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Microgrids are considered to be smart power grids that can integrate Distributed Energy Resources (DERs) in the main grid
cleanly and reliably. Due to the random and unpredictable nature of Renewable Energy Sources (RESs) and electricity demand,
designing a control system for microgrid energy management is a complex task. In addition, the policies of microgrid agents are
changing over time to improve their expected profts. Terefore, the problem is stochastic and the policies of the agents are not
stationary and deterministic. Tis paper proposes a fully decentralized multiagent Energy Management System (EMS) for
microgrids using the reinforcement learning and stochastic game. Te microgrid agents, comprising customers, and DERs are
considered as intelligent and autonomous decision makers. Te proposed method solves a distributed optimization problem for
each self-interested decisionmaker. Interactions between the decisionmakers and the environment during the learning phase lead
the system to converge to the optimal equilibrium point in which the benefts of all the agents are maximized. Simulation studies
using a real dataset demonstrate the efectiveness of the proposed method for the hourly energy management of microgrids.

1. Introduction

DERs are emerging as the recently developed technologies
for supplying the growing demand for electricity and
thermal energy [1]. DERs have lower environmental impacts
than traditional energy sources, such as petroleum, natural
gas, and coal. Recently, the utilization of DERs has attracted
a great deal of attention due to their environmental, eco-
nomic, and technical advantages [2]. Te secure supply of
electricity based on DERs is a reliable, efcient, and envi-
ronmentally friendly replacement for the conventional
centralized energy sources [3]. Distributed energy sources
include renewable energies, nonrenewable energies, and
batteries. It is complicate to combine the RESs directly into
microgrids due to their random and intermittence features
afected by the meteorological parameters. Microgrids are
the interface between the utility grid and distributed RESs.
Tey comprise DERs, storage systems, and local loads, as
well as control systems and diferent entities (such as
microgrid operators). Microgrids are defned as local and

small distribution systems, which include load and gener-
ation units [4]. Tey can operate in grid-connected and
islanded modes [5]. Microgrids should guarantee various
functions for instance supply of electrical and thermal de-
mand, involvement in the energy market, maximization of
customers’ satisfaction level, and optimization of generators’
beneft [6]. Several research studies in the feld of microgrids
control have been presented in the literature to supply the
abovementioned functions of the microgrids.Te design of a
multiagent EMS for microgrids is a complicate task due to
the various range of required functions. In a typical
microgrid, there are diferent types of agents including
generators, customers, and energy storage systems. An ef-
fcient EMS should be designed in a way that in addition to
supplying all the demands and reducing the consumers’
expenses, it maximizes the producers’ profts. Terefore, it is
necessary to design a multiagent system for microgrid en-
ergy management to maximize the proft of all the agents. In
a microgrid with multi-intelligent agents, the proft of each
agent relies on its actions and also the actions of other
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agents. Te policy of each agent is not deterministic and
stationary, since each agent can change its policy over time
to maximize the expected proft during the learning process.
Terefore, the environment is stochastic from the point of
view of each agent.

Many of the existing methods for microgrid energy
management utilize a centralized structure. In [7], a dynamic
EMS has been developed using the adaptive dynamic pro-
gramming approach, in which the critical loads were sup-
plied at all times. A home EMS based on Levenberg‒
Marquardt algorithm has been presented to optimize the
customers’ performance in presence of a grid-connected
photovoltaic system with a battery energy storage system in
[8]. An energy management structure based on the Nash Q-
learning algorithm has been used in [9] to manage all the
DERs. In the Nash Q-learning algorithm [10], each agent
observes all the information including its reward, and also
the actions and rewards of other agents. In practice,
implementing this method is more complicated than central
methods. Against the central systems where information is
available for one unit, in the Nash Q-learning approach, all
the agents are aware of all the information. A deep rein-
forcement learning method has been presented in [11] to
minimize the daily operating cost of a microgrid. Using the
deep feedforward neural network, the optimal action-value
function is approximated. Various deep reinforcement
learning methods were presented in [12] to design microgrid
energy management. For the implementation of the EMS
using deep reinforcement learning, there is a centralized
controller. Terefore, information from all other agents is
expected to be available for the central system. So, such a
method is faced with high communication complexity and
computational cost [13].

