stride (S). To

control the size of the output volume, the borders are
padded with zeros (P). )e output (O) of the convolu-
tional layer is given as
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Data
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Trained

Classifier model
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Figure 6: Stages of developing the fault classification approach.
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O � int
1 − F + 2P

S
  + 1. (6)

)is process is followed up by the ReLU layer and the
max pooling layer. To lower the chance of overfitting, the
pooling layer downsamples the input data. )is is further
followed by twomore sets of convolutions and a ReLU layers
and a second max pooling layer along with a dropout layer.
Finally, the fully connected layer is used with 11 neurons for
each type of output class, along with a softmax layer and a
classification layer. )e loss function of this network
structure is defined by the multiclass cross entropy. )e
information related to various layers used in the CNNs
architecture is given in Table 3, and the parameters for the
CNN are shown in Table 4.

)e main operation performed by the convolutional
layer is the convolution between the filters and the input
matrix. )e size of the filter greatly affects the performance
of the convolutional layer. If the size of the filter is too small,
the CNNsmodel may be susceptible to information loss, or if
the size of the filter is too big, the computational cost in-
creases rapidly.

5. Results and Discussion

)is section discusses the various parameters used to
evaluate the performance of the model. For multiclass
classification problems, a confusion matrix is used to
evaluate, quantify, and visualize the accuracy of the classifier
on the test data for which the true values are known. )e
classification accuracy is defined and estimated as

Accuracy �
TP + TN

TP + TN + FP + FN
, (7)

where TP is the true positive samples, TN is the true negative
samples, FP is false positive samples, and FN is the false
negative samples. In addition to the confusion matrix, the
performance indices such as recall, precision, and F1-score
are also estimated as mentioned below:

Recall �
TP

TP + FN
,

Precision �
TP

TP + FP
,

F1 − score �
2∗Recall∗Precision
Recall + Precision

.

(8)

)eCNNs’ models are tested on data generated when the
MG is in the SA mode and the GC mode. In order to avoid
the problem of overfitting, the data are randomized before
partitioning into training, validation, and testing data. )e
confusion matrix for training the data generated at 30 dB
noise is shown in Figure 11, and the classification results
using CNNs for theMG in SAmode for different noise levels
are shown in Table 5.

)e confusion matrix for correctly and incorrectly
identified samples is shown in Figure 11(a). )e samples on
the matrix’s diagonal are correctly categorized, whereas the
samples above and below are incorrectly classified. Four
thousand nine hundred and fifty four samples are correctly
identified for all converter operational condition, whereas 46

Table 2: Parameters for data generation.

Parameters Configuration Value
Simulated faults A − G, B − G, C − G, A − B − G, A − C − G, B − C − G, A − B, A − C, B − C, A − B − C, and A − B − C − G 11
Location of fault Zone 1, Zone 2, and Zone 3 3
Inception angles 0°, 60°, 90°, 135°, 180°, 225°, 270°, and 315° 8
Fault resistance 1, 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001 ohms 7
Operating mode Grid: connected/standalone 2

Table 1: System configuration and parameters.

System Parameters Value

DG-ESS model

Nominal voltage 4610 kV
Nominal frequency 50Hz

Rated power 500 kW
Overall system efficiency 96%

Recharge rate 50%
Initial SOC 80%

Mode of operation Voltage control/current control
Power 500 kW

Grid-connected PV array
Nominal voltage 4610 kV

Nominal frequency 50Hz
Power 500 kW

Transformer

Power rating (kVA) 500 kVA
Voltage: high (kV) 4.16 kV
Voltage: low (kV) 0.48 kV
Resistance (%) 1.1
Impedance (%) 2
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samples are incorrectly classified from a total of 5000
samples. Additionally, Figure 11(b) shows the least classi-
fication error throughout the training and testing of the
trained classifier, which is used to determine estimated and
observed error levels. All the hyperparameters that have
been attempted so far, as well as this present iteration, are
taken into account in the optimization procedure. Fur-
thermore, in Figure 11(c), we can see the true positive and
false negative rates of the classifier training procedure. Using
the true positive and false negative rates, it is possible to
determine the proportion of samples that are correctly
identified as belonging to a true class and the percentage of
samples that are incorrectly classified as belonging to an-
other class. Figure 11(d) depicts the classifier training
process positive predictive values and false discovery rate.
)ese figures represent the proportion of samples that are
correctly categorized for a given true class and the per-
centage of samples that are incorrectly classified for a given
true class.

