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Technology for electric vehicles (EVs) is a developing subject that ofers numerous advantages, such as reduced operating costs.
Since the goal of EVs has always been to have long-lasting batteries, any new hardware might drastically diminish battery life.
Errors are common among human beings. Because of that, accidents and fatalities may occur due to drivers’ diferent behaviors
such as sports style andmoderation. To advance driver safety, security, and comfort, Advanced Driver Assistance Systems (ADAS)
must be personalized. Modern cars have ADAS that relieves the driver of some of the tasks they performwhile driving. As a part of
this research, a driver identifcation system based on a deep driver classifcationmodel (deep neural network as DNN) with feature
reduction techniques (random forest as RF and principal component analysis as PCA) is implemented to help automate and aid in
crucial jobs such as the brake system in an efcient manner. Using task models, we simulate a low-cost driver assisted scheme in
real time, where various scenarios are explored and the schedulability of tasks is established before implementing them in EV.Te
new driver assistance scheme has several advantages over the existing options. It lowers the risk of an accident and ensures driver
safety. Te proposed model (RF-DNN) achieved 97.05% of accuracy and the PCA-DNN model achieved 95.55% of accuracy,
whereas the artifcial neural network as ANN with PCA and RF achieved nearly 92% of accuracy.

1. Introduction

Electric vehicles (EVs) have the advantage of lower operating
costs and environmental protection due to the lack of
greenhouse gas emissions. Modern research, on the other

hand, has focused on making EVs comfortable with self-
driving capabilities. Self-parking and crash prevention are
examples of autonomous features already in use [1, 2]. EV
research and development has not slowed down, but it is
now much more focused on autonomic driving. Te

Hindawi
International Transactions on Electrical Energy Systems
Volume 2022, Article ID 8548172, 16 pages
https://doi.org/10.1155/2022/8548172

mailto:kitmobahn@gmail.com
https://orcid.org/0000-0002-8176-9932
https://orcid.org/0000-0001-9599-4893
https://orcid.org/0000-0002-9156-2054
https://orcid.org/0000-0002-3787-9712
https://orcid.org/0000-0001-6763-8189
https://orcid.org/0000-0002-1086-457X
https://orcid.org/0000-0002-9387-1950
https://orcid.org/0000-0002-0160-010X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8548172


researchers introduced the driving assistance systems to
improve road safety and minimized the crash risk, which is
caused by driver mistakes called drug usage, drunk driving,
and fatigue [3–5]. Driver identifcation products come in a
variety of forms. Knowing the identity of the driver ensures
the safety of the vehicle and allows for personalization
according to the driver’s preferences, improving the comfort
and efciency of using the vehicle. In the case of EV, this
efciency can also be exploited in terms of more reliable
estimates of the range reached and projections of energy
consumption. It has been shown that humans play a major
role in dealing with human and machine systems, i.e., ve-
hicles [6]. As a result, it is suggested that human behavior
while driving should be investigated in depth to improve
vehicle performance. In automated vehicles or advanced
driving assistance systems (ADAS), driving behaviors have
been carefully studied to improve system performance [7].
Tese studies can be buildingmodels of driving behavior and
classifcation of behavior, etc. Several important patterns of
driving behavior based on diferent theories of human be-
havior have been developed [8], focusing on diferent aspects
of the task and providing intuitive knowledge about these
behaviors. Some methods of classifying driving behavior
have been proposed [9, 10], and the specifc driving behavior
can be applied in ADAS system design and trafc system
diferentiation.

Te behavior of the driver that can afect the safety of
driving and fuel consumption has been studied in recent
years. Drivers with diferent behaviors tend to drive a car in
diferent ways, which results in diferent fuel consumption.
Specifcally, drivers who prefer to drive in a sporty style may
require the car to respond quickly to driving requirements,
leading to higher fuel consumption. On the contrary,
moderate drivers prefer to drive the vehicle moderately, and
the car does not require a quick response to driving re-
quirements, which saves fuel to some extent. For power-
driven EVs, the driver’s behavior can also be a vital factor in
fuel consumption. Terefore, it is suggested to study the
diferent behaviors of the driver and the power distribution
between the engine and the battery in all types of electric
vehicles accordingly.

