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Accurate device parameters play a critical role in the calculation and analysis of power distribution networks (PDNs). However,
device parameters are always affected by the operating status and influenced by manual entry. Besides, the distribution area of
PDN is very wide, which brings more challenges to parameter identification work. +erefore, developing appropriate algorithms
for accurately identifying PDN parameters has attracted much more attention from researchers recently. Most of the existing
parameter identification algorithms are gradient-free and based on heuristic schemes. Herein, an adaptive gradient-based method
is proposed for parameter identification in PDN.+e analytical expressions of the gradients of the loss function with respect to the
parameters are derived, and an adaptive updating scheme is utilized. By comparing the proposed method and several heuristic
algorithms, it is found that the errors in both three criteria via our solution are much lower with a much smoother and more stable
convergence of loss function. By further taking a linear transformation of the loss function, the method of this work significantly
promotes the parameter identification performance with much lower variance in repeat experiments, indicating that the proposed
method in this work achieves a more robust performance to identify PDN parameters. +is work gives a practical demonstration
by utilizing the gradient-based method for parameter identification of PDN.

1. Introduction

Obtaining reliable and accurate device parameters is one of
the top priorities in the power distribution network (PDN)
in many aspects, such as security analysis, system control,
state estimation, line loss calculation, power flow calculation,
protection setting, and fault analysis [1]. Nevertheless, due to
the lack of in-situ measurement techniques, real-time in-
formation is hard to obtain directly for PDNs under security
and stability situations. Some newly introduced PDN pa-
rameters, such as line resistance, line reactance, transformer
resistance, transformer reactance, transformer conductance,
and transformer electrical susceptance, are in general

assumed to be static in a real situation. As a result, it usually
leads to poor estimation for parameter identification in PDN
[2]. Some new approaches focusing on improving numerical
efficiency and error reduction have been developed in many
fields of PDN, such as supervisory control and data ac-
quisition, power management unit (PMU), power man-
agement unit, and advanced metering infrastructure. +ese
methods can be classified into full-scale approach [3],
PSOSR [4], normalized Lagrange multiplier (NLM) test [5],
finite-time algorithm (FTA) [6], residual method, sensitivity
analysis method, Lagrange multiplier method [7] and
Heffron-Phillips method [8]. Furthermore, beneficial to the
development of machine learning or deep learning
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techniques, some smart methods have been proposed re-
cently, such as graph convolution network (GCN) [9],
support vector machine (SVM) [10], multihead attention
network [11], deep reinforcement learning [12], estimation
using synchrophasor data [13], PSCAD simulation [14], and
multimodal long short-term memory deep learning [15].
+ese methods are proved effective with simulation data.
However, they are also required to assemble several spe-
cialized measuring devices in the grid.

+e power flow model with identification equations in
PDN provides a mathematical approach to solve the
problems of lacking required data and measuring devices. It
builds relationships between PDN’s parameters and the data
which can be obtained easily, such as active power, reaction
power, and voltage. Generally, some important parameters
are lacking in practice, such as transformer electrical,
transformer resistance, transformer conductance, trans-
former electrical susceptance, line resistance, and line re-
actance.+e ranges of these parameters are always optimized
by algorithms combined with the static parameters like
active power, reaction power and voltage on the low-voltage
side. +e calculating values of voltage on the high-voltage
can be computed by power flow model with the parameters
mentioned before.+e residuals between calculated and true
values are always used to build loss functions for optimi-
zation algorithms. +erefore, the problems of parameter
identification can be easily solved by model-free methods,
such as least squares (LS) [16] and Markov Chain Monte
Carlo (MCMC) [17]. Another kind of methods called
heuristic algorithms can also be utilized to identify PDN’s
parameters, such as particle swarm optimization (PSO), ant
colony, and genetic algorithms (GA) combined with tran-
sient measurements [18]. Some algorithms based on global
optimization have been published lately for parameter
identification in the field of PDN calculation [19], including
random search approach (RS) [20], tree-structured Parzen
estimator approach (TPE) [21] and simulated annealing
(SA) [22], which have shown satisfactory performance and
provided novel ideas for PDN analysis. Moreover, some
methods based on machine learning and deep learning have
been published for parameter identification, such as support
vector regression [23], and convolutional neural network
(CNN) [24]. +ese methods are effective for simulation data
with the precise values of voltage and voltage phase angle.
Nevertheless, only part of the parameters can be obtained.

