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We present the first model-based parameter identification method in the power distribution network to successfully achieve
parameter identification directly based on sequential model-based optimization. This method is building a model with a posteriori
probability to optimize an objective function. Furthermore, to achieve an efficient exploration, three different acquisition functions,
i.e., random search, tree-structured Parzen estimator approach, and simulated annealing, were proposed. We applied our three
models and the conventional model-free method to the actual feeder data with no adjustment of the other conditions. The experiment
shows that our method achieves at least 25% and 70% improvements in accuracy and convergence speed, respectively.

1. Introduction

In the power distribution network (PDN), reliable and
accurate parameters are the basis of security analysis,
system control, state estimation, line loss calculation,
power flow calculation, protection setting, and fault
analysis [1]. Owing to the improved distribution power grid
construction, new applications, such as new energy vehicles
and distributed generation [2], depend on it. Thus, to
ensure security and stability, it is necessary to measure the
PDN effectively using real-time information. In reality,
owing to the lack and limitations of real-time measuring
equipment, some import parameters, such as the line re-
sistance, line reactance, transformer resistance, trans-
former reactance, transformer conductance, and
transformer electrical susceptance, are often difficult to
obtain directly. These parameters are assumed to be static,
with ideal values instead of actual values. In particular,
under the influence of unstable operating conditions, en-
vironment, grounding resistance, etc. [3], it is difficult to
avoid the differences in data between the distribution

management system and the actual situation, which do not
reflect the real-time operation status in PDN, resulting in
poor parameter calculations for the distribution network.

Currently, the parameter identification research for lines
and transformers is more active in the area of the power
transmission network (PTN) than the PDN. Some of these
studies include the theoretical formula calculation method
based on the self-geometric spacing method [4] and the
identification method based on field measurements of the
voltage, current, power, frequency, and other network pa-
rameters using electrical instruments. Compared with other
main networks, the PDN covers a larger area, and its
measurement conditions are unsatisfactory. Therefore, the
parameter identification methods used in the PTN may not
be suitable for the PDN.

In the field of PDN, with the wide application of su-
pervisory control and data acquisition, power management
unit (PMU), and advanced metering infrastructure (AMI),
some new approaches focusing on efficiency and error have
been developed, such as the full-scale approach [5], PSOSR
[6], normalized Lagrange multiplier (NLM) test [7], finite-


mailto:huke@cqupt.edu.cn
https://orcid.org/0000-0002-5287-8689
https://orcid.org/0000-0001-8017-1456
https://orcid.org/0000-0002-4135-6762
https://orcid.org/0000-0001-7253-2493
https://orcid.org/0000-0003-2299-5507
https://orcid.org/0000-0002-6222-9658
https://orcid.org/0000-0001-8585-3018
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9880284