In [14], a hierarchical reinforcement learning-based
approach has been developed to achieve an optimal policy of
the microgrid EMS. Instead of receiving information from
neighboring agents, a state variable “Trend” was introduced
to solve the dimensionality issue of the multiagent system.
Te hierarchical reinforcement learning algorithm con-
verges to a locally optimal policy, named recursively optimal
policy [15].

Several studies have used the decentralized method for
energy scheduling of microgrids. In [16], a fully decen-
tralized method based on a reinforcement learning algo-
rithm and multiplayer games has been established. Each
decision maker aims to maximize its own long-term proft.
In this method, each player only observes its actions, but the
problem is stateless and the agents cannot observe the states
of the environment. In [17], the trajectory planning of
unmanned aerial vehicles for energy efciencymaximization
has been proposed using a decentralized learning-based
approach. But in the Q-function, the action of all the other
agents should be available. Energy management strategy
based on decentralized fuzzy logic controller has been ex-
tended for charging of electric vehicles in [18]. In [19], a
decentralized EMS for autonomous polygeneration micro-
grid has been designed; however, each agent communicated

with each other to calculate optimal control. Energy man-
agement problem has been modeled by cooperative and
noncooperative game theory and the agents are allowed to
communicate in cooperative game in [20]. Due to the
communication of agents with each other, the computa-
tional and communication complexity has increased in these
methods. Besides, in practice, agents prefer not to share their
information to maximize their proft in the competitive
electricity market. Some articles use conventional Q-
learning of single agent for decentralized multiagent
structure. In [21], distributed energy scheduling of a
microgrid has been developed based on a multiagent model
and conventional Q-learning. Every customer and supplier
do not have access to other agents’ information and prior
information about the environment. A multiagent structure
for home energy management is proposed in [22] using
single agent Q-learning and neural networks. By the
scheduling of the household appliances and electric vehicles,
the electricity bill has been decreased, but the proft of the
DERs has not been considered. Tey have used normal
single agent Q-learning in a decentralized structure to fnd
the optimal solution. Te single agent Q-learning are de-
veloped for stationary systems and no guarantee is provided
for its convergence to the optimal solution in stochastic
systems. For a special case, the nonconvergence of Q-
learning in Shapley’s game has been shown, see Section 4 in
[23]. Finding the optimal policy in multiagent systems is
complicated due to the nonstationary environment. Each
agent tries to learn its optimal policy; however, the policies of
the agents are changing over the time to maximize their
expected profts.

To the best of our knowledge, despite many research on
the multiagent EMS of microgrids, none of the proposed
methods ofers a fully decentralized reinforcement algo-
rithm consistent with the stochastic game structure of the
microgrid EMS, so that there is a guarantee of convergence
to the optimal solution in the stochastic environment.
Terefore, in this paper, a model-free Q-learning algorithm
is developed to control the multiagent EMS of microgrids
in the stochastic environment based on the stochastic game
and reinforcement learning. Te multiagent EMS is
modeled using the Markov game [24]. In this method, the
proft of all the DERs, including renewable and nonre-
newable units and battery energy storage systems are
maximized. Meanwhile, the expenses of all the customers
are minimized. Indeed, the benefts of all the agents of the
microgrid are optimized, concurrently. Each agent receives
only its reward from the environment to learn the con-
sequences of its actions. It is not aware of the actions and
even the existence of other agents. Te proposed algorithm
converges to a suboptimal solution. Te main innovations
of this paper are summarized as follows:

(1) Te problem of microgrid EMS is modeled using the
stochastic dynamic games.

(2) A fully decentralized Q-learning algorithm appli-
cable to the stochastic game of EMS is developed.
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(3) All the customers and energy generators are con-
sidered as intelligent and independent agents. Tese
agents can make decisions to maximize their profts.