+e methods mentioned above for parameter identifi-
cation can be generally classified as gradient-free methods.
In addition, the searching methods in these gradient-free
algorithms are largely dependent on the initialization. For
example, in the genetic algorithm, to evaluate the designed
fitness function, it is first needed to initialize the population
via the encoding of the individual. +e initialization is
usually randomly generated, and different initializations can
lead to results with large differences. To tackle these prob-
lems in parameter identification, it is crucial to develop more
robust and stable numerical methods. In this work, based on
the analysis of the physical model in PDN, we derive an
analytical theoretical model based on the gradients of the
loss function with respect to the parameters. Based on the

abovementioned points, this paper mainly has the following
contributions:

(1) +e analytical expressions of the gradients of the loss
function with respect to the parameters to be opti-
mized in PDN are derived in detail, which are rarely
studied and neglected by other investigations.

(2) +e adaptive scheme for parameter updating based
on the loss function gradients is utilized in this work,
and it is found that the error during the numerical
experiments is remarkably reduced compared with
several heuristic algorithms. In addition, the loss
function decay during the optimization is much
smoother and more stable compared with other
algorithms.

(3) +e variance in the numerical calculation is much
smaller than that of several heuristic algorithms,
indicating that the methods proposed in this work
are more robust in numerical performance.

+is paper is organized as follows: Section 2 introduces
the identification equations of the power flowmodel in PDN
and proposes the gradient-based optimization method. +e
experimental data and calculation details are given in Sec-
tion 3. +e results and relevant discussions are given in
Section 4. Finally, Section 5 gives a brief conclusion.

2. Materials and Methods

2.1. Power Flow Model Calculation. +e basic theory of
analysis in PDN can be found in ref [17, 25]. To simplify the
computation, the three-phase is assumed to be balanced as
the premise for calculating the power flow in this work. +e
schematic diagram of the power-flow calculation circuit
model is shown in Figure 1.

In Figure 1, Pd, Qd and Ud represent the active power,
reaction power, and voltage on the high-voltage side of the
transformers at bus D, respectively. +ese three parameters
can be obtained directly by real-time measurements. Other
parameters, such as transformer electrical Rd, transformer
resistance Xd, transformer conductance Gd, transformer
electrical susceptance Bd, line resistance Rcd and line reac-
tance Xcd, are in general hard to detect in PDN calculation,
and satisfy equations (1)–(3):
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where ΔUT
d and δUT

d in equation (3) are the longitudinal and
transverse components of the transformer impedance
voltage drop at bus D in V. PLd, QLd and ULd represent the
active power, reaction power, and voltage on the low-voltage
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side of the transformers at bus D, respectively. ΔUT
d and δUT

d

can be expressed by equations (4) and (5), respectively.
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, (4)
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. (5)

+e equation of bus C can be expressed as equations
(6)∼(8):

Uc �

��������������������

Ud + ΔUT
cd􏼐 􏼑

2
+ δU

T
cd􏼐 􏼑

2
􏽲

, (6)

ΔUT
cd �

PdR
T
cd + QdX

T
cd

ULd

, (7)

δU
T
cd �

PdX
T
cd − QdR

T
cd

Ud

, (8)

where ΔUT
cd and δUT

cd in equation (6) are the longitudinal and
transverse components of the transformer impedance voltage
drop at bus C in V. Once we have the above quantities, the
final result is calculated by the following equation.

fc �

��������������������
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cd􏼐 􏼑

2
+ δU

T
cd􏼐 􏼑

2
􏽲
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+e parameters in the line and transformer can be
calculated based on equations (1)∼(9) with the measured
power and voltage data.