time algorithm (FTA) [8], residual method, sensitivity
analysis method, Lagrange multiplier method [9], and
Heftron-Phillips method [10]. With the development of
machine learning, some new approaches have been pro-
posed, such as a method that considers distance space [11],
particle swarm optimization (PSO) algorithm [12], interior
point method [13], ensemble Kalman filtering [14], evolu-
tionary strategies [15], estimation using synchrophasor data
[16], PSCAD simulation [17], and deep learning [18]. Most
of these methods are based on lack of original data of the line
in PDN measurement devices; consequently, they inevitably
exhibit some deviations. It has been proven that these
methods are effective with simulation data and have strict
requirements for the precision of voltage and voltage phase
angle. In addition, they require data regarding the voltage,
current, active power, and reactive power on the high- and
low-voltage sides. Therefore, several measuring devices
should be placed in the grid; otherwise, only a part of the
parameters can be obtained. To solve these problems,
identification equations for the equipment parameters in the
PDN are established, and it builds relationships between our
target (parameters to be identified, such as the line resis-
tance, line reactance, transformer resistance, transformer
reactance, transformer conductance, and transformer elec-
trical susceptance) and raw data (data can be obtained easily,
such as the active power, reactive power, voltage on the high
side, and voltage on the low side). Thus, the problem reverts
to how to solve node equations, and two model-free
methods, such as the least squares method (LS) [19] and the
latest research MCMC [20] method, are applied to solve
these equations. Based on node equations, these two
methods work only based on the limited real-time mea-
surement data collected from the end layer of the grid, and
the parameters in the entire grid can be calculated with
different types of nodes [21]. However, these two methods
both have some disadvantages. The LS method assumes that
the parameter space is approximately convex and a satis-
factory local extremum cannot be easily attained; hence, this
method is sensitive to the initial value, and the calculation
process converges at an unsatisfactory result easily [20].
Moreover, the whole process of parameter calculations is
time consuming, and it increases exponentially with in-
creasing scale of the grid. The MCMC method can obtain
high-precision parameter values without phase angle in-
formation; additionally, this method is insensitive to the
initial values and exhibits fast convergence [20]. But, it has
some strict requirements for convergence. For example, it
performs unsatisfactory with standard node equations and
needs to design an unexplainable and complex equation
(named loss function in [20]), especially instead of node
equations. In addition, to acquire excellent identification
results, it requires an excess constrained parameter search
space when working. Even if it performs better than LS
algorithm on regular data, it is hard to predict the parameter
with the outlier’s value or high deviations. Thus, the MCMC
method cannot be used in fault detection, and it is hard to be
applied in real situation.

To sum up, the current parameter identification research
in the PDN mainly faces the following problems:
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(1) Due to the complexity of network structure in the
PDN, there is little research progress in this field.

(2) The studies and experiences in the PTN are hard to
transfer to the PDN.

(3) In the PDN, most of the studies about parameter
identification are based on an idea condition that
enough real-time measurement devices are placed on
the whole grid. But in reality, these devices are
mostly only placed at the end layer of grid. So, most
of them cannot be widely applied in the current
situation.

(4) Calculation based on node equations can solve the
problem lacking real-time measurements, and two
methods, the LS method and MCMC method, are
proposed. After the analysis mentioned above, there
exists many application problems in the MCMC
method currently; thus, in this study, we did not
make comparisons with it.

(5) The LS method is a feasible solution currently, but as
mentioned above, there are disadvantages in accu-
racy and calculation efficiency.

In this study, we present the first model-based solution
about parameter identification in the PDN and propose
another feasible method based on sequential model-based
global optimization (SMBO) [22]. In addition, we also re-
search how to explore more efficiently in this model-based
solution. SMBO is based on Bayes optimization [23, 24]. The
principle of this theory is building a model with a posteriori
probability to optimize an objective function using the
existing samples in parameter identification tasks [25, 26]. In
this model, samplings are regarded as being from one of the
distributions such as the Gaussian distribution or the
compound Gaussian distribution. Thus, the model can be
represented easily, and the dimensions of the model are
lower than those of most of the machine learning and deep
learning models. If one existing point is from a sample point,
the mean is the value of the optimized objective function at
this point, and the variance is 0. The mean and variance of
other unknown sample points are fitted by the posterior
probability model, which may not be close to the true value.
Thereafter, a collection method, such as Markov chain
Monte Carlo, is used to constantly explore the value by
sampling from the objective function corresponding to these
unknown sample points, and then, it constantly updates the
model of posterior probability using the acquisition func-
tion. Because the acquisition function can consider explo-
ration and exploitation, points with better performance will
be increasingly selected. Thus, good optimization can be
achieved.

In the experiments, raw data are sampled from an actual
10kV feeder. To verify whether our work can be applied
widely, the whole identification process is with no adjust-
ment of the other conditions, e.g., based on standard node
equations and the parameter search spaces are not limited.
Moreover, to improve the exploration ability to be more
efficiently and obtain a higher accuracy and coverage speed,
three different acquisition functions, that is, the random
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search approach (RS) [27, 28], tree-structured Parzen esti-
mator approach (TPE) [28], and simulated annealing (SA)
[29], are applied in SMBO. Finally, comparisons are made
between the LS method and our solutions.