(4) Each agent learns its optimal policy with minimal
information, while the computational cost and
communication complexity are reduced.

Te rest of this paper is organized as follows: Section 2
describes the structure of the microgrid. TeMicrogrid EMS
scheme using a model-free reinforcement learning algo-
rithm is developed in Section 3. Finally, the simulation
results and concluding remarks are presented in Sections 4
and 5, respectively.

2. Problem Description

Microgrids as small-scale and low-voltage power grids are
connected to the main grid through a common connection
point called the point of common coupling. In the grid-
connected mode, microgrids satisfy supply and demand
balance by selling/purchasing the excess/defcit energy to/
from the main grid. However, the reduction of the microgrid
dependency on the main grid is a main goal in the microgrid
energy management problem. Terefore, in addition to
increasing the proft of all the agents in the microgrid, the
EMS of microgrids should be designed in a way that the
dependence of the microgrid on the main grid is reduced
[25]. In this paper, the grid-connected mode of the
microgrid is considered. Loads in microgrids are divided
into two categories, controllable and noncontrollable. Un-
controllable loads such as medical center systems and es-
sential tasks in the industry must be provided at the time of
demand. Tese loads are infexible to time and cannot be
moved over time. However, controllable loads can be re-
moved or transferred to low-load times. Figure 1 shows the
structure of a microgrid consisting of solar panels, wind
turbine, diesel generator, electric and thermal fuel cell,
electric and thermal microturbine, battery, and several local
electric and thermal loads. A microgrid operator is con-
sidered as a high-level controller in power microgrids.

In order to guarantee the reliability and security of a
network, the required power must be supplied by the
producers at all times. In the connected mode to the main
grid, the constraint of power balance means the equality of
the generated power with the consumed loads [26].
Terefore, for electric loads, the power balance constraint is
defned as follows:

􏽘
n

i�1
LoadE

i � Pw + PPV + Pd + Pb + P
E
MT + P

E
FC + P

E
main, (1)

where LoadE
i is the amount of electric load demand of the ith

consumption agent and n is the number of electric consumer
agents. Pw, PPV, Pd, Pb,PH

MT, P
H
FC, and PE

main are the electrical
power output of the wind turbine, photovoltaic solar panels,
diesel generator, battery, microturbine, fuel cell, and main
grid. Te power balance condition for thermal loads is also
defned as follows:

􏽘
m

i�1
LoadH

i � P
H
MT + P

H
FC + P

H
main, (2)

where LoadH
i is the heat load demand of the ith consumer

agent and m is the number of thermal consumer agents.
PH

MT, PH
FC, and PH

main are the generated thermal power of
microturbine, fuel cell, and main gird, respectively.

Te capacity constraints represent the operating range of
distributed generators and have the following range:

P
min
i < Pi(t) < P

max
i , (3)

where the output power of distributed generator i in the time
interval t is determined by Pi(t). Pmin

i and Pmax
i are the

minimum and maximum output power of the generator i,
respectively.

SOC indicates the state of charge of the battery. Te
following technical constraint is applied to prevent excessive
charging and discharging of the battery energy storage
system:

SOCmin ≥ SOC(t)≥ SOCmax, (4)

where SOCmin and SOCmax are the minimum and maximum
charge levels of the battery. In this research, SOC is limited
to the range of [0.2, 0.8] to avoid the damage of the battery.

3. Microgrid EMS Based on Decentralized
Reinforcement Learning

Reinforcement learning is an action-based learning. In this
method, an agent tries to improve its actions and control
policies by infuencing and receiving better feedback from
the environment. Indeed, the agent tries to correct its actions
by receiving rewards and not punishing in interaction with
the environment. Correct control decisions should be
retained in the system memory by the reinforcement signal
so that they are more likely to be used next time [27].

