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*e accuracy of a knowledge extraction algorithm in a large database depends on the quality of the data preprocessing and the
methods used. *e massive amounts of data that we collect every day are putting storage capacity at a premium. In reality, many
databases are characterized by attributes with outliers, redundant, and even more missing values. Missing data and outliers are
ubiquitous in our databases, and imputation techniques will help us mitigate their influence. To solve this problem, as well as the
problem of data size, this paper proposes a data preprocessing approach based on the k-nearest neighbor (KNN) completion for
imputation of missing data and principal component analysis (PCA) for processing redundant data, thus reducing the data size by
generating a significant quality sample after imputation of missing and outlier data. A rigorous comparison is made between our
approach and two others.*e dissolved gas data from Rio Tinto Alcan’s transformer T0001 were imputed by KNN, where k equals
5. For 6 imputed gases, the average percentage error is about 2%, 17.5% after average imputation, and 23.65% after multiple
imputations. For data compression, 2 axes were selected based on the elbow rule and the Kaiser threshold.

1. Introduction

*e large size of today’s databases poses the problem of
archiving and preprocessing raw data. *e data may be
missing, aberrant, or redundant. *e application of data
analysis algorithms on such data complicates the learning
process and affects the performance and reliability of the
model [1]. Data preprocessing is undoubtedly crucial in the
process of knowledge discovery from these voluminous
databases. Indeed, it allows for improving the quality of the
data submitted later to the data mining algorithms. As far as
outliers are concerned, it is good to keep them original and
mysterious in the raw data if possible. In other words, the
reason for removing outliers should come from outside the
dataset only when you already know the originals [2]. Ig-
noring missing data can lead to a loss of precision and strong

biases in the analysis models. Missing data are represented
by the so-called missing values matrix, the form of which
depends on the type of missing data. Generally, we distin-
guish between MCARs, MARs, and MNARs. *e MCAR is
the missing data in a completely random way if the prob-
ability of absence is the same for all the observations. *is
probability depends only on external parameters indepen-
dent of this variable. MARs are data that are not missing
completely at random if the probability of absence is related
to one or more other observed variables. MNARs are
nonrandomly missing data if the probability of absence
depends on the variable in question. In summary, these fall
into three categories and are extensively detailed in [3]. A
presentation and a review have been made on the different
assumptions and techniques for processing these data [4, 5].
In 2009, the authors of the work [4] developed a modern
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method called Multiple Imputation by Chained Equations
(MICE) based on a Monte Carlo Markov Chain algorithm
for imputing missing values. To eliminate missing values,
noise, and redundant attributes, and also to reduce their size
by generating representative and quality samples. *e work
[6] presents a method based on the calculation of the em-
pirical copula of the original sample.*e performance of this
work was only compared to the one whose imputation is
based on the mean. To classify data from the gases below [7],
preprocess was performed in 2014 using the k-nearest
neighbors (KNN). *is shows that classification without
preprocessing the data first is less accurate. Grzymala–Busse
processed the unknown values of variable attributes by
setting up new decision tables with known attributes instead
of the original table, which had unknown and inconsistent
attributes in their work [8]. *e rough set theory is devel-
oped for learning inconsistent rules..

*is paper proposes a preprocessing method that
combines the k-nearest neighbors and the principal com-
ponent analysis (PCA). *e k-nearest neighbor classifier is
generally used in supervised classification because of its
simplicity and robustness. To make it even more robust, i.e.,
less sensitive to data variations as shown in this work,
references [9, 10] have respectively developed a k-nearest
neighbor classifier based on the generalized mean distance.
*e main objective is to overcome the sensitivity of the k-
neighborhood size and improve the KNN-based classifica-
tion’s performance. In this proposed approach, the nested
generalized mean distance computed by the multi-gener-
alized mean distances in each class is designed for KNN-
based classification decisions. *e proposed method is
shown to be suitable for pattern detection, on the one hand.
On the other hand, a new representation method based on
the k-nearest neighbor centroid coefficient is developed,
which also aims to further improve the classification per-
formance and reduce the sensitivity of the method to the size
of the k-neighborhood, especially in cases of small sample
size. In this work, the k-nearest neighbor-based classifier is
used in the framework of data completion, and some works
nowadays have used it in the framework of data imputation
[11, 12].