Driving behavior expresses the psychological activities of
drivers after receiving environmental stimulation [11]. In
recent years, studies on the analysis of driving behavior have
appeared constantly, mainly including the generation of
driving behavior and the classifcation of driving style. In the
areas related to the generation of driving behavior, the
methods of qualitative and quantitative analysis have been
widely used to reveal the factors that can cause and change
driving behaviors [12], [13]. Te classifcation of driving
behavior is closely related to driving people and cars in self-
driving vehicles [14], [15]. Machine learning methods [16]
and deep learning algorithms [17] have been proposed to
efectively identify diferent driving behaviors. Studies on
this behavior related to energy management require even
more efort. Te mechanism for generating driving behavior
and the reasonable classifcation methods is useful for
formulating amore efcient strategy with better adaptability.
A deep learning technique called residual convolutional

neural network is developed to identify the driver behavior
using the publicly available dataset [18]. However, none of
the research studies focused on both driver identifcation
and driver assistance model for better safety protection and
avoiding the collision of vehicles.

In this research work, the driver is identifed using a
DNN (deep driver classifcation model) in real time. An-
other focus is on developing the ADAS system by using the
intelligent technique. By using the proposed methodology,
the risk of accidents can be controlled, and driver behavior is
monitored and aided them. Te strong potential of the
proposed technique is illustrated with existing techniques
using the experimental results.

Te paper is organized as follows: In Section 2, a list of
existing techniques that were used in the above topic are
mentioned. Section 3 discusses how the data were gathered and
how the most important attributes were chosen and catego-
rized. Section 4 provides the examples of common experiment
fndings. Section 5 gives conclusion with a few ideas.

2. Related Works

In this section, the study of existing techniques based on
driver behavior identifcation with driver assistance models
is presented. Initially, the driver identifcation systems using
various studies are given.

Reference [19] suggests the use of artifcial neural net-
works (ANNs) to forecast the daily charging profle of EVs
for improving the battery life and individual feets, as user
habits are one of the most important issues regarding EV
charges. Specifcally, they use historical data to predict
electricity demand and better coordinate tasks.

For antitheft in automobiles, researchers [20] proposed a
driver identifcation system. A classifcation method like
K-nearest neighbour (KNN) or a decision tree is used to fnd
out how long the driver should be on the road. Te owner of
the stolen car will be notifed if the documentation score is
less than a threshold set in the model. Even though the
antitheft scheme was well outlined by the authors, no
technological implementation of the system was made.

To classify drivers, Ref. [21] suggests using a window-
based support vector machine. Researchers have found links
between categorization accuracy and diferent data sources
(such as just mobile phone sensors, just automobile sensor
data, and a combination of both car and mobile phone
sensor data). Te combined data yielded the highest accu-
racy rating (86.67%).

Using GPS data and deep learning, Ref. [22] proposed a
driver identifcation system. An auto-encoder as a special
regularizer is introduced to combine the unsupervised and
supervised feature learning by developing an Auto-encoder
Regularized Network (ARNet) in this work. Te suggested
ARNet model was compared to various current models
(CONet, NoPoolCNN, CNN, Pre-training, IRNN, Stack-
edIRNN, TripGBDT, and GBDT), and ARNet came out on
top in terms of accuracy (78.3 percent).

Te use of driver assistance technologies is common-
place to make roads safer and prevent collisions. Many
possibilities are highlighted in a global status report on road
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safety that must be addressed to ensure the safety of ev-
eryone on the road. Each element of the situations was tied
to the surrounding conditions, the driver’s circumstances,
and the vehicle’s circumstances as well.

As an example, major legislative activities include en-
suring proper speed and vehicle conditions, road status,
trafc, and driver states, such as fatigue and intoxication.
Similar measurements were found to be the most important
drivers of road safety in another study [23] based on UK
safety data. It was divided into three categories: driver skills,
travel conditions, and policy options that may arise because
of these factors. Road safety is afected by the leading factors
such as weather conditions, road surface conditions, and
lighting conditions that are suggested by the author in Ref.
[24]. Reference [25] thoroughly studied the key components,
technologies, and challenges of EV. Teir study mentioned
all types of EVs. Tey collected a large amount of useful data
on EVs but did not analyze the difculties of technological
development of EVs in the data.

It was shown that using the traditional machine learning
(ML) approaches such as KNN, random forest, and extra
trees on numerous datasets with varied time frames resulted
in a high cross-validation score [26]. Two types of features
such as driver-related patterns and driving pattern-related
components have been distinguished in this work. Data
from 38 drivers were collected [27] using smartphones and
classifed into four to fve categories.Te completed trip data
yielded 137 unique statistical features. A thorough investi-
gation was conducted without regard to the specifcs of the
local road network, driver profle, or trafc fow. Using the
random forest practice, the authors were able to achieve an
accuracy rate of 82.3%.