Reinforcement learning uses the formal structure of
Markov decision processes and describes the relationship
between a learning agent and the environment using states,
actions, and rewards. In each time interval t, the rein-
forcement learning agent can observe the states of the en-
vironment, St, and perform actions, At, based on the
observed states. In a later period, as a result of its action, the
agent receives a numerical reward, Rt+1, and goes to a new
state, St+1. Terefore, by using action and reaction with the
environment, an agent learns to choose actions that maxi-
mize its reward. A reward is a number calculated using the
reward function and is defned according to the purpose of
the reinforcement learning problem. Te goal of the intel-
ligent agent is to maximize all the rewards received in a long
time [28].

Te action-value function, Qπ(s, a), is the expected value
of the sum of weighted rewards (with discount factor) in
state s, performed action a, and under policy π. It is
expressed as follows:
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Qπ(s, a) _�Eπ 􏽘

∞

k�0
c

k
Rt+k+1|St � s, At � a⎡⎣ ⎤⎦. (5)

Te parameter c is called the discount rate and has a
value between zero and one. Tis parameter represents the
current value of future rewards. When it approaches one, the
agent pays great attention to future profts. Rt is the reward
function at time t. Even if an accurate and complete model of
environment dynamics is available, calculating the optimal
policy by solving Bellman’s optimality equation is not easily
possible. In order to calculate the optimal policy, the Q-
learning update law can be used for a single agent system in a
stationary environment [29]. Tere is no guarantee for the
standard Q-learning to converge in the stochastic game due
to the presence of multiple active learner agents. Te en-
vironment for all agents becomes a nonstationary as a
consequence of the existence of these learning agents. For
this reason, in the following, a decentralized Q-learning
algorithm based on a stochastic game for the multiagent
microgrid EMS is presented, which is in accordance with the
stochastic structure of the environment based on [30].

Figure 2 depicts the structure of the decentralized
control system. A controller (agent) is interested in
maximizing its own long-term reward. Each agent only
has access to the state of the environment and its reward.
It is not even aware of the existence of the other agents and
their information. Te state of the environment at time
slot t is St, the reward and the controller signal (actions) of
agent i at time t are Ai

t and Ri
t. Wt is the random dis-

turbances at time slot t.
Te element of a fnite discounted stochastic game is as

follows:

(i) S: the fnite set of states
(ii) N: the fnite number of the agents
(iii) Ai: the fnite set of actions (control decisions) for

agent i
(iv) Ri(s, a1, . . . , aN): reward function for calculating

the reward of agent i, for all s ∈ S and, a1 ∈ Ai

(v) ci: the discount factor of agent i
(vi) s0: a random initial state belongs to S

Microturbine

. . .

. . .
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Consumer 1

Thermal
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Figure 1: Microgrid structure.
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(vii) (p(s′|s, a1, . . . , aN) _�Pr[St � s′St−1 � s, Ai
t−1 � ai]):

the conditional probability distribution function,
where p: S × S × A⟶ [0, 1] and
∀s′, s ∈ S and∀ai ∈ Ai

Te above stochastic game is a discrete-time Markov
process starting with initial state s0. At each time slot, the
agent i choose possibly randomly actions ai ∈ Ai. Te rule of
selecting an appropriate action based on the agent’s ob-
servation history at the time t is called policy. Although the
environment is stochastic, the focus of this paper is on
stationary policies and agents choose their actions solely
based on the state St. By introducing a new algorithm for
microgrid energy management, the structure of the sto-
chastic game is transformed into a stationary environment at
each time slot. It is proved that the problem converges to an
equilibrium solution.

In the multiagent environment, the agent’s reward relies
not only on its actions and the state information but also on
the action of other agents. Te dynamic of self-interested
agents generally is modeled by the framework of stochastic
games, which generalized Markov decision problems [31].
Joint actions include actions of all agents taking at each time

slot. Te state transition of the system is complex due to the
joint actions. At the beginning of each time slot, the envi-
ronment moves into a new stochastic state, which is afected
by the previous state and actions of all agents. Terefore, the
Markov property is satisfed by the state-action transition. In
proposed method, all agents have constant policies at some
special phases named exploration periods.Te kth exploration
phase is implemented during times t � tk, . . . , tk+1 − 1, where
tk+1 � tk + Tk, as demonstrated in Figure 3.