Similar to the SA mode, the confusion matrix for
training the data generated at 40 dB noise is shown in

Figure 12, and the classification results using CNNs for the
MG in GC mode for different noise levels are shown in
Table 6.

)e confusion matrix for correctly and incorrectly
identified samples is shown in Figure 12(a). )e samples on
the matrix’s diagonal are correctly categorized, whereas the
samples above and below are incorrectly classified. Four
thousand eight hundred and eighty six samples are correctly
identified for all converter operational condition, whereas
114 samples are incorrectly classified from a total of 5000
samples. Additionally, Figure 12(b) shows the least classi-
fication error throughout the training and testing of the
trained classifier, which is used to determine estimated and
observed error levels. All the hyperparameters that have
been attempted so far, as well as this present iteration, are
taken into account in the optimization procedure. Fur-
thermore, in Figure 12(c), we can see the true positive and
false negative rates of the classifier training procedure. Using
the true positive and false negative rates, it is possible to
determine the proportion of samples that are correctly
identified as belonging to a true class and the percentage of
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Figure 8: Different fault types in grid-connected and standalone modes. (a) Line-to-ground fault (GC mode), (b) line-to-line fault (GC
mode), (c) line-to-line to ground (GC mode), (d) line-to-ground fault (SA mode), (e) line-to-line fault (SA mode), and (f) line-to-line to
line-to-ground fault (SA mode).
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Figure 9: Continued.
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Figure 9: Scalogram of measured line voltages for grid-connected and standalone modes. (a) Grid-connected system LG fault (Va, Vb, Vc),
(b) standalone system LG fault (Va, Vb, Vc), (c) grid-connected system LL fault (Va, Vb, Vc), and (d) standalone system LL fault
(Va, Vb, Vc).

Input layer Convolution ReLU Max Pooling Convolution

ReLUConvolutionReLUMax Pooling60 % Dropout 

Fully Connected So�max Classification
Output
Fault
LabelFinal OutputFC

Conv.1

Conv.2

Conv.3Max Pool 2 

Max Pool 1 

Input image of 3
phase fault voltage

224 × 224 × 3

112 × 112 × 64

I / P : 112 × 112 × 64
O / P : 56 × 56 × 64 56 × 56 × 64

I / P : 56 × 56 × 192 56 × 56 × 192

O / P : 28 × 28 × 192

I / P : 28 × 28 × 192
/ :1 1 11O P × ×

1 × 1 × 11

Figure 10: Architecture of the convolutional neural network for fault classification approach.
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Table 3: Layer data in the CNNs’ architecture.

Layer name Filter size Stride (width and height) Padding (top, bottom, left, and right) Output size
Conv. 1 7 × 7 × 64 2, 2 3, 3, 3, 3 112 × 112 × 64
Max Pool 1 3 × 3 × 64 2, 2 0, 1, 0, 1 56 × 56 × 64
Conv. 2 1 × 1 × 64 1, 1 0, 0, 0, 0 56 × 56 × 64
Conv. 3 3 × 3 × 192 1, 1 0, 0, 0, 0 56 × 56 × 64
Max Pool 2 3 × 3 × 192 2, 2 0, 1, 0, 1 28 × 28 × 192
FC Layer — — — 1 × 1 × 11

Table 4: Parameters of CNN for fault classifier development.

Parameter Value
Number of layers 13
Initial learn rate 0.001
Optimizer Adaptive moment estimation: Adam
Validation frequency 10
Max epochs 50
Mini batch size 15
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Figure 11: Continued.
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samples that are incorrectly classified as belonging to an-
other class. Figure 12(d) depicts the classifier training
process positive predictive values and false discovery rate.
)ese figures represent the proportion of samples that are
correctly categorized for a given true class and the per-
centage of samples that are incorrectly classified for a given
true class.

)e classification accuracies identified from the results
for SA and GC modes of operation of the MG network
during the training process are 99.1% and 97.7%, respec-
tively. )ese models took an average of 15.8 secs to train and
0.4 secs to classify a fault, as presented in Table 7. )e
validation and test accuracies for the CNNs in SA mode and
GC mode are shown in Table 8. Furthermore, the validation
accuracy and testing accuracy of the developed approach are
compared with the techniques developed in the literature

and conventional learning approaches, as shown in Table 9.
)is comparison is carried out considering the data with
30dB added noise in order to represent the real-time be-
havior of the system.