2. Materials and Methods

2.1. Model of the Power Flow Calculation. In the PDN,
transformers and lines are the main components. The
analysis in the PDN usually assumes all feeders from a
substation as the object of the system, and each feeder is
regarded as a basic analysis unit. Because the line in the PDN
is shorter and the voltage is lower than in other networks in
the power system, the charging capacitance of the line is
neglected. As Figure 1 shows, according to graph theory in
power analysis, the distribution transformer is regarded as a
I-type equivalent circuit in this study.

Considering the error and computational complexity, we
assumed the three-phase balance as the premise in the
calculation of the power flow. The total power was dis-
tributed evenly in each phase for calculation. The power flow
calculation method is shown in Figure 2.

The active power P, reactive power Q, and voltage U,
on the high-voltage side of the transformer at bus D can be
obtained directly by real-time measurement. Other basic
parameters in the line and transformer, such as the trans-
former reactance Rd, transformer resistance X & transformer
conductance G, transformer electrical susceptance B, line
resistance R, and line reactance X4, are important to the
PDN, but are difficult to detect. These basic parameters
satisty the following formula [21]:

2 2

P, +Q
— Ld Ld pT 2 2
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AUY and 8U} are the longitudinal and transverse
components of the transformer impedance voltage drop at
bus D in V, respectively.
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The equation of bus C can be expressed as [21]
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Thus, the final equation is [21]

£ol) = \(Ua+ AU +(8U%,)" = (U, + AUTY + (30T
(4)

Through the abovementioned analysis, a set of node
equations was obtained. Thus, the parameters in the line and
transformer were calculated based on these equations and
the measured power and voltage data.

2.2. SMBO. Generally, to solve the identification problem,
LS is applied based on the node equations and measurement
data. However, considering the parameter identification task
in the PDN, there are some problems while using LS:

(1) In principle, the parameter space may be nonconvex,
which is unsuitable for LS.

(2) In the PDN, there are many parameter identification
equations to be solved owing to the large scale of
lines and nodes. Therefore, the calculation efficiency
is low.

(3) There are exponential differences at the numerical
level, and the identification results are significantly
affected by measurement errors.

To solve these problems, the SMBO optimization
method was introduced. The SMBO method was used to
solve the node equations based on the measurement data to
identify the parameters in the line and transformer. During
SMBO operation, a model can be trained and updated
through iterations, and then, a set of objective parameters
can be collected based on the current model to improve the
performance of the model in the next iteration.

We consider that the training set is {((Dl, 0;)s e
(9,,0,)} and ©; = {(®i,1> o> Oi)d)} is represented as a set of
parameter configurations when training the model, where d
represents the number of parameters required and O rep-
resents the corresponding observations. This model aims to
predict the fitness of the current observation O,,,; based on a
set of new parameters ©,,,; (Algorithm 1).

In SMBO, each iteration can obtain a new model dis-
tribution (such as the Gauss process) based on the domain
H = (xy, f(x;),..., %, f(x,)), which has been evaluated.

n+l1
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FIGURE 1: T-type equivalent circuit of the transformer and II-type equivalent model of the low-voltage distribution line [20].
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FiGure 2: Power flow calculation circuit model [20].

SMBO (f, M,, T, S)
H—0
Forte—1to T
X" — argmin, (S,, M, ;)
Evaluate f(x*)
H«—HU (x*, f (x*))
Fit a new model M, to H
return H

ALGORITHM 1: Algorithm SMBO.

Furthermore, at each iteration, a new object x*
(x* = argmin, f(x,) ) is obtained based on the new model
distribution. Thereafter, the evaluation function is applied,
and (x*, f (x*)) are added to domain H. Finally, the model
distribution and a new x* are both updated. The entire
process can be expressed as shown in the following chart,
where f represents the evaluation function and M represents
the model distribution.

In this study, three different exploration methods for
finding parameters in SMBO, namely, RS, TPE, and SA, were
selected for comparison with the conventional LS. Three
different optimization functions are briefly introduced below.