Te length of the exploration period is denoted by
Tkε[1,∞). All agents have constant policies during each
exploration phase. Te critical point is to generate at each
exploration period a stationary environment. Te agents
explore and learn their optimal policies and Q-function at
each period corresponding to their consistent policies. Each
agent has two Q-functions. During the exploration phase,
each agent selects actions based on its Q0-function but
updates its Q1-function based on its observations. Terefore,
the policies of agents do not change during the exploration
phase.TeQ-learning update rule of agent i in each iteration
is defned as follows:

Q
L+1,i
1 st, a

i
t􏼐 􏼑 � 1 − αi

t􏼐 􏼑Q
L,i
1 st, a

i
t􏼐 􏼑 + αi

t r
i
t+1 + c

i max
a

Q
L,i
1 st+1, a( 􏼁􏼔 􏼕, (6)

where ci, αi
t ∈ [0, 1] are the discount rate and learning rate of

agent i. It is transferred from state st to the next state st+1 by
doing ai

t and receives the reward ri
t+1. Te Q-learning al-

gorithm is a model-independent reinforcement learning
method. At the end of each exploration phase, Q0 is updated
with Q1 for each agent with the probability 1− μ. Te
proposed method is summarized in Algorithm 1. If the
agents are updated according to Algorithm 1, in each

learning phase, the environment becomes a stationary en-
vironment. Finally, if the value of Tk is large enough and the
convergence conditions of normal Q-learning in [29] are
satisfed, the decentralized stochastic game will converge to
an optimal or suboptimal solution [30].

Te goal of the EMS for a microgrid is to maximize the
proft of all agents over a long time. For this reason, the total
proft of the ith generator for a long period is defned as follows:

maxFi � 􏽘
∞

t�1
c

t ∗ Pri(t) × P
mic
i (t) + Sp(t) × P

main
i (t) − C

op
i P

mic
i (t) + P

main
i (t)􏼐 􏼑􏽨 􏽩, (7)

Environment

Agent 1 Agent 2 Agent N ...

R1
t ,St

A1
t

R2
t ,St

A2
t

RN
t ,St AN

t

St+1 = f (St ,A1
t ,A2

t , ... , AN
t ,Wt)

Figure 2: Te structure of decentralized control system.
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where t is the time period. Te parameter c is the discount
rate. Pmic

i (t) and Pmain
i (t) are the power sold by the ith

generator to the microgrid and the main grid at the time t,
respectively. Pri(t) is the ofered price by the ith generator
for selling energy to the microgrid. Te state of the envi-
ronment, Sp(t), is the energy purchase price by themain grid
from the microgrid. C

op
i (·) is the operating cost function of

the ith generator. Te cost function is calculated practically
[32].

Te objective function of battery energy storage systems
is given as follows:

maxFb � 􏽘
∞

t�1
c

t ∗ Prb(t) × P
mic
b (t) + Sp(t) × P

main
b (t)􏼐 􏼑 − Prm(t) × P

input
b (t)􏼐 􏼑􏽨 􏽩. (8)

Te frst term is the proft from selling energy. Te
second term is the cost of buying energy. In any time, the
battery can be a buyer or seller of energy. Prb(t) is the
ofered price for selling energy by the battery. Pmic

b (t) and
Pmain

b (t) are the power sold by the battery to the microgrid
and the main grid in the time interval t, respectively. P

input
b

and Prm are the amount of purchasing power by the battery
and the electricity market price. Te policy of energy storage
systems should be such that energy is purchased at low price
times and returned to the grid at the consumption peak. Te
goals of consumer agents are to minimize costs, which are
calculated as follows:

minFc � 􏽘
∞

t�1
c

t Prm(t) × L
NC
i (t) + β(t) × L

C
i (t)􏼐 􏼑 + μ ×(1 − β(t)) × L

C
i (t)􏽨 􏽩, (9)

where LNC
i (t) and LC

i (t) are uncontrollable and controllable
loads in the time interval t, respectively. β(t) is the per-
centage of controllable load curtailment. μ is the coefcient
of consumer dissatisfaction for load curtailment and de-
pends on the type of consumer and their enthusiasm for
managing and optimizing their consumption and expenses.