*e k-nearest neighbor method used for the imputation
of missing data is based on the optimization of the choice of
the k parameter, which relies on mechanical or discontin-
uous mean fitting techniques. For a k-nearest neighbormean
equal to 5 and for a Euclidean distance between two ob-
servations, 6 missing values are imputed. To observe the
variables H2 (hydrogen) and CH4 (methane), which are low
molecular weight gases, a weighting of N2 (nitrogen), CO2
(carbon dioxide), and CO (carbon monoxide) is
recommended.

For PCA based on the weighted strategy, robustness will
be improved by mitigating the statistical impact of outliers
through reduced weighting [13]. Similarly, it will solve the
normalization problem and the increasing difficulties of
archiving after a judicious choice of the number of axes to be
retained by using the kink theory and the Kaiser threshold.
From the works [7, 14] it appears that the PCA associated
with a classifier (ANN) is more accurate than the support

vector machine (SVM) associated with the KNN classifier. It
then becomes judicious to join a classifier (KNN) to an
exploratory technique on the data (PCA). After a reminder
of the KNN algorithm and the PCA algorithm in Section 2,
the proposed preprocessing approach is presented in Section
3. Finally, the results of our method applied to a dissolved
gas database are compared to other methods presented in
Section 4, followed by a discussion.

2. Materials and Methods

*e approach proposed here is to present the imputation
techniques by completion, in which the data will be sub-
mitted and to consider outliers.

2.1. Imputation Methods. *e most common imputation
techniques are presented here in a nonexhaustive way,
namely: stationary, linear combination, k-nearest neighbor,
NIPALS, and multiple completions, to mention only those.
A dataset consists of p quantitative or qualitative variables
(Y � (yij) � (Y1, . . . , Yp)) observed on a sample of n in-
dividuals; M denotes the matrix indicating the missing
values by M � mij � 1

yij,mis 
.

2.1.1. Stationary and Linear Combination Completion.
*ere are several possible stationary imputations. *e most
common attribute value fitting (CMCF) [15] or simply the
last known observation carried forward (LOCF) is given as
follows:

yij mis � yi∗j∗ � yi∗j|mi∗j � 0, j< j
∗

 , (1)

where (yij)mis represents the missing data.
*is method may seem too naive, but it is often used to

lay the foundation for a comparison between imputation
methods. Another common technique is to replace all
missing values with a linear combination of observations.
*e case of imputation by the mean is given as follows:

yij mis � yi∗j∗ � Yj∗ . (2)

Or by the median, as follows:

yij mis � yi∗j∗ � Yj∗ . (3)

But this case is generalized to any weighted linear
combination of observations. Instead of using all the
available values, it is possible to restrict oneself to methods
that select the most influential values by local aggregation or
regression or even by combining different aspects.

2.1.2. Completion by the Nearest Neighbor Method. *e k-
nearest neighbors (KNN) imputation consists of running the
following algorithm that models and predicts the missing
data. First, the choice of the parameter k (1≤ k≤ n), calculate
the metric distances d(yi∗ , yi), i � 1, . . . , n retain the k
observations y(i1), . . . , y(ik), for which these distances are
smaller; and finally, assigning to the missing values the
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arithmetic mean of the values of the k neighbors, such that is
given as follows:

yij mis � yi∗j∗ �
1
k

yi1
, . . . , yik

 . (4)

Or yi∗ an observation with q missing values.

2.1.3. NIPALS Completion Algorithm. *e NIPALS (Non-
linear Iterative Partial Least Squares) algorithm is an iter-
ative method for estimating PLS (Partial Least Square)
regression. *is algorithm can be adapted to impute missing
data. Or Y � (Y1, . . . Yp) such as ∀i ∈ 1, . . . , p, mathemat-
ical expectation E(Yi)� 0 (each column of the matrix is
centered). *e expansion of Y in terms of principal com-
ponents and principal factors is given by following equation:

Y � 

q

h�1
εhuh, (5)

where q � dimL2(X); ξh h�1,...,q are the principal compo-
nents and uh h�1,...,q the principal vectors of the PCA of Y.
For each variable of Yi, there is the equation given as follows:

Yi � 

q

h�1
εhuh(i), (6)

where uh(i) represents the slope of the linear regression of Yi
on the component ξh. *e development of this algorithm is
contained in [16].