2.2. Gradient-Based Algorithm for Parameter Identification in
PDN. To utilize the gradient-based algorithms for PDN
calculations, first the surrogate function (or, namely, the
objective function) should be defined. As mentioned above,
the inputs of PDN can be defined as: X � (PLd,i, QLd,i, ULd,i)

representing the set of the active power, reaction power, and
voltage on the high-voltage side of the transformers, and the
subscript i represents the sample points for i � (1, 2, . . . , N).
While other parameters, namely, Rd, Xd, Gd, Bd, Rcd and Xcd

are seen as the initialized parameters, which are needed to be
optimized. Herein, we consider a linear regression of the
target value Y with the combination of the inputs as follows:

Y � θ1X + θ0 + η, (10)

where θ0 represents the bias term and η represents the noise
term. In this work, we assume that the noise term is subject
to the distribution where the mean value and variance are 0
and 1, respectively, namely, η ∼ N(0, 1). +erefore, the
mean value and variance of the target value Y are

E[Y] � E θ1X + θ0 + η􏼂 􏼃 � θ1X + θ0, (11)

Var[Y] � Var θ1X + θ0 + η􏼂 􏼃 � 1. (12)

+erefore, the target values are subject to the distribution
where its mean value is θ1X + θ0 and the variance is 1. +en
the probability of the sample point (xi, yi) is

p yi|xi( 􏼁 � exp −
yi − θ1xi + θ0( 􏼁( 􏼁

2

2
􏼢 􏼣. (13)

+e likelihood probability of the whole sample sets is

L(X,Y) � 􏽙
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Take the logarithm of the likelihood function above and
then, we obtain

l(X,Y) � logL(X,Y) � −
1
2

􏽘

N

i�1
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2
. (15)

Extend the above logarithm of the likelihood function,
and the loss function in this work is designed as

loss �
1
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where yi and y
⌢

i represents the calculation value and true
value, respectively. Herein, we also introduce a linear
transform with parameter θ1,i and θ0,i, U

⌢

c,i represents the
true value of voltage at the on the high-voltage side.

2.2.1. Adaptive Gradient-Based Optimization Methods.
Up to now, we have known that the optimization mission in
this work is to minimize the loss function mentioned above
with respect to the following six parameters, namely,
Rd, Xd, Gd, Bd, Rcd and Xcd:

minimize loss θ ∈ Rd
􏼐 􏼑 � loss Rd, Xd, Gd, Bd, Rcd, Xcd( 􏼁.

(17)

To utilize the gradient-based optimization methods, it is
generally needed to calculate the gradient of the loss function
with respect to the parameters, namely, gt � ∇θloss(θ). In
addition, the historical information during the optimization
in each step can be utilized to accelerate the optimization,
obtaining the first-order and second-order moments as
follows:
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Figure 1: Power flow calculation circuit model.
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mt � ϕ g1, g2, . . . , gt( 􏼁, (18)

vt � ψ g1, g2, . . . , gt( 􏼁. (19)

+en, the parameters are updated with the following
rule:

θt+1 � θt −
1

�����
vt + ε√ mt, (20)

where ε represents a smooth term to prevent the denominator
equaling to zero. In equation (20), if we ignore the second-
order moment vt and set it as vt � I2, mt � ηgt (where η is
often known as the learning rate), then the optimization
scheme is recovered as the stochastic gradient descent ap-
proach. +e convergence of the stochastic gradient descent
approach is usually slow and it is easy to oscillate at the saddle
point. In addition, different parameters should adopt different
updating schemes, which means some parameters may not
update so frequently during the optimization, thus, it is ex-
pected to utilize a relatively large step to speed up the con-
vergence. Oppositely, for those parameters updating
frequently, generally it is needed to take a small step for
achieving a more stable optimization process. Based on these
analyses, the following update scheme is utilized:

vt � diag 􏽘

t

i�1
g
2
i,1, 􏽘

t

i�1
g
2
i,2, . . . , 􏽘

t

i�1
g
2
i,d

⎛⎝ ⎞⎠, (21)

where vt ∈ Rd×d is a diagonal matrix. Equation (21) indicates
that for frequently updating parameters before the moment
t, its second-order momentum is relatively large and results
in a small learning rate. +e learning rate in the gradient-
based optimization method is also called the hyper-
parameter, which can be dynamically changed with an
appropriate schedule. To test the influence of hyper-
parameters such as the learning rate on the performance of
parameter identification in PDN. To utilize the gradient-
based method to optimize six parameters, namely,
Rd, Xd, Gd, Bd, Rcd and Xcd, the gradient of the loss function
with respect to these parameters needs to be derived in the
next section.