4. Numerical Study

For all the agents, except the battery, the states include
(t,Ss,Sp). t is the time slot, Ss is the price of selling energy to
the main grid and Sp is the price of buying energy from the
main grid. In addition to the above states, the battery agent
has an additional state including the battery’s SOC, which
changes between 0 and 100 percent. Te set of actions for
microturbine and fuel cell includes the amount of produced
electrical power, the amount of produced thermal power,
and the bid price for selling energy to the microgrid. Te
diesel generator also decides on the amount of electrical
output power and the bid price. Te action set of RESs
(including wind turbine and solar panels) only includes the
bid price for selling energy. If the bid price of RESs is equal
to the price of nonrenewable sources, the priority is with
the renewable energy sources. Indeed, microgrid buys the
power produced by the wind turbine and solar panel and
then uses energy from other sources if needed. If the
produced power is more than the requirement of the

microgrid; DERs can sell excess energy directly to the main
grid. Since the price of selling energy to the main grid is
much lower than the price of purchasing energy from
microgrid, all generator agents should be trained in a way
that they sell their produced power inside the microgrid by
ofering a reasonable price in the competitive electricity
market. Terefore, the microgrids can supply the required
power from domestic producers instead of buying from the
main grid. As a result, the proft of domestic producers is
increased and the dependence of the microgrid on the main
grid is also reduced. Te action set of the battery includes
the state of charge or discharge, the amount of power
exchanged and the bid price. In charging mode, the battery
power is negative and in discharging mode, it is positive.
Te energy consumption is a random variable and relies on
parameters such as weather condition and consumption
time [33]. In order to create dataset for learning the system,
the amount of demand is modeled with exponential dis-
tribution function. Demand can be divided into uncon-
trollable and controllable loads.Tere is no control over the
frst category and they must be supplied at the time of
demand. However, the percentage of curtailment of con-
trollable loads is a decision variable.

Since the goal of the reinforcement learning problem is
tomaximize the objective functions, the immediate reward is
defned in a way that maximizes functions (7)–(9). Te
reward of DERs is the amount of the net beneft from selling

The kth exploration period 
(π1

k , π2
k , ... ,πN

k )tk tk+1

Tk

Figure 3: Te kth exploration period.
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energy. Te reward of consumers is the negative value of the
electricity bill and their dissatisfaction level.

Te EMS for a microgrid has been simulated using actual
data of renewable energy output power and data from the
IREMA website. Te output powers of wind turbine and
solar panels have been collected hourly.

Te proposed microgrid consists of thermal and elec-
trical energy sources, a battery energy storage system, and
electrical and thermal loads (see Figure 1). Te specifcations
of distributed resources are according to Table 1. Due to the
environmental pollution of nonrenewable energy resources,
the capacity of the microturbine and diesel generator are
considered lower than the capacity of renewable resources to
limit the use of nonrenewable resources in power grids.
Attribute to the high cost of purchasing battery and short
battery life, the capacity of the battery is also restricted. Solar
and wind energy sources are signifcantly available in the
country; hence, the capacity of wind and solar generators has
been designed more than other generators. Four electrical
consumer agents, three thermal consumer agents, and one
electric and thermal consumer (mixed customer) have been
considered in the microgrid with the capacity of 8, 4, and
8 kW, respectively. Due to consumption management, the
total capacity of the generators is considered less than the
total power of consumers. Consumers can manage up to
70% of their consumption. Te remaining is considered as a
noncontrollable load, which must be supplied at the time of
demand. One day is divided into 24 one-hour periods. In
each period, the exchange rate from the main grid is in the
range of 150–1200 Rials/kWh. According to Iran’s electricity
market on the IREMA site, the bid price by DERs has been
set between 200–1300 Rials/kWh. Te practical data were
collected in the summer season. To verify the performance of

the proposed method in the summer season, the algorithm
has been simulated for 80 days in each scenario. If the
simulation is run for more days, the performance of the
algorithm will be the same as before. Te presented method
has been evaluated under two scenarios: without learning
and all agents learning. Each scenario has been simulated for
80 days. Te total duration of the simulation is 160 days. In
the frst 80 days, there is no learning and all requested loads
are satisfed, and distributed energy sources randomly
choose an action. In the second 80 days, all agents are trained
and have the ability to make intelligent decisions.