2.1.4. Multiple Imputation. Multiple imputations retain the
virtues of single imputation and correct its main short-
comings. As its name suggests, it consists of imputing
missing values several times to combine the results to reduce
the error due to imputation [17]. *e multiple imputation
procedure consists of two phases: the imputation phase and
the statistical analysis phase. *ese two phases use two
different models: the imputation model and the analysis
model. Once the imputations have been performed, the
statistician can perform any type of analysis, according to the
standard procedures for the analysis of complete datasets
[4]. In 2011, work [18] developed a multiple imputation
program called Amelia II. *e model is based on a normality
assumption:

Y∼Nk (µ, Σ), or Y has a multivariate normal distribution
with a mean vector μ and a covariance matrix Σ. Regarding
multiple imputations, we are concerned with the parameters
of the complete data, θ� (µ, Σ). Under the assumption that
the data are MAR, we define Yobs as the observed data and
Ymis as the missing data, such that Y� {Yobs, Ymis}. *e
missing data mechanism is characterized by the conditional
distribution of M knowing Y given by p(M|Y).

p(M|Y) � p M|Yobs( . (7)

Likelihood p(Yobs|θ) is then, written as

p Yobs, M|θ(  � p M|Yobs( p Yobs|θ( . (8)

Since we are only interested in the inference of the
parameters of the complete data, the likelihood can be
written in the following form:

L θ|Yobs( ∞p Yobs|θ( . (9)

Now, using the iterative property of the expectation

p Yobs|θ(  �  p(Y|θ)dYmis, (10)

the obtained a posteriori law is as follows:

p θ|Yobs( ∞p Yobs|θ(  �  p(Y|θ)dYmis. (11)

2.2. Outlier Management. Outliers can come from two
possibilities. Either they come from errors, or they have a
history behind them. In principle, outliers should be very
rare; otherwise, the experiment/investigation to generate the
dataset will be inherently flawed. Defining an outlier is
tricky. Outliers may be legitimate because they are part of the
long tail of the population. For example, a team working on
predicting a financial crisis determines that a financial crisis
occurs in one out of every 1000 simulations. Of course, the
result is not an outlier that should be discarded. *e reason
for removing outliers only comes into play when you know
the original data for them. For example, if the heart rate data
is strangely fast and you know that there is a problem with
the medical equipment, you can remove the bad data.
Rejecting mysterious outliers is risky for downstream tasks.
For example, some regression tasks are sensitive to extreme
values. It takes more experiments to decide whether the
outliers exist for a reason. In such cases, do not remove or
correct outliers in the data preprocessing steps [2].

3. A Proposed Approach to Data Preprocessing

*e algorithm in Figure 1 is a maintenance data pre-
processing technique that combines missing and redundant
data management with data size reduction techniques
(compression). *e interest of such a work is the combi-
nation of its advantages in speed, robustness, and archiving.

*e first operation consists of having a table of main-
tenance data for the power transformers. For this purpose,
we have a database from Rio Tinto Alcan of Canada, in
which we will exploit the GD (dissolved gas) data of
equipment T0001. Due to this database being complete, we
will simulate missing data and submit this incomplete table
to our algorithm. For the imputation of missing data, we
chose the k-nearest neighbor algorithm (KNN). *is im-
putation technique requires the choice of the parameter k by
optimization of a criterion. *e missing values are imputed,
taking into account the class of data to which they belong.
Moreover, the notion of distance between observations must
be chosen with care. We proceed essentially by learning
Euclidian, Mahalanobis, or Minkowski distance metrics to
evaluate the similarity between classes. *e notion of
learning metrics is a recent field in machine learning. *e
work presented in 2002 in the article [19] is considered a
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pioneer. *e goal of metric learning is to answer a recurrent
need for comparison functions. Indeed, in many learning
algorithms, the notion of metric plays a fundamental role.
*is is, for example, the case in the k-nearest-neighbor al-
gorithm [20]. Indeed, this classification algorithm proposes
associating the majority class of the k closest points with a
point of unknown class. *is proximity is defined by a
metric. *e imputed value will thus be the sum of the k-
nearest values belonging to the same class.

3.1. Distances of Similarity or Dissimilarity. Euclidean dis-
tance. *e Euclidean distance is probably the most used
distance. For two vectors, x and x′, it is noted as follows:

d2 x, x′(  � x − x2′ �
�����������


i

xi − xi
′( 
2



�

���������������

x − x′( 
T

x − x′( 



.