Regarding the thermal management of batteries, Park
et al. [28] proposed the use of ANN to improve the thermal
management system and reduce total energy consumption.
Te proposal helps to keep the battery temperature within an
acceptable range. In Ref. [29], a compact heater is proposed,
based on resonant switched capacitors (RSC) which are
powered by the onboard battery, which allows an easy
implementation, capable of increasing up to 2.67°C/min.
with high yield (96.4%). Vasant et al. [30] examined the daily
use of EVs and stated that the proper operation of charging
stations during the day as well as the proper control and
management of the charging of this infrastructure can lead
to a wider deployment of EVs.

Zhang et al. [31] presented a method for regulating the
torque demand of EVs with single pedal driving for eco-
driving. By integrating the binary dragonfy algorithm with
an adaptive neuro-fuzzy inference system, the behavior of
the driver is identifed. To consume less energy, torque
demand is generated by the whale optimization algorithm.
However, the method did not focus on the driver assistance
model and only focused on the torque demand of EVs. Al-
Wreikat et al. [32] intended to reduce the high energy
consumption in EV vehicles by considering the driving
behavior, trip distance, road grade, trafc condition, and
ambient temperature. Real-time data of the United Kingdom
for nearly four years data are used for work. According to the
operation limits, the behavior of the driver is identifed as

moderate, passive, and aggressive, where the average vehicle
speed is also considered for trafc conditions. Liu et al., [17]
used the fuzzy logic method to determine the diferent driver
behavior because they considered it the foundation for high
energy consumption in EVs. An energy management
strategy is developed by using the instantaneous optimi-
zation method called equivalent consumption minimization
strategy (ECMS) for reducing high consumption. In addi-
tion, the road condition is also considered in this work to
minimize vehicle energy consumption.

All these existing techniques either focused on driver
identifcation behavior or how to address the theft of cars.
Some of the techniques focused on road safety and pre-
venting the collision by using the behavior of the driver, road
status, and speed of the vehicle. In addition, they focused on
battery power management, and none of the existing works
focused on developing a driver assistance scheme as well as
behavior identifcation of drivers. Te study by Al-Wreikat
et al., [32] proves that driver behavior also leads to specifc
energy consumption, where it must be essential to identify
the behavior of the driver, which is the main motivation of
this projected scheme. Tis motivates the authors to develop
this research study.

3. Proposed System

In this research study, two diferent types of the proposed
method are developed RF and PCA. Initially, driver iden-
tifcation is carried out by using the DNN method and the
second work is based on the driver assistance method. Te
authors used a Google Colaboratory cloud computer to train
and test all ML and deep learning tests [33]. Tis specialized
system has a dual-core 2.3GHz Intel Xeon CPU with a
56MB L3 cache and 13.3GB RAM. To accelerate the cal-
culation of computationally expensive, the training uses the
RAM memory of 17.1GB with Tesla P100 GPU. Figure 1
provides the overall block diagram of the proposed model.

3.1. Driver Identifcation

3.1.1. Dataset Description. We used the Ocslab driving
dataset [34] from South Korea in 2015 to validate and ap-
praise our models. A sampling rate of 1Hz was used to
extract 51 diferent OBD-II signals from the car’s ECU. 10
diferent drivers took turns driving the automobile around a
46-kilometer course for a total of 23 hours, and this resulted
in 94380 records overall. A city route, a motorway, and a
parking space requiring cautious driving were all used in the
experiment.

3.1.2. Data Preprocessing. It is imperative that we thor-
oughly prepare all the features in our classifcation model
before introducing them to the model. Nearly all state-of-
the-art models have a preprocessing mechanism in place to
ensure that these features can guide the model and make
categorization easier. As a result, we begin by standardizing
the CAN-bus data. Before using standard machine learning
methods/deep learning models on these type of data,
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normalization is considered as a part of preprocessing. To
normalize the data, min-max is the most common method
and creates new values to maintain the ratio and general
distribution in the source data. By normalizing our fea-
tures, we mean to converting them to numbers between 0
and 1, so that their various scales can be combined.
Equation (1) defnes the normalization of a single distinct
feature X(t):

X(t) �
X(t) − X

min

X
max

− X
min, (1)

which represents the feature’s minimum and maximum
values of CAN-bus data as Xmin and Xmin(t), respectively.
All OBD-II features from CAN-bus data were normalized
using this equation before being loaded into the model.