In the learning period, Tk is equal to 120 days and ex-
ploration phase is iterated 1500 times. Te evaluation period
for each scenario is simulated ten times. Te average eval-
uation results of the proposed EMS are shown in
Figures 4–12. Te average amount of proft and power for
the two scenarios is shown in Table 2. In Table 2, the cost is
for one consumer agent and power includes the total
requested load in the microgrid. As shown in Figures 4 and
5, although the average output of wind turbine and solar
panels in the second scenario (second 80 days) has not
changed, their proft has increased signifcantly, since the
resources can make smarter decisions.

In Figures 6–8, the daily average proft and output power
of diesel generator, fuel cell, and microturbine are shown.
According to the training of the generator agents in the
second scenario, the proft of the diesel generator, fuel cell,

//initialization
(1) Initialize the learning parameters ci and αi,
(2) Set K1, Tk, Ꜫ, μ,
(3) Initializes Qi

0, Qi
1 � 0 for all states and actions.

//learning
(4) For k� 1: K1

//exploration period
(5) For n� 1: Tk
(6) For t� 1: 24
(7) Each agent senses the states of the environment
(8) Te demand is predicted by the exponential random distribution
(9) Te outputs of wind and PV are determined.
(10) Each agent takes random actions with the probability 1-Ꜫ and selects the best action with the probabilityꜪ based on

Qi
0

(11) MO clears the market
(12) Each agent observes its immediate reward
(13) Te QL,i

1 -function for each agent is updated according to equation (6)
(14) End
(15) End

//end exploration period
(16) Qi

0 is updated with Q
Tk,i
1 for each agent with the probability 1− μ

(17) End
//end learning

ALGORITHM 1: Te proposed energy management system for smart microgrids.

Table 1: Te capacity of distributed energy resources.

DER Wind PV BESS MT FC Diesel
Prated (kW) 10 10 5 6 6 5
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andmicroturbine agents has increased.Te ratios of proft to
production in diesel generator in the frst and second sce-
nario are 232.9 and 240.8, respectively. Terefore, although
production has increased in the second scenario, the ratio of
proft to production (according to Table 2) has also increased
for diesel generators. Te diesel generator can intelligently
transfer its production to the hours when the demand and
energy cost are high. Indeed, this agent has learned to sell
more energy inside the microgrid and its proft has increased
by ofering a reasonable price to sell energy. Te ratios of
proft to production in the frst and second scenarios are
228.1 and 293.1 for the fuel cell and 324.1 and 368.2 for the
microturbine, respectively. Terefore, just like the diesel
generator, these agents can make more optimal decisions by
exploring and exploiting the environment during training.

Figure 9 shows the simulation results for the battery. In
the second scenario, where the battery is trained, its proft is

positive. At other times, it is negative. A negative proft
means that the battery had bought energy at a high cost and
sold it when the price of electricity was low.

Figures 10 and 11 show the results of electrical and
thermal consumers, respectively. To compare fairly the
scenarios, the ratios of cost to consumption in the frst and
second scenarios have been compared. For electrical con-
sumers, the ratios are 131.2 and 129.5 in the frst and second
scenarios, respectively. Te reduction of these ratios illus-
trates that the consumer agents have been able to manage
and transfer their consumption to low price time. Te agent
reduces its consumption when the price of electricity is high
and increases it when the price is low. Te dissatisfaction
coefcient (μ) is 10. By adjusting the μ parameter, the agents
trade of between cost and comfort. According to Table 2, it
can be seen that the above result is also true for the thermal
consumer (see Figure 11).