(12)

Minkowski distance. It is defined, for any p≥ 1 and for
two vectors x and x′, by the following equation:

dp x, x′(  � x − xp
′ � 

i

xi − xi
′



p⎛⎝ ⎞⎠

1/p

. (13)

*us, for p� 1, we get the Manhattan distance, for
p�+∞, we have the Chebyshev distance, and for p� 2, the
Euclidean distance is found.

Distance from Mahalanobis is defined as follows:

dM x, x′(  �

�����������������

x − x′( 
T
M x − x′( 



. (14)

*is distance is parameterized. Indeed, depending on the
matrix M chosen, the result obtained changes. *us, if we
put M� I, where I is the identity matrix, we find the
Euclidean distance.

3.2. Compression Based on PCA. *e principal component
analysis, beyond being a descriptive technique of data
analysis, is an extremely powerful tool of compression and

synthesis of information, very useful when one is in the
presence of an important quantity of quantitative data to be
processed and interpreted. PCA consists of synthesizing the
number of observed variables, in other words, it attempts to
summarize the information contained in the data table into a
reduced set of linear combinations of the initial variables,
taking care to minimize the loss of information due to this
reduction [21, 22]. *ese new synthetic variables, called
“principal components or factors or macrocharacteristics”
have the following properties:

*e principal components, as noted (C1, C2, . . . , Cq), are
linear combinations of the initial variables

X
2
, X

2
, X

p
 : C

j
� a1X

1
+ a2X

2
+ · · · apX

p
,

for any j � 1, qwith q≤p.
(15)

*ey are uncorrelated (the linear correlation coefficients
of the components taken two by two are zero), which avoids
the redundancy of the already summarized information.*e
first component carries or summarizes more information
than the second, which carries more than the third, and so
on, so that by limiting ourselves to the first 2 or 3 com-
ponents, we have a good summary of the information
contained in the data [23]. *e mathematical tools used are
those of linear algebra and matrix calculation. *e corre-
lation matrix is diagonalized, and the eigenvectors of this
matrix define the new variables sought: these are the
principal components. We can show that the principal
components thus defined, verify well the sought properties:
uncorrelated between them, of decreasing variance, and
linear combinations of the starting variables. *is last
property allows us to construct graphs representing the
individuals as well as the variables in the space defined by the
components [23]. In the article [14], PCA is used to improve
the preprocessing of data.

4. Results and Discussion

*is part is presented in two steps: the results and discus-
sions after imputation and after compression.

Incomplete 
data table

Charging based
on KNN

Imputation based on
the algorithm 

NIPALS

Multiple 
Imputation 

(MCMC)

Imputation by
average

Compression 
based on

PCA

C
om

pl
et

e d
at

a T
ab

le

Pre-processed 
and compressed 

full data table

Figure 1: Proposed preprocessing algorithm.
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4.1. Imputation of Data. *e table of data that we sub-
mitted to the test is one of the dissolved gases taken from
the transformer equipment (T0001) and presented in the
Table 1. Afterward, we will simulate missing values
(Table 2), and then submit the data table to the data
preprocessing algorithms. Table 3 presents the statistical
data before any imputation.

*e table of data containing missing values is presented
in Table 2 along with several data completion methods in
turn. *e table 4 shows the results of the different com-
pletion techniques.

Table 4 presents the statistical data after imputation by
KNN and for a k-neighbor average equal to 5, by the mean
andmultiple.*e results of Table 5 show that the imputation
by KNN allows finding in the majority of the exact values.

*e decomposition of mineral oil at low temperatures
produces relatively large quantities of low molecular-weight
gases such as hydrogen (H2) and methane (CH4). To better
observe the evolution of these two quantities after different
imputations presented in Table 5, a weighting of nitrogen (N2),
carbon dioxide (CO2), and carbon monoxide (CO) is made.

Figure 2 shows the evolution of the exact values of the
variables before any simulation of missing data (in blue) and
the variations of these data after their imputation created by
simulation. It can be seen from this figure that the evolution
of the data imputed by KNN (in orange) is closer to that of
the exact values. *e imputation by KNN is robust because
its standard deviation and its mean are less sensitive to the
variations of the data. Example: H2 and N2 before impu-
tation have, respectively, a mean of 80.034–71206.679 and a
standard deviation of 19.320–10819.652. After imputation by
KNN, they have 80.323–71286.032 and a standard deviation
of 18.734–10399.787. *e table of completed data after
imputation by KNN is presented in Table 6.