2.2.2. Gradients of the Loss Function Based on Chain-Rule.
Once we have the loss function, the next step is to calculate
the gradients of the loss function with respect to the six
parameters to be optimized. With the help of the chain-rule,
the gradients can be derived. First, zloss/zRd and zloss/zXd

are given as follows:
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where the derivatives (zloss/zfc) · (zfc/zUd) is shown
in the both above two equations, and it is given as follows:
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Also, the derivatives (zUd/zΔUT
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Substituting (19)–(21) into (17) and (18), then we obtain
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Similar to the derivation of (22) and (23), the gradient of
the loss function with respect to the other parameters is
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Now, from (17)–(27), we have the six gradients of the
loss function with respect to the parameters to be optimized.

Once we have the above gradients of the loss function
with respect to the parameters, then the gradient-based
optimization can be implemented. +e pseudo-code of the
optimization method of this work is shown in Algorithm 1:

2.3. Evaluation Functions of the Algorithm. +e underlying
three functions are employed to estimate the performance of
the algorithm proposed in this work:

(1) Mean absolute error (MAE):
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(2) Root mean square error (RMSE):
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(3) Mean absolute percentage error (MAPE):
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, (35)

where yi and y
⌢

i represent the ground true value and
prediction value, respectively.

3. Data and Calculation Details

3.1. Raw Dataset Description. In this paper, 1499 samples in
the raw dataset were collected by SCADA with a sampling
period of 15 minutes [25, 26]. +e three-phase first section
voltages on the high-voltage side (denoted as Ua, Ub and Uc)
are shown in Figure 2, and the low-voltage sides of them
(denoted as ua, ub, and uc) are displayed in Figure 3.

It can be found in Figures 2 and 3 that the high-voltage
sides in the dataset are closed to the three-phase balance, and
this dataset satisfies the requirements of the equations in
Section 2.1. In addition, the active power (denoted as Pa, Pb,
and Pc) and reactive power (denoted as Qa, Qb, and Qc) of
three-phase on the low voltage side are shown in Figures 4
and 5, respectively.

+e trend of changes of active power and reactive power
on the low voltage side is consistent in Figures 4 and 5, and it
indicates that the samples in this dataset are stable and can
be used to perform parameter identification.

3.2. Evaluation and Calculation. In this paper, 75% of the
samples (1124) are split randomly as a training set to identify
PDN’s parameters. +e best parameters are used to calculate
voltage per unit in C bus (denoted as Ucal) by a power flow
model. After that, the rest of the 25% samples (375) are used
to evaluate the performance of parameter identification as a

test set through the three metrics as equations (28)–(30).
Instead of directly calculating these metrics, the linear re-
gression should be applied in this paper, the values of Uc and
Ucal are regarded as dependent variable and independent
variable, respectively. +e output values of linear regression
are signed as U∗cal, and the final evaluations of parameter
identification are gained between Uc and U∗cal as equation
(31):

U
∗
cal � aUcal + b, (36)

where a and b are denoted as the slope and bias of linear
regression, and they can also be optimized like other pa-
rameters byMCMC and GA. In the following discussion, the
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Figure 2: Ua, Ub, and Uc on the high-voltage side.
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Figure 3: ua, ub, and uc on the high-voltage side.
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Figure 4: Pa, Pb, and Pc on the low voltage side.
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Figure 5: Qa, Qb, and Qc on the low voltage side.

Input: θ0 initial parameters
f(θ) objective function to be optimized
β1, β2 decay rates for moment estimates
m0 initialized first-order moment
υ0 initialized second-order moment
t time step
η learning rate
While θt is not converged do
t←t + 1
gt←∇θft(θt−1) gradient w.r.t parameters at time step t

mt←β1 · mt−1 + (1 − β1) · gt update first-order moment
υt←β2 · υt−1 + (1 − β2) · g2

t update second-order moment
􏽢mt←mt/(1 − βt

1) biased-corrected first-order moment
􏽢υt←υt/(1 − βt

2) biased-corrected second-order moment
θt←θt−1 − η 􏽢mt/(

��
􏽢υt

􏽰
+ ε)

End while
Return θt

ALGORITHM 1: Adaptive gradient-based optimization methods.