2.3. Random Search. Bergstra et al. proved that random
search is more efficient in the parameter identification field
than the grid search in finite iterations [27]. Although the
results of random search may be different, the experiments
prove that random search is better than grid search, espe-
cially when the iteration step is finite [27]. Figure 3 illustrates
how point grids and uniformly random point sets differ in
coping with low effective dimensionality.

Grid Layout Rand Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

FIGURE 3: Schematic diagram of RS’s advantage. The grid and
random search of nine trials for optimizing the function f (x, y) =
g(x) +h(y) = g(x) with low effective dimensionality is shown.
Above each square, g(x) is shown in green, and the left of each
square h (y) is shown in yellow. With a grid search, nine trials only
tested g (x) in three distinct locations. Using a random search, all
nine trials explored distinct values of g.

2.4. Simulated Annealing. SA is a random optimization
algorithm based on the Monte Carlo theory. SA is regarded
as a greedy algorithm; however, what makes it different from
a standard greedy process is that SA also obeys a random
policy and introduces random actions with a low probability
during the search process. Thus, it has the ability to prevent
the case of local optima.

2.5. Tree-structured Parzen Estimator Approach. TPE im-
proves the traditional form of the model distribution,
p(ylx)to p(x|y)and p(y). For p(x| y), the TPE is defined
as follows:

if y<y,
ifyzy",

p(xly) =1(x),

5
p(x|y) =g(x), ®

where (x) represents the loss function of the current x
when f(x?”)< y* and g(x) is the opposite case. Based on
domain B = {x",...,x®} € H, which is calculated by the
k-means algorithm, TPE can be regarded as a prior Gaussian
distribution, where each x € B. For each discrete x?, the
prior distribution is p;; thus, the posterior distribution is
N x p; + C;, where N represents the sample number and C;
represents the probability in domain B. The entire optimi-
zation process is based on the expected improvement in EI
[26].
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In TPE, y=p(y<y") and p(x) = [p(xly)p(y)dy
=yl(x) + (1 - p)g(x); thus,
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yy 1)~ 1) 7 p(y)dy ()
Px)+(1-pgx)

El,. (x) =

From equation (8), more points that perform better are
obtained according to the improved (g(x)/I(x)) and an
optimal x* with the maximum EI value.

3. Experiment

3.1. Preparation. For the experiment, the whole schedule is
as shown in Figure 4.

(1) Establishing node equations: the terminal node
equations are introduced in equations (1)-(4)

(2) Sampling data

(3) Parameter identification: at this step, five sets of
parameters will be obtained

(a) Four sets of parameters were obtained using
different identification algorithms. Among them,
one set was from the contrast group and con-
ducted the LS method; the other three sets were
from the experimental group and conducted the
three different acquisition functions,
respectively.

(b) The remained one set is the static parameters.

(4) Result comparison

(a) As shown in Figure 4, the identification error is
evaluated by the difference between U, , and
Uq> where the U, represents the high-voltage
side calculated by the identification parameters
and U, is the sampled true value of the high-
voltage side

(b) Convergence speed among different identifica-
tion processes

In the process of sampling data, an actual 10kV feeder
was selected for the calculations. The 10kV feeder is
composed of a transformer (S11-M-400/10) and eight
overhead transmission lines. The specific topology is illus-
trated in Figure 5.

The whole process, including exploration and solving
node equations, has low cost for calculation, and the di-
mension of the studied model is not high, so ordinary re-
search computers can finish this work.

3.2. Convergence. SMBO is a model-based method, and it
works obeying the metaheuristic optimization. It has been
verified that three different explorations have the ability to
reach an ideal result close to the global optimized solution,
but we must overcome the randomness in identification
results. To solve this problem, we focus on the standard
precision of these parameters and think that randomness can
be ignored when the parameter update quantity is less than
the standard precision in the following iterations.

The static parameters of the standard 10kV feeder
network are as follows.