*e error in absolute value after the different imputa-
tions is given by

|Error| �
yi − y

yi

, (16)

where yi represents the imputed value and y is the exact
value.

Table 1: RIO Tinto Alcan of Canada database of dissolved gases from transformer T0001.

Date H2 CH4 C2H2 C2H4 C2H6 CO CO2 O2 N2

25/01/1985 85,00 40,00 0,00 55,00 52,00 1290,00 11500,00 6380,00 72600,00
23/10/1986 89,00 41,00 0,00 44,00 48,00 1403,00 15092,00 8203,00 78927,00
15/12/1986 90,00 35,00 0,00 37,00 48,00 1310,00 12000,00 10600,00 79600,00
08/06/1987 80,00 40,00 0,00 46,00 47,00 1160,00 10400,00 13700,00 82500,00
06/09/1988 80,00 30,00 2,00 34,00 42,00 1200,00 10600,00 8710,00 70500,00
17/05/1989 85,00 40,00 2,00 39,00 50,00 1190,00 10800,00 3800,00 68500,00
17/10/1989 90,00 40,00 2,00 36,00 48,00 1210,00 11200,00 7130,00 64200,00
30/07/1990 80,00 30,00 2,00 31,00 39,00 1080,00 9680,00 9360,00 73800,00
16/04/1991 90,00 30,00 2,00 22,00 44,00 1150,00 10400,00 7580,00 65300,00
20/04/1992 85,00 37,00 0,00 32,00 46,00 1262,00 11344,00 1092,00 67199,00
14/08/1992 94,00 57,00 0,00 34,00 49,00 1391,00 11694,00 3422,00 97388,00
02/11/1992 86,00 33,00 0,00 34,00 45,00 1317,00 11218,00 1331,00 63320,00
29/04/1993 73,00 29,00 0,30 30,00 43,00 1172,00 10802,00 1574,00 58747,00
02/08/1993 72,00 33,00 0,00 29,00 40,00 1158,00 10906,00 4266,00 62380,00
22/12/1993 74,00 35,00 0,00 27,00 44,00 1278,00 10899,00 3140,00 74873,00
01/05/1995 34,00 5,30 0,00 2,70 2,70 242,00 1181,00 19996,00 64920,00
10/05/1995 34,00 5,30 0,00 2,70 2,70 242,00 1181,00 19996,00 64920,00
29/10/1997 107,00 24,00 0,00 19,00 14,00 1153,00 5626,00 454,00 66308,00
31/05/1999 101,00 26,00 0,30 23,00 16,00 1192,00 5870,00 4709,00 65210,00
10/05/2000 89,00 26,00 0,00 23,00 18,00 1177,00 6476,00 2595,00 77360,00
10/05/2000 89,00 26,00 0,00 23,00 18,00 1177,00 6476,00 2595,00 77360,00
15/05/2001 132,00 44,00 0,00 39,00 33,00 1929,00 12520,00 5494,00 105155,00
13/11/2001 94,00 30,00 0,00 30,00 22,00 1349,00 7976,00 875,00 64907,00
06/05/2002 70,00 25,00 0,00 26,00 19,00 1171,00 7416,00 3512,00 63358,00
14/10/2003 73,00 28,00 0,00 32,00 21,00 1167,00 6446,00 575,00 60260,00
13/05/2004 58,00 23,00 0,00 26,00 20,00 978,00 6999,00 403,00 59725,00
14/05/2005 66,00 25,00 1,10 29,00 21,00 1220,00 8354,00 1067,00 64411,00
10/05/2006 69,00 26,00 0,00 33,00 23,00 1186,00 8099,00 2561,00 67380,00
17/05/2007 68,00 25,00 0,00 35,00 24,00 1211,00 9018,00 6181,00 64829,00
22/05/2008 69,00 24,00 0,00 38,00 23,00 1184,00 8205,00 2816,00 64983,00
17/06/2009 84,00 29,00 0,00 44,00 29,00 1293,00 10276,00 9234,00 77994,00

Table 2: Simulated missing values of transformer T0001.