Table 1: +e upper and lower bounds of MCMC and GA.

Parameter name Abbreviation Upper bound Lower bound Unit
Line resistance Rcd 0.5 0.005 Ω/km
Line reactance Xcd 0.5 0.005 Ω/km
Transformer resistance Xd 20 5 Ω/km
Transformer reactance Rd 10 0.8 Ω/km
Transformer conductance Gd 8e-6 4e-6 S
Transformer electrical susceptance Bd 8e-5 2e-5 S
Slope of linear regression a −5 5 ∗
Bias of linear regression b 500 1000 ∗
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parameters of linear regression optimized by MCMC and
GA are signed as MCMC-LR and GA-LR, respectively. +e
upper bounds and lower bounds of MCMC and GA should
be determined before parameter identification, and they are
listed in Table 1:

To avoid the impact of randomness on GA and MCMC,
each method is repeated 25 times to guarantee the cor-
rectness and stability of results.

4. Results and Discussion

+e parameter identification results of AGBO and three
SMBO algorithms based on mean square error between Uc

and Ucal are discussed first in this section. +e prior weight
and number of started jobs are set as 1 and 20 for the TPE

method. +e rate of reduction in simulated annealing is 0.1
as a default value [25].+e learning rate and weight decay are
5e-4 and 0 in AGBO. +e maximum iteration step is 1000.
+eir prediction performances are shown in Table 2, Fig-
ures 6 and 7, respectively.

It can be found in Table 2 that AGBO has the lowest
values in MAE, RMSE, and MAPE compared with the
results of RS, TPE, and SA. However, their results only
have minor differences, and Figures 6 and 7 also show that
the prediction results by these algorithms do not have
remarkable differences.+e reason can be attributed to the
fact that calculating mean square error of Uc and Ucal

neglecting the statistical relationship between them and
has a negative impact on parameter identification.
+erefore, based on the previous study [26], the line
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Figure 6: +e scatter plot of Uc and Ucal by RS (a), TPE (b), SA (c), and AGBO (d).
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transformation can be implemented to Ucal before cal-
culating the loss function. +e parameters of line trans-
formation are optimized with other PDN parameters
simultaneously, and their results are displayed in Table 3,
Figures 8 and 9.

All algorithms perform better in Table 3 than the results
in Table 2, which indicates the statistical property between

Uc and Ucal, such as linear relationship, has contributed to
identifying PDN’s parameters. +e prediction errors in
Table 3 are almost one-tenth of those in Table 2. Moreover, it
can be found that AGBO-LR has a significantly better
prediction performance evaluated by all of the three metrics
compared with RS-LR, TPE-LR, and SA-LR in Table 3, and
the scatter points are closer to a line of 45 degrees than the
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Figure 7: +e line plot of Uc and Ucal by RS (a), TPE (b), SA (c),and AGBO (d).

Table 2: +e results of parameter identification with the loss function of mean square error.

Algorithm MAE RMSE MAPE
RS 65.950 67.500 1.078
TPE 64.648 66.340 1.056
SA 66.003 67.550 1.078
AGBO∗ 64.384 66.091 1.052
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others, which mean the prediction error of AGBO-LR is
lower.

Learning rate and weight decay are two important
hyperparameters in the optimization proposed in this work.
+erefore, the performance for various values of these pa-
rameters is also investigated. +e value of weight decay is set
as 0 first, and the performances of AGBO with different
learning rates are displayed in Table 4:

It is found in Table 4 that the variation of the learning
rate has a large influence on the performance of optimi-
zation, and the value of the learning rate between 5e-3 and
5e-4 is suggested in this paper. +e influence of weight
decay on AGBO is investigated subsequently with the
optimal value of learning rate; the results are listed in
Table 5:

Compared with the learning rate, the values of MAE,
RMSE, andMAPE of AGBO only have slight differences and
the optimal values of weight decay are 1e-6.+e convergence
plot of AGBO with the optimal parameters is shown in
Figure 10, and the loss value is converged to 0 after ap-
proximately 400 iteration steps. Compared with three SMBO
algorithms, the convergence curve of AGBO is much
smoother and stabler.+is result can be attributed to the fact
that in the gradient-based optimization method proposed in
this work, the searching direction for parameter update is
deterministic, while for other gradient-free methods, the
searching direction is heuristic and largely dependent on the
initialization, which usually leads to an oscillation in
the loss function, making the convergence much more
difficult.
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Figure 8: +e scatter plot of Uc and Ucal by RS (a), TPE (b), SA (c) , and AGBO (d) with linear transformation.
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Figure 9: +e line plot of Uc and Ucal by RS (a), TPE (b), SA (c), and AGBO (d) with linear transformation.

Table 3: +e results of parameter identification with linear transformation.

Algorithm MAE RMSE MAPE
RS-LR 6.338 7.859 0.104
TPE-LR 6.000 7.616 0.098
SA-LR 7.450 9.328 0.122
AGBO-LR 5.390 6.741 0.088

Table 4: +e performance of AGBO under different learning rates.

Learning rate MAE RMSE MAPE
1e-5 50.282 51.300 0.822
5e-5 15.127 16.953 0.247
1e-4 6.987 8.693 0.114
5e-4 5.652 7.097 0.092
1e-3 5.397 6.771 0.088
5e-3 5.273 6.645 0.086
1e-2 10.859 12.670 0.177
5e-2 14.107 16.092 0.231
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Since, RS, TPE, SA, and AGBO all have certain de-
grees of randomness, each algorithm is repeated 25 times
and then averaged to guarantee the correctness and

stability of numerical performance, the results in three
evaluation functions are shown in Table 6 and
Figure 11fig11. +e repetition result indicates that
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Figure 10: +e convergence plot of RS-LR (a), TPE-LR (b), SA-LR (c), and AGBO-LR (d).

Table 5: +e performance of AGBO with different values of weight decay.

Weight decay MAE RMSE MAPE
1e-7 5.302 6.659 0.087
1e-6 5.247 6.593 0.086
1e-5 5.266 6.621 0.086
1e-4 5.300 6.678 0.087
1e-3 5.363 6.743 0.088
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AGBO-LR not only performs better in PDN’s
parameter identification compared with gradient-free
algorithms but also has better numerical stability and
robustness with the lowest variants during repeating
experiments.

5. Conclusions

Parameter identification plays a key role in PDN calculation
and analysis; therefore, some methods have been proposed
to improve the accuracy of parameters in PDN, such as LS,
MCMC and sequential model-based global optimization.
However, most of the existing algorithms are classified as
gradient-free methods. +erefore, in this work, an adaptive
gradient-based optimization method is proposed for pa-
rameter identification in PDN. +e analytical expressions of
the gradients of the loss function with respect to the pa-
rameters are derived, and an adaptive updating scheme is
utilized. We compare the proposed method with several
heuristic algorithms such as RS, TPE, and SA. It is found that
the errors via adaptive gradient-based methods are lower in
all three evaluation functions, namely, MAE, RMSE, and
MAPE, with smooth and stable convergence of the loss
function. By further taking a linear transformation of the
loss function, themethod of this work significantly promotes

the parameter identification performance with a much lower
variance in 25 repeat experiments. In addition, the variations
in hyperparameters of optimization methods such as
learning rate and weight decay are also investigated, indi-
cating that the method proposed in this work achieves more
stable and robust performance to identify PDN parameters.
It should be noted that the gradient-based optimization
method can also be further explored in future work, such as
the updating schedule of the learning rate for more stable
and faster convergence of the loss function, the interpret-
ability of the gradient-based method for parameter identi-
fication of PDN.
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Figure 11: +e bar chart with error bars from results of MAE (a), RMSE (b), and MAPE (c).

Table 6: +e results of parameter identification repeated 25 times.

Algorithm MAE RMSE MAPE
RS-LR 6.447± 0.801 8.054± 0.958 0.105± 0.013
TPE-LR 6.078± 0.753 7.589± 0.830 0.099± 0.012
SA-LR 6.970± 1.111 8.682± 1.318 0.114± 0.018
AGBO-LR 5.247± 0.079 6.593± 0.111 0.086± 0.001
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