3.2.1. Line

(1) Line resistance: R_; = 0.1263 (Q2/km)
(2) Line reactance: X_; = 0.1665(Q/km)

3.2.2. Transformer

(1) Transformer resistance: Xq = 10.000 (Q)/ km)
(2) Transformer reactance: Ry = 2.825 (Q)/ km)
(3) Transformer conductance: G4 = 5.7 x 107° (S)

(4) Transformer electrical susceptance: By = 3.2 x 107° (S)

To sum up, the precisions and convergence conditions of all
identified parameters are summarized in Table 1.

Thus, when the difference between successive identified
parameters is less than the corresponding precision (in other
words, on convergence conditions), we think it achieves
convergence and the impact of randomness can be
neglected. In this study, we observe the updated error in
following 10 iterations to ensure convergence.

3.3. Raw Data Descriptions. Without loss of generality, raw
data collected on 1 January 2020 were selected randomly.
The data were collected using SCADA, and the sampling
period was 15 min. Figure 6 shows the three-phase first
section voltage (U 4, Ug, and U) on the high-voltage side,
Figure 7 shows the three-phase voltage (u,, 1), and u,) on
the low-voltage side, Figure 8 shows the three-phase active
power (P,, P,, and P,) on the low-voltage side, and
Figure 9 shows the three-phase reactive power (Q,, Qy,
and Q,).

From Figure 6, it can be seen that the high-voltage side
(marked as U, in Figure 2) in the sampling data obeys the
three-phase balance; thus, it satisfies the requirements of
solving node equations and parameter identification. From
Figure 7 to Figure 9, the trend of change in active power,
reactive power, and low-voltage side (marked as P, Q , and
U, in Figure 2, respectively) is consistent. Thus, it is verified
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FIGURE 4: Schematic diagram of the experiment.
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F1GURE 5: Ten-kilovolt feeder topology [20].
TaBLE 1: Precisions and convergence conditions of all parameters.
R Xea X4 Ry Gy By
Precisions 1x10™* 1x10™* 1x107 1x107° 1x10°° 1x107°
Convergence conditions 1x107° 1x107° 1x107 1x107* 1x1077 1x107°

that the data are stable and can be used to perform parameter
identification.

4. Results

After parameter identification, one set of parameters in the
contrast group based on LS is obtained. As shown in Fig-
ure 4, a back calculation was conducted, and three sets of
parameters in the experimental group were obtained based
on three different acquisition functions.

Because there is no real-time and accurate data of the
line parameters, U, is the standard voltage value per unit

used for the voltage data, and U, is the high-voltage side
value calculated with the identification parameter value.
The identification results can be described by the differ-
ence between Uy, and U,,. In addition, the producer
(factory) provides each line and transformer an original
parameter value as reference. Therefore, these parameters
are suitable to be regarded as the baseline, and we can also
calculate the voltage values U with these original
values.

Figure 10 shows the identification parameter calculated
using LS, Figure 11 shows the identification parameter
calculated by RS, Figure 12 shows the identification

comp
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FIGURE 7: u,, u;,, and u. on the low-voltage side.

parameter calculated by SA, and Figure 13 shows the
identification parameter calculated by TPE.

In Figures 10-13, the gap between the blue line U ,; and
the green line U, represents the difference between the
identification parameters and the true value. The gap in the
LS method is larger than that in the other three SMBO
methods. To show the difference in fitting error, the four
metrics, that is, the mean absolute error (MAE), roost-mean-
square error (RMSE), mean absolute percentage error
(MAPE), and symmetric mean absolute percentage error
(SMAPE), are applied, which are defined as follows:

1 &
MAE = -3 |7~y
i=1

100% |y, — v,
MAPE = 100% y,_y,‘
] i
1009 5i— ;
SMAPE: A) Iyl yll

noa ((|J7,| +|yil)/2).

(9)
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The overall performance of all the methods is shown in
Table 2. The Comp group represents the parameter from the
original parameter value; the other four groups include one
traditional LS method and three methods (RS, SA, and TPE)
based on SMBO. The convergence speed (Converg spd) was
recorded, and all four corresponding methods were tested at
the same calculation plat and same amount of data for
calculation during 1000 iterations.