Dates H2 CH4 C2H4 CO CO2 N2

06/09/1988 30,00
17/10/1989 1210,00
30/07/1990 80,0
16/04/1991 65300,00
10/05/1995 64920,00
31/05/1999 5870,00
10/05/2000 89,0 23,00
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Figure 3 shows us that the error committed by imputing
the 6 gases by the k-nearest neighbors (KNN) has an average
error percentage of 2%, 17.5% by the average, and 23.65% by
multiple imputations.

4.2. Data Compression Based on PCA. One of the applica-
tions of principal component analysis is compression. PCA
consists of synthesizing the number of observed variables,

i.e., summarizing the information contained in the data
table, into a reduced set of linear combinations of the initial
variables, taking care to minimize the loss of information.
*e table of data imputed by the k-nearest neighbors is
subjected to compression by PCA, and the results are
obtained from the Anaconda (Python) and XLStat
software.

Table 7 and Figure 4 show that the first eigenvalue λ is
5.054 and represents 56.153% of the variability (inertia I).
*is means that if we represent the data on two axes, then we
will always have 71.299% of the total variability preserved.
Each eigenvalue corresponds to a factor. Each factor is a
linear combination of the starting variables. In principal
component analysis, the problem is to be able to determine
the dimension of the optimum representation space. It is a
question of preserving all the stable and important char-
acteristics of the data studied while ignoring the unstable
and meaningless axes [24].

4.2.1. Number of Axes to Retain. In practice, the only criteria
applicable to the choice of the number of axes are empirical,
the best known of which is that of Kaiser: in reduced
centered data, we retain the principal components corre-
sponding to eigenvalues greater than 1, which means that we
are only interested in those components that «contribute»
more than the initial variables [25]. We also use the broken
sticks test and the kink rule, which consist of detecting the
existence of a kink in the eigenvalue diagram. Figure 5 shows
the kink thus formed, and Table 8 shows the results of the
different tests.

For the Kaiser threshold:

Table 3: Statistical data before any imputation.

Variable Obs Obs. with MV Obs. without MV Mean Standard deviation
H2 31 2 29 80,034 19,320
CH4 31 1 30 30,387 10,246
C2H4 31 1 30 31,080 10,918
CO 31 1 30 1174,400 298,059
CO2 31 1 30 9159,467 3057,737
O2 31 0 31 5591,968 5126,700
N2 31 2 29 71206,679 10819,652

Table 4: Statistical data after imputations.

Imputation by KNN (k� 5) Imputation by mean Imputation multiple

Variable Obs Obs. with MV Obs. without MV Mean Standard deviation Mean Standard deviation Mean Standard
deviation

H2 31 0 31 80,323 18,734 80,034 18,665 79,064 19,062
CH4 31 0 31 30,374 10,074 30,387 10,074 30,291 10,088
C2H4 31 0 31 30,819 10,832 31,080 10,734 30,772 10,870
CO 31 0 31 1174,903 293,062 1174,400 293,049 1184,598 298,499
CO2 31 0 31 9045,484 3072,597 9159,467 3006,342 9173,076 3007,297
O2 31 0 31 5591,968 5126,700 5591,968 5126,70 5591,968 5126,700
N2 31 0 31 71286,032 10399,787 71206,679 10264,423 71291,446 10547,466
∗MV: missing value.

Table 5: Evolution of imputed values.

Exact values I-KNN I-mean I-multiple
H2 80 80 80,034 68,664
CH4 30 30 30,387 27,411
C2H4 23 23 31,08 21,542
CO 1210 1190 1174 1490,549
CO2 5870 5626 9159,467 9581,353
N2 64920 64920 71206,679 82476,217

H2 CH4 C2H4 CO X 0.1 CO2 X
0.01

N2 X 0.01

Evolution of varials

0
200
400
600
800

1000

EXACT VAL
KNN

MEAN
MULTIPLE

Figure 2: Evolution of imputed variables.
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λ> 1 + 2
�����
p − 1
n − 1



⟶ λ> 1 + 2
�����
9 − 1
31 − 1



� 1, 188. (17)

For broken sticks: bk � 
p

m�k 1/m *e component is
validated if λk > bk.

*e calculation of the threshold of the eigenvalues is
given by the expression (17) where λ is the eigenvalue, p is
the number of variables, and n is the number of
observations.