Te time series analysis component of our data is
considered in the second preprocessing stage. Even when the
number of classes is increased to a certain level, the 51
feature values in a single second are insufcient to provide
enough information to allow the model to determine the
identity of the driver. As previously said, driving is a con-
tinuous and protracted activity, which necessitates aspects
that describe the driver’s profle more precisely. For the
CAN-bus data, most of the current references have relied on
sliding window segmentation, as previously described. Our

research segmented our data using an overlapping sliding
window segmentation with a 1-minute frame and a 6-second
step size.

3.1.3. Feature Reduction. Feature extraction and dimension
reduction for ML models are the emphasis of the frst de-
velopment part. To identify the driver’s behaviors, the
existing machine learning and deep learning show good
performance. However, the prediction classifcation accu-
racy is less when a greater number of features are used for the
fnal prediction process. To avoid irrelevant and unwanted
data, feature selection is important before the input is fed
into the classifers. Terefore, various feature selection or
reduction techniques are introduced, where in this research
work, random forest (RF) and principal component analysis
(PCA) are used for the feature reduction process.

Te correlation-based feature assessment of our data
using RF was our frst feature reduction system. We can see
from the fndings that the tree-based classifers are the most
efective for our dataset. Te RF feature signifcance eval-
uation is therefore a logical starting point for feature re-
duction. Te process of evaluating the weight and relevance
of a particular feature on a classifcation to rank the various
features by standing is known as feature importance eval-
uation, as shown in Figure 2. By considering the RF, the

Providing driverassistance on ADAS

Classification of driverbehaviours using DNN

Feature selectionusing RF and PCA

Pre-processing

Input data fromOcslab driving dataset

Figure 1: Block diagram of the proposed model.
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position criterion utilized in the split point selection narrows
down the feld. Using the RF feature importance evaluation,
we have generated a list of the 15 most essential qualities for
an electric vehicle is considered, which is presented in
Table 1:

Tis strategy assisted in reducing the number of features,
allowing our classifers to place a stronger emphasis on the
most important ones. We experimented with the three
diferent numbers of critical features to see how they afected
the accuracy of our models. As a result of our feature re-
duction technique, we found that 81.06 percent of the im-
portance of the total features was expressed by using our 10
most critical features, while 87.5 percent was expressed by
using our 15 most critical features, and 90.74 percent was
expressed by using our 20 most critical features. Prediction
among the important features related to identifying the
driver’s class (A to J respectively) is tested, and the results are
given in Figure 3 for the activation of air compressor vs.
intake air pressure, Figure 4 for accelerator pedal value vs.
intake air pressure, and Figure 5 with torque of friction vs.
intake air pressure. Te results from Figures 3 to 5 show that
the features chosen are having the best prediction of driver
class.

Additionally, a statistical process called PCA [35] was
performed to help minimize the size of the dataset by
extracting features of driver behavior (i.e., the information
of the accelerator position, driving time, same driver,
diferent driver, random driver, total distance driven, and
brake pedal pressure are the major features considered for
the driver behavior identifcation) and reducing dimen-
sionality. By selecting and condensing key pieces of in-
formation from the data, PCA can create new features that
make data interpretation simple and straightforward for
users. PCA was utilized to extract 15 components with a
99.99 percent expression rate from 51 signals in our case.
After experimenting with other combinations of compo-
nents, we settled on this number. However, to improve the
results, the authors investigate methods based on deep
learning, which will be the focus of the next section of our
research.

3.1.4. Deep Driver Classifcation. Because it is impacted by
biological neural network properties, we use an ANN method
as the computational model for our suggested method. It is
possible to create an ANN that feeds information from one
node to the next without generating a cycle using a feed
forward neural network (FFN). Tere are three or more layers
in our model: an input layer, one or more hidden layers, and
an output layer, each of which has many neurons. We call this
a multilayer perceptron (MLP). A hyperparameter feature
selection technique is used to pick the number of hidden
layers. With neurons in each layer fully linked, data are
translated forward from one layer to the next. Te mathe-
matical defnition of MLP is O: Rm × Rn, where m is the size
of the input vector x � x1, x2, . . . , xm−1, xm and n is the size of
the output vector O(x) correspondingly. Equation (2) de-
scribes the MLP expression as

hi(x) � f w
T
i + bi , (2)

where hi: R
di− 1⟶ Rdi , f: R⟶ R, wi ∈ Rd×di− 1, b ∈ Rdi

signifes the size of the input, f is the nonlinear activation
purpose, It can be either a sigmoid (values between 0 and 1)
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Figure 2: RF feature importance evaluation.