)us, based on the results presented above, it can be seen
that both the networks were able to identify all the faulted
phases accurately for all types of faults but struggled to
identify the involvement of the ground when it came to
distinguishing between LLL and LLLG faults. However, this
issue may be overcome in future work by carefully identi-
fying and extracting features that may help identify the
involvement of ground in a three-phase fault. )e CNN was
able to provide a more accurate classification in considerably
faster time as compared to the other conventional ap-
proaches available in the literature and required half the data
to process.
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Figure 11: Classifier training results for fault classification in standalone mode. (a) Truly and falsely classified samples, (b) classification
error, (c) true positive and false negative rate, and (d) positive prediction value and false detection ration.

Table 5: Performance indices for standalone mode fault classification.

Standalone mode

Noise level 20 dB 30 dB 40 dB
Fault type Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
AG 96.60 100.00 98.27 100.00 100.00 100.00 100.00 100.00 100.00
BG 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CG 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ABG 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ACG 85.70 81.80 83.70 93.50 90.60 92.03 96.70 100.00 94.31
BCG 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
AB 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
AC 100.00 96.00 97.96 100.00 100.00 100.00 100.00 100.00 100.00
BC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.80 100.00
ABC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ABCG 88.20 90.90 89.53 90.00 93.10 91.52 96.70 93.50 94.04
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Table 8: Comparison of accuracies at various stages of classifier development.

Noise level
20 dB 30 dB 40 dB

Validation
accuracy (%)

Testing accuracy
(%)

Validation
accuracy (%)

Testing accuracy
(%)

Validation
accuracy (%)

Testing accuracy
(%)

Standalone mode 99.67 99.5 99.45 99.27 99.2 99.63
Grid-connected
mode 95.81 97.2 97.18 97.12 95.10 97.7

Table 6: Performance indices for grid-connected mode fault classification.

Grid-connected mode

Noise level 20 dB 30 dB 40 dB
Fault type Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
AG 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
BG 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CG 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ABG 66.70 35.70 46.51 34.61 81.81 48.64 96.20 83.30 64.61
ACG 53.80 84.00 65.59 55.50 90.90 68.92 83.90 96.30 75.68
BCG 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
AB 96.20 96.20 96.20 100.00 100.00 100.00 100.00 100.00 100.00
AC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
BC 100.00 100.00 100.00 96.00 100.00 97.96 100.00 100.00 98.97
ABC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ABCG 100.00 100.00 100.00 100.00 100.00 100.00 %100.00 100.00 100.00

Table 7: Average training and testing time for fault classifier development.

Process Preprocessing with DWT Image generation Model training Fault classification
Average Time 1.3 sec 2.1 sec 15.8 sec 0.4 sec
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Figure 12: Classifier training results for fault classification in grid-connected mode. (a) Truly and falsely classified samples, (b) classification
error, (c) true positive and false negative rate, and (d) positive prediction value and false detection ration.
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6. Conclusion and Future Work

)e study developed a fault classificationmechanism forMG
networks operating in both GC and SA modes. )e algo-
rithm adapts the signal analyzing properties of wavelet
transform and classification aspects of the convolution
neural networks to identify different electrical faults in the
network. Initially, an IEEE 13 bus system operating with
distributed generation units and storage unit is used to
create the data. Efforts were made to replicate the real-world
data with the simulated data by injecting AWGN and AIGN
to measured outputs. )ese noisy signals were processed
using discrete wavelet transforms, and the corresponding
outputs are converted into scalograms to provide image
inputs to the CNNs. Furthermore, the CNNs models were
trained with data corresponding to both SA and GC modes,
along with various noise levels. )e performance of the
CNNs is assessed with various performance indices such as
recall, precision, F1-score, and accuracy. )e average clas-
sification accuracies considering all the conditions are
identified to be 98.9% for SA fault classification and 97.1%
for GC fault classification. To protect the MG against
electrical faults, a realistic data-based method may be de-
veloped, according to the findings of the study. A lot of
research studies can be conducted to make the proposed
approach much more robust and practical in the future. As
faults are often accompanied by arcing, the effect of the
nonlinear fault resistance can be studied on the performance
of the model. Furthermore, the method can be extended to
detect and classify “evolving faults,” i.e., faults that begin in
one phase and spread to other phases subsequently. In this,
only a single fault on the system at any given time are as-
sumed; however, further research can be done to study the
impact of multiple faults in different parts of the MG on the

proposed methods. Finally, data-based approaches are
limited by the data that they are trained on and may fail to
perform in cases where the fault conditions do not match the
training data; thus, a way to handle such cases must be found
to make the proposed scheme truly practical.
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