*e use of the threshold (Kaiser-Saporta), and elbow
(Cattell) rules limits the number of axes to two, while the
broken sticks test (Frontier 1976) limits the number of axes
to be retained to one. All of these approaches are consistent
in that only one factor or axis appears to be sufficient in this
study. For the sake of future interpretation and rotation of
the axes, we have opted to maintain two axes as recom-
mended by the elbow and Kaiser methods.

4.2.2. Observations. *e study of the observations consists
of examining their coordinates and especially their graphic
representations. Figures 6 and 7 show the evolution of the
two components retained according to the type of pre-
treatment applied.

*e reference variable here is SI (without imputation),
which represents the component retained at the end of the
principal component analysis without having first carried
out an imputation.

To take just one example, on 15/05/2001, the compo-
nents F1 without imputation (F1 SI), with imputation by the

Table 6: Data completed after imputation by KNN.

Dates H2 CH4 C2H2 C2H4 C2H6 CO CO2 O2 N2

25/01/1985 85,00 40,00 0,00 55,00 52,00 1290,00 11500,00 6380,00 72600,00
23/10/1986 89,00 41,00 0,00 44,00 48,00 1403,00 15092,00 8203,00 78927,00
15/12/1986 90,00 35,00 0,00 37,00 48,00 1310,00 12000,00 10600,00 79600,00
08/06/1987 80,00 40,00 0,00 46,00 47,00 1160,00 10400,00 13700,00 82500,00
06/09/1988 80,00 30,00 2,00 34,00 42,00 1200,00 10600,00 8710,00 70500,00
17/05/1989 85,00 40,00 2,00 39,00 50,00 1190,00 10800,00 3800,00 68500,00
17/10/1989 90,00 40,00 2,00 36,00 48,00 1190,00 11200,00 7130,00 64200,00
30/07/1990 80,00 30,00 2,00 31,00 39,00 1080,00 9680,00 9360,00 73800,00
16/04/1991 90,00 30,00 2,00 22,00 44,00 1150,00 10400,00 7580,00 73800,00
20/04/1992 85,00 37,00 0,00 32,00 46,00 1262,00 11344,00 1092,00 67199,00
14/08/1992 94,00 57,00 0,00 34,00 49,00 1391,00 11694,00 3422,00 97388,00
02/11/1992 86,00 33,00 0,00 34,00 45,00 1317,00 11218,00 1331,00 63320,00
29/04/1993 73,00 29,00 0,300 30,00 43,00 1172,00 10802,00 1574,00 58747,00
02/08/1993 72,00 33,00 0,00 29,00 40,00 1158,00 10906,00 4266,00 62380,00
22/12/1993 74,00 35,00 0,00 27,00 44,00 1278,00 10899,00 3140,00 74873,00
01/05/1995 34,00 5,30 0,00 2,700 2,700 242,00 1181,00 19996,00 64920,00
10/05/1995 34,00 5,30 0,00 2,700 2,700 242,00 1181,00 19996,00 64920,00
29/10/1997 107,00 24,00 0,00 19,00 14,00 1153,00 5626,00 454,00 66308,00
31/05/1999 101,00 26,00 0,300 23,00 16,00 1192,00 5626,00 4709,00 65210,00
10/05/2000 89,00 26,00 0,00 23,00 18,00 1177,00 6476,00 2595,00 77360,00
10/05/2000 89,00 26,00 0,00 23,00 18,00 1177,00 6476,00 2595,00 77360,00
15/05/2001 132,00 44,00 0,00 39,00 33,00 1929,00 12520,00 5494,00 105155,00
13/11/2001 94,00 30,00 0,00 30,00 22,00 1349,00 7976,00 875,00 64907,00
06/05/2002 70,00 25,00 0,00 26,00 19,00 1171,00 7416,00 3512,00 63358,00
14/10/2003 73,00 28,00 0,00 32,00 21,00 1167,00 6446,00 575,00 60260,00
13/05/2004 58,00 23,00 0,00 26,00 20,00 978,00 6999,00 403,00 59725,00
14/05/2005 66,00 25,00 1,10 29,00 21,00 1220,00 8354,00 1067,00 64411,00
10/05/2006 69,00 26,00 0,00 33,00 23,00 1186,00 8099,00 2561,00 67380,00
17/05/2007 68,00 25,00 0,00 35,00 24,00 1211,00 9018,00 6181,00 64829,00
22/05/2008 69,00 24,00 0,00 38,00 23,00 1184,00 8205,00 2816,00 64983,00
17/06/2009 84,00 29,00 0,00 44,00 29,00 1293,00 10276,00 9234,00 77994,00
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Figure 3: Change in error due to imputation.
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k-nearest neighbors + principal component analysis (F1
Iknnacp), with imputation by the mean + principal com-
ponent analysis (F1 Imoyacp), and with multiple imputa-
tion + principal component analysis (F1 Imacp) have the
values 4.142, 4.213, 4.167, and 3.917, respectively. *e results
show that, for component 1, the preprocessed data are
faithful to the reference with a few precisions.