Table 1: Selected features.

S.no Features
1 Motor energy conversion ratio
2 On board charge
3 Of board charge
4 Torque of friction
5 Intake air pressure
6 Activation of air conditioner
7 Vehicle speed
8 Master hydrolic pressure
9 Accelerator pedal value
10 Temperature range of electric motor
11 Conversion ratio
12 Wheel velocity rear left hand
13 Wheel velocity front left-hand
14 Wheel velocity rear right-hand
15 Wheel velocity front right-hand
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or a tangent function (values between 1 and 0). Sigmoid,
tangent, and softmax activation function mathematical
formulas are represented as

sigmoid �
1

1 + e
− x, (3)

tangent �
e
2x

− 1
e
2x

+ 1
, (4)

softmax xi(  �
e

xi


n
j�1 e

xj
, (5)

where x defnes an input. Te softmax function is the
nonlinear activation function in our MLP model for the

multiclass classifcation issue. Here, the research study uses
the softmax function to get a more accurate estimate by
seeing how likely each class is and then picking the one with
the highest probability.

Te multiclass logistic regression model is the same as a
three-layer MLP with a softmax function in the output layer.
MLP can be formulated as follows for many hidden layers,
which is described as

H(x) � Hl Hl−1 Hl−2 . . . Hl(x)( ( ( . (6)

It is common to refer to this method of stacking hidden
layers as DNN. Figure 6 depicts the DNN architecture,
which has one hidden layer. It takes the input
x � x1, x2, . . . , xm−1, xm and output o � o1, o2, . . . , oc−1, oc.
However, hidden layers along with its units are not shown in
Figure 6.
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Figure 3: Model prediction with features activation of air compressor vs. intake air pressure.
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Every single hidden layer uses ReLU’s nonlinear acti-
vation function to assist the alleviation of the state of
vanishing and error gradient issues. We use DNNs as a more
progressive model than the standard FFN. While other
nonlinear activation functions take longer to train, ReLU is
faster and allows for more hidden layers to be used in the
MLP model. Te hidden layers determine the neural net-
work’s depth while the maximum number of neurons de-
termines the network’s width.

3.2. Driver Assistance. Figure 7 depicts the architecture of
intelligent ADAS. Tere are sensors in the car as well as on
the driver that provide data that are fed into the system.
Te inputs are gathered and recombined based on the
situation. Context aware reasoning receives the obtained
input data and assimilates it according to its context. Prior
to an event occurring, the contextual inputs are matched to
the context representation and domain knowledge of the
control subsystem to trigger safety alerts, to take safe
action through driver vehicle interface (DVI), and to
register the action taken in a database. Figure 7 shows the
context aware DAS for safety warnings’ architectural
layout.

Inputs are taken [36] from sensors, radars, and lidar to
create an XML document, which is then parsed by a SAX
parser for various context-aware situations. When certain
XML elements in a context are present, alarms or warnings

are generated. Tey are delivered to the scenario as a set of
parsed XML elements and then shown as a set of car
simulation processing details.

To generate alerts and warnings, logical conditions
and various rules are defned by invoking the control
systems such as lane departure warning (LDW), collision
avoidance system, adaptive cruise control (ACC), driver
drowsy detection system, parking assistance and auto-
motive night visions system using the context reasoning
engine.

Depending on the context, driver vehicle interface
provides the GUI of a single, 2-way, or 4-way road scenario
and produces alerts and warnings for the driver when the
control subsystems are invoked in the day or night mode.
Te system’s performance is depicted visually by using a line
graph in the GUI.

Te context database keeps track of past alarms, cau-
tions, and messages, so it can respond appropriately in the
future. Let us say new circumstances arise, and we want to
know how to react in advance.

Te comprehensive functionality of ADAS is shown in
Figure 8 that is created by following the methods outlined
below.