From Table 2, it can be seen that all the four different
methods based on the algorithms (LS, RS, SA, and TPE) yield
better results than those based on the Comp group, which
demonstrates that the original parameter value is unreliable

and it is necessary to perform parameter identification. In
addition, three SMBO methods perform better than LS on
the abovementioned four metrics, indicating that the
identification results based on SMBO are closer to the real
values than the results based on LS. In the experimental
group, the TPE method performed the best in all four
metrics for fitting error, while the RS method performed the
worst, which indicates that, in the parameter exploration
process, a model based on an updating distribution is better
than random.

Furthermore, from the column of Converg spd, the
convergence speed of all three SMBO methods is
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TaBLE 2: Metrics summary of all methods.
MAE RMSE MAPE SMAPE Converg spd (s)
Comp 90.524 90.820 1.479 1.490 —
LS 76.908 78.163 1.257 1.265 1498
RS 57.791 59.451 0.944 0.949 311
SA 51.736 53.757 0.845 0.849 408
TPE 51.056 53.046 0.834 0.838 420
95 1

CRMSE

50 T T T T |
0 200 400 600 800 1000

Time Period (15 min)

— LS — SA
— RS —— TPE

FiGUure 14: CRMSE curve with different parameter identification methods.
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TaBLE 3: Hypothesis testing results.

Gr. B
Gr. A SMBO
P val LS RS SA TPE
LS 1.000 <0.01 <0.01 <0.01
RS <0.01 1.000 <0.01 <0.01
SA <0.01 <0.01 1.000 <0.01
TPE <0.01 <0.01 <0.01 1.000

significantly faster than that of LS. In the experimental
group, the RS method runs the fastest when convergence
occurs because the calculation cost of the RS method is the
lowest.

In addition, to compare the effects of different identi-
fication methods, the cumulative root-mean-square error
(CRMSE) was adopted in this study.

For an arbitrary point at order m in the samples,

1 & . .
CRMSE™ =\~ (ull) - ulf, ) (10)
i=1

where 1, represents the true value and u,,,, represents the
value from one of the identification methods. According to
the definition, CRMSE represents the dynamic value error
well with the incremental sampling sequence.

From Figure 14, there is a gap between the LS curve and
the three SMBO curves for the whole sample sequence.
Furthermore, in the group of the three SMBO curves, there is
a gap between the RS curve and the other two curves.

Hypothesis testing is one of the methods used to de-
termine whether there are significant differences in statistics
between the two groups (e.g., groups A and B) of samples. By
observing p, a significant difference between these two
groups of samples was obtained.

(1) If p>0.05, there were no significant differences.
There was no significant difference in the mean and dis-
tribution between groups A and B. (2) If p <0.05, it indicated
a significant difference. There was a significant difference in
the mean and distribution between groups A and B.

The testing results are in Table 3.

From Table 3, it can be seen that compared with the LS
method, the p value of all three SMBO methods is less than
0.01, indicating that the results based on SMBO are all
superior to those of the LS method.

In addition, the performances of the three SMBO-based
methods are different. After hypothesis testing, it was found
that the TPE method performed best in the experiments; the
result of SA was similar to that of TPE, and the RS method
performed worse than the other two methods.

5. Conclusions

In the PDN, accurate values of parameters in the line and
transformer are important, but it is difficult to perform real-
time measurements. In this study, we focused on the pa-
rameter exploration process and presented a method based
on SMBO. In addition, three different exploration solutions,
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RS, SA, and TPE, were introduced. Experiments were
conducted using the known partial measurement data
sampled from an actual 10kV feeder.

The experimental results demonstrated that the SMBO
performs better than LS in terms of accuracy and conver-
gence speed. The TPE method performs best in terms of
accuracy, and RS achieves the fastest convergence speed. Our
method achieves at least 25% and 70% improvements in
accuracy and convergence speed, respectively. Thus, our
method can satisfy the requirements of the parameter
identification task of the PDN.

However, some problems remain, such as lesser calcu-
lated high-voltage values than the true measurement values
in Figures 10-13. Therefore, intensive work is required to
design the last equation in node equations.
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