For the same example, on 15/05/2001, the F2 compo-
nents without imputation (F2 SI), with imputation by the k-

nearest neighbors + principal component analysis (F2 Ikn-
nacp), with imputation by the mean + principal component
analysis (F2 Imoyacp), and with multiple imputation + -
principal component analysis (F2 IMacp) have, respectively,
values −1.723, −1.822, −1.257, and 1.406. *ese results show
that, for component 2, the preprocessed data with
KNN+PCA imputation are more faithful to the reference
data (F2 SI) with a few precisions. *e combination of these
two elements (KNN+ACP) produces the best accuracy for

Table 7: Eigenvalues and inertia.

F1 F2 F3 F4 F5 F6 F7 F8 F9
λ 5,054 1,363 1,141 0,799 0,295 0,173 0,126 0,033 0,014
Inertia (%) 56,153 15,146 12,683 8,878 3,281 1,927 1,405 0,372 0,156
% Cumule 56,153 71,298 83,981 92,859 96,140 98,067 99,472 99,844 100,000
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Figure 4: Eigenvalue distribution on the axes.

Scree plot

0

1

2

3

4

5

6

ei
ge

nv
al

ue
s

0

20

40

60

80

100

Cu
m

ul
at

iv
e v

ar
ia

bi
lit

y 
(%

)

F2 F3 F4 F5 F6 F7 F8 F9F1
axes

Figure 5: Observation of the middle elbow.

Table 8: Boundary values of the broken sticks test and the Kaiser threshold.

Axes F1 F2 F3 F4 F5 F6 F7 F8 F9
Eigenvalues 5,054 1,363 1,141 0,799 0,295 0,173 0,126 0,033 0,014
bk 2,828 1,828 1,328 0,995 0,745 0,545 0,379 0,236 0,111
Kaiser threshold 1,188 1,188 1,188 1,188 1,188 1,188 1,188 1,188 1,188
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the T0001 transformer DGA dataset of different sizes and
different percentages of missing values.

5. Conclusion

In this paper, an approach for preprocessing power trans-
former maintenance data is proposed. *is approach uses
both KNN completion with the Euclidean metric to impute
quantitative data and a PCA whose function here is the
management of redundant values and especially the com-
pression of a large amount of data. *is preprocessing ap-
proach, i.e., imputation by KNN completion and PCA, was
rigorously compared to two other approaches, such as
imputation by the mean +PCA and multiple imputa-
tion + PCA. It is clear that for 6 missing values, the k-nearest
neighbor imputation and for k� 5, the error committed is
around 2%, while the multiple and the mean imputation
have 23.65% and 17.5% errors, respectively. Similarly, to
observe low molecular weight gases produced at low

temperatures such as hydrogen (H2) or methane (CH4), the
weighting of nitrogen (N2), carbon dioxide (CO2), and
carbon monoxide (CO) is performed (Figure 2). *e
KNN+ACP preprocessing is robust because the standard
deviation and mean obtained by KNN completion are less
sensitive to data variations and present results close to reality
on the one hand, and on the other hand, the amount of
starting data is considerably reduced while keeping the
originality of the starting data at the maximum. For 31
observations and 9 variables, the Kaiser threshold is 1.188,
which allowed us, in this case, to retain 2 components based
on the kink principle and the eigenvalue threshold. Ex-
periments conducted using this proposed combination show
significant performance, especially when the percentage of
variables and missing values in the dataset would be high.
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*e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

*e authors declare that there are no conflicts of interest.

Acknowledgments

*e authors thank American Journal Experts for their
technical support in formatting this work. Also, the Rio
Tinto Alcan in Canada for providing data through Pr Issouf
FOFANA.

References
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