Step 1: Gather sensor data from the lidar and radar and
save it as an xml fle for later use
Step 2: Tis is where the context acquisition fusion
comes in
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Figure 4: Model prediction with features accelerator pedal value vs. intake air pressure.
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Steps 3: Search the context database to see if a similar
circumstance has occurred before and then retrieve the
required data based on the new context
Steps 4: To absorb the context, assimilate and feed the
data to the context service engine in Step 5, then Step 9
is the next step
Steps 6 and 7: If the data is new, learn it, and update the
database with the new information
Steps 8: A new action/service will be added to the
action/service database if it is discovered

Steps 9: At this point, the context service engine queries
the service/action database to see what the request is for
Step 10: Te context service engine receives a response
from the action/service database
Step 11: Have the context engine to carry out the ac-
tivity and provide the API/agent with the inputs it
needs to do so
Step 12: A human vehicle interface receives alerts and
warning signals generated by the agent/API
Step 13. Te action is recorded in a database of logging
records

4. Results and Discussion

4.1. PerformanceMetrics. Our models were assessed using a
variety of performance measures as well as execution time.
Tus, we could assess how well and quickly our structures
performed in comparison to other cutting-edge ap-
proaches. AUC, F1, and Cohen kappa scores were among
the performance indicators. Te k-fold cross-validation
test was also utilized as an evaluation approach. While
training and prediction time was the focus of the execution
speed measures, the performance measures are calculated
using
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Figure 5: Model prediction with features torque of friction vs. intake air pressure.
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Accuracy �
TP + TN

TP + TN + FP + FN
, (7)

Precision �
TP

TP + FP
, (8)

Recall(True positive Rate) �
TP

TP + FN
, (9)

F1Score �
2TP

2TP + FP + FN
�
2 × Precision × Recall
Precision + Recall

, (10)

CohenKappa Score �
Accuracy − Prandom

1 − Prandom
. (11)

Prediction and target are both true in a TP (true positive)
situation. Tere are times when a prediction is correct, but the

target is incorrect. Tis is known as TN. When a prediction is
positive, but the target is false, it is called an FP (false positive),
while a prediction is negative, but the target is true is called a FN
(false negative). Our performance validation technique of choice
is the k-fold cross-validation test. In this test, the dataset is
segmented into k folds as 5-folds and iterations are made be-
tween the training and testing portions. Aswe rotate through the
dataset segments, we can test the model’s capacity to function
with previously unknown data. Tis test was performed to
ensure that our models were reliable in terms of their perfor-
mance, accuracy, and resilience. Te simulation results with the
confusion matrix for the 15-feature model are shown in the
Figure 9. Te positive predicted values (PPV) vs. false discovery
rate (FDR) graph is shown in Figure 10. True positive rate (TPR)
vs. false negative rate (FNR)matrix is shown in Figure 11.TeA,
B, C, D, E, F, G, H, I, and J in Figures 9–11 represent the ten
diferent driver class types.
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Te receiver operating characteristic (ROC) with cross-
validation results for class A and F are shown in the Fig-
ures 12 and 13.

4.2. Validation of Driver Detection and the Assistance Model.
In this section, the proposed model performance for driver
detection and computation time of driving assistance model
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is validated by using diferent features with various pa-
rameter metrics. Table 2 shows the experimental analysis of
proposed DNN model with a diferent feature selection
model for the total number of features is 15.

Te three diferent ML and deep learning techniques
such as ANN, recurrent neural network (RNN), and the
proposed DNN are tested with PCA and RF techniques and
validated with diferent metrics. ANN [19, 28] and RNN are
mostly used for driver fatigue detection techniques [37–39],
and no one tested its performance on ADAS; hence, we
considered these techniques for comparing with the pro-
posed model. In addition, no existing techniques tested its

efectiveness based on reducing the features and computa-
tional timing in Google Colab. Terefore, we implement the
existing techniques and compared with the proposed model.

In the accuracy experiments, ANN achieved nearly 92%
when implemented with both PCA and RF, RNN achieved
nearly 94% when implemented with both PCA and RF,
where the proposed DNN achieved 95.55% with PCA and
97.05% with RF. In the Cohen kappa score, ANN with PCA
achieved a small value, i.e., 0.78 and the same technique
achieved 0.82 with RF. Te RNN achieved 0.85 with PCA
and 0.88 with RF, where the proposed DNN method
achieved 0.91 with PCA and 0.94 with the RF technique.
When the ANN is implemented with RF, it achieved 0.92 of
precision, recall, and F1-score, RNN with RF achieved 0.94
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Figure 13: ROC curve for class F.

Table 2: Validation of the proposed model for 15features.

Model Accuracy Precision Recall F1-
score

Cohen kappa
score

PCA-
ANN 91.1 0.912 0.912 0.912 0. 809

RF-ANN 92.64 0.928 0.928 0.928 0.8203
PCA-RNN 92.64 0.930 0.926 0.926 0.8529
RF-RNN 94.11 0.943 0.941 0.941 0.8825
PCA-
DNN 95.55 0.956 0.956 0.956 0.9118

RF-DNN 9 .05 0.9 1 0.9 1 0.9 1 0.94 2

Table 3: Validation of the proposed method for computational
timing analysis in Google Colab.

Model Timing (s)
PCA-ANN 259
RF-ANN 210
PCA-RNN 234
RF-RNN 205
PCA-DNN 19 
RF-DNN 186
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of precision, recall, and F1-score, and fnally, the proposed
DNN with RF achieved 0.97 of precision, recall, and F1-
score. But these deep learning techniques achieved less
performance of precision, recall, and F1-score when
implemented with PCA. Tis proves that the RF technique
improves the performance of deep learning techniques by
reducing a greater number of features efectively than PCA.
Table 3 shows the performance of intelligent driver assis-
tance for computational timing.

When compared with existing techniques, the proposed
method achieved less training time, i.e., 197 s for PCA and
186 s for RF. Te ANN technique achieved high training
time when implemented with PCA, i.e., 259 s and the same
technique achieved only 210 s with RF. Te RNN technique
achieved 205 s of computational training time with RF and
achieved 234 s of training time in Google Colab with PCA.
Tis proves that the proposed DNN with RF achieved better
performance than existing techniques. Te DNN can learn
by themselves and produce the output, where the training of
RNN is a difcult process when compared to ANN and
DNN. Table 4 provides the validated results of proposed
technique for driver identifcation using 30 features.

When compared with 15 features, the performance of
deep learning techniques achieved less performance when it
is tested with 30 features. In the accuracy experiments, ANN
achieved 85.29% when implemented with both PCA and RF,
and RNN achieved nearly 87–89% when implemented with
both PCA and RF, where the proposed DNN achieved
88.23% with PCA and 91.17% with RF. In the Cohen kappa
score, ANN with PCA and RF achieved less value than other
deep learning techniques, i.e., 0.69. Te RNN achieved 0.72
with PCA and 0.79 with RF, where the proposed DNN
method achieved 0.75 with PCA and 0.78 with the RF
technique. When the ANN is implemented with RF, it

achieved nearly 0.85–0.88 of precision, recall, and F1-score,
and RNN with RF achieved nearly 0.89-0.90 of precision,
recall, and F1-score, and fnally, the proposed DNN with RF
achieved 0.91 of precision, recall, and F1-score. But these
deep learning techniques achieved very less performance of
precision, recall, and F1-score when implemented with PCA.
Tis proves that the RF technique improves the performance
of deep learning techniques efectively than PCA. Table 5
provides the performance of intelligent driver assistance for
computational timing in Google Colab.

When compared with the existing techniques, the pro-
posed method achieved less training time, i.e., 280 s for PCA
and 263 s for RF. Te ANN technique achieved high training
time when implemented with PCA, i.e., 316 s, and the same
technique achieved 353 s with RF. Te reason for high
training time is that the output produced by ANN does not
give optimum results, and there is a hardware dependence,
which infuences the performance of the network. Te RNN
technique achieved 319 s of computational training time with
RF and achieved 342 s of training time in Google Colab with
PCA. Tis proves that the proposed DNN with RF achieved
better performance than the existing techniques. However,
when a greater number of features are used, the training time

Table 4: Validation of the proposed model for 30 features.

Model Accuracy Precision Recall F1-
score

Cohen kappa
score

PCA-
ANN 85.29 0.861 0.853 0.850 0.6912

RF-ANN 85.29 0.856 0.882 0.883 0.6996
PCA-RNN 86. 6 0.8 3 0.868 0.865 0. 233
RF-RNN 89. 0 0.902 0.89 0.898 0. 909
PCA-
DNN 88.23 0.885 0.882 0.882 0. 59 

RF-DNN 91.1 0.912 0.912 0.912 0. 809

Table 5: Validation of the proposed method for computational
timing analysis in Google Colab with 30 features.

Model Timing (s)
PCA-ANN 316
RF-ANN 353
PCA-RNN 342
RF-RNN 319
PCA-DNN 280
RF-DNN 263

Table 6: Validation of the proposed model for 50 features.

Model Accuracy Precision Recall F1-
score

Cohen kappa
score

PCA-
ANN  3.56 0. 35 0. 35 0. 35 0.3564

RF-ANN  5.34 0. 53 0. 53 0. 53 0.3043
PCA-RNN   .16 0.  1 0.  1 0.  1 0.3411
RF-RNN  8.99 0. 89 0. 89 0. 89 0.4266
PCA-
DNN  8.53 0. 85 0. 85 0. 85 0.4309

RF-DNN 80.36 0.806 0.804 0.803 0.4696
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Figure 14: Graphical representation of the proposed model for
driver identifcation in terms of accuracy with diferent number of
features.
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of all deep learning techniques also increased, which is already
shown in Table 3. Finally, the deep learning techniques are
tested with 50 features and the validated results are provided
in Table 6, and Figure 14 shows the comparative graph of
proposed model for driver identifcation in terms of accuracy
for diferent number of features.

When compared with 15 and 30 features, the per-
formance of deep learning techniques achieved very less
performance when it is tested with 50 features because a
greater number of features reduce the classifcation ac-
curacy. In the accuracy experiments, ANN achieved
73.56% when implemented with PCA and achieved
75.34% with RF, RNN achieved 77.16% when imple-
mented with PCA and achieved 78.99% with RF, where
the proposed DNN achieved 78.53% with PCA and
80.36% with RF. But the accuracy of proposed method is
less when compared with Tables 2 and 4. In the Cohen
kappa score, ANN and RNN with PCA and RF achieved a
lesser value than the proposed deep learning technique.
Te RNN achieved 0.34 with PCA and 0.42 with RF,
where the proposed DNN method achieved 0.43 with
PCA and 0.46 with the RF technique. When the ANN
implemented with RF, it achieved 0.75 of precision,
recall, and F1-score, RNN with RF achieved 0.78 of
precision, recall, and F1-score, and fnally, the proposed
DNN with RF achieved 0.80 of precision, recall, and F1-

score. But these deep learning techniques achieved very
less performance of precision, recall, and F1-score when
implemented with PCA, i.e., 0.73, 0.77, and 0.78 of ANN,
RNN, and DNN, respectively. Tis proves that the RF
technique improves the performance of deep learning
techniques efectively than PCA. Table 7 shows the
validated analysis of proposed driver assistance model
for timing analysis.

When compared with the existing techniques, the
proposed method achieved less training time, but it acheived
high training time when tested with 15 and 30 features, i.e.,
611 s for PCA and 601 s for RF.Te ANN technique achieved
high training time when implemented with RF, i.e., 685 s and
the same technique achieved 652 s with PCA. Te RNN
technique achieved 620 s of computational training time
with RF and achieved 643 s of training time in Google Colab
with PCA. Tis proves that the proposed DNN with RF
achieved better performance than existing techniques.
Figure 15 shows the comparison analysis of driver assistance
model for computational training time with diferent
number of features.

5. Conclusion

In this paper, a unique ADAS presented an optimal driving
strategy (ODS) that includes the driver behavior identif-
cation and driver assistance system. Te DNN model was
used to build a unique network that accomplished two tasks:
the detection of drivers and the evaluation of driving be-
havior. In addition, the intelligent driver support system is
also proposed in this study. Introducing a safety layer to a
vehicle’s architecture without adding new hardware or
making large infrastructural changes is another beneft of
our idea. Te EV drive simulation model is based on lit-
erature-based EV component model information and is
validated by looking at how vehicle speed and other im-
portant model parameters change over time. Diverse
methods such as using EA parameters and simulation time
steps discovered through parametric studies are used to
reduce the computational time of the system, and it was
discovered that the system’s response time may be imple-
mented practically while also providing acceptable ideal
outcomes. Driver identifcation system performance will be
improved in the future by adding additional features, such as
Cepstral features combined with time-domain and fre-
quency-domain features mentioned above. Te consump-
tion of energy can be minimized by using a developed
technique as a future work.

Abbreviations

RF: Random forest
PCA: Principal component analysis
ADAS: Advanced driver assistance systems
DNN: Deep neural network
ANN: Artifcial neural network
KNN: K-nearest neighbour
ARNet: Auto-encoder regularized network.

Table 7: Validated analysis of the proposed model for computa-
tional timing analysis in Google Colab with 50 features.

Model Timing (s)
PCA-ANN 652
RF-ANN 685
PCA-RNN 643
RF-RNN 620
PCA-DNN 611
RF-DNN 601
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Figure 15: Graphical representation of the proposed driver as-
sistance model for diferent number of features in terms of
computational training time.
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