Table 2: Te average results of EMS based on decentralized reinforcement learning over 800 days.

Scenario
Daily generated/consumed energy

(kWh) Daily proft/expense (rial)

I II I II
Wind 125.2 124.2 40561 51681
PV 70.2 70.1 31226 41279
Diesel 63 117.4 14670 28274
Fuel cell 75.2 141.7 17153 41539
Microturbine 75.3 142.1 24401 52317
Battery 10.7 1.2 −2312 91
Electrical load 618.9 216.6 81184 28049
Termal load 257.1 99 60282 22849
Main grid 475.7 −211 436720 −46247
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Figure 4: Average daily proft and output power of wind turbine.
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Teproft of themain grid is also decreased in the second
scenario, as illustrated in Figure 12. Te proft has become
negative. Indeed, the proft from selling energy to the

microgrid is lower than the cost of purchasing energy from
the microgrid. Te power purchased from the main grid is
also negative. In other words, the total power received from
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Figure 5: Average daily proft and output power of PV.
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Figure 6: Average daily proft and output power of diesel generator.
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the main grid is less than the total power given to the main
grid. As a result, the dependence of the microgrid on the
main grid has been signifcantly reduced.

Figure 13 shows the hourly amount of proft/cost and
consumption/production power of agents. Te solar
panel can generate energy only during the day from 8 am
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Figure 7: Average daily proft and output power of fuel cell.
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to 6 pm in summer. At other times, the output power and
proft of the solar panels are zero. Te average power
output of the wind turbine is almost the same during the
day and night hours. Because this graph shows the av-
erage output of a wind turbine during 800 days. During
the peak hours between 12:00 and 20:00 due to higher

demand, the price of energy has increased. Terefore, the
proft of wind turbine and other generators including
diesel generator, microturbine, and fuel cell has also
increased. As expected, the cost and consumed power of
consumer agents have also increased during peak con-
sumption hours.
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Figure 9: Average daily proft and generated power of the battery.
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Figure 10: Average daily cost and consumption of the electrical consumer.
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Te battery’s SOC and energy exchange prices during
24 hours a day are shown in Figure 14. Energy exchange
prices include electricity market price, the selling price of
energy by the main grid, and the bid price of the battery
when it is seller. Electricity market price is actually the price
of energy for consumers inside the microgrid and for the
battery in purchase mode. According to Figure 14, the

battery buys energy when the price of energy is at its lowest.
When the price of energy by the main grid is at the highest
level, the battery sells energy. Terefore, the battery maxi-
mized its proft by ofering the highest possible price. It is not
economical for the battery to buy/sell the energy immedi-
ately when it has just discharged/charged itself. In this case,
the battery’s lifetime reduces without receiving benefts.
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Figure 11: Average daily cost and consumption of the thermal consumer.
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Terefore, after charging/discharge, the battery prefers to be
idle for a few hours in order to discharge/charge at the right
time. Tk and number of the exploration phase have been
selected 180 and 50,000, respectively. Since the number of
the states and actions of battery is more than the other
agents.

Te proposed method is compared with the Q-learning
algorithm in [21]. Table 3 shows the simulation results. Te
proft of generator agents has decreased compared to the
proposed method. However, the cost of consumer agents has
decreased in the normalQ-learning. For a fair comparison of
the two methods, the Fairness Factor (FF) comparison index
introduced in [21] was used. In this index, microgrid proft is
calculated by considering the proft of both generators and
customers. According to Tables 2 and 3, the values of the FF
index for the proposed method and normal Q-learning are
1.47 and 1.40, respectively. In both methods, the epsilon
value (probability of choosing greedy actions) is zero.Te FF
index for the method in [21] is signifcantly smaller than the
proposed method. By comparing the FF value in these two
methods, it can be concluded that the proft of the microgrid
has been signifcantly improved in the proposed method.
Terefore, the decision maker agents of the microgrid have
learned to fnd better policies and the profts of all agents
have been maximized, simultaneously. In addition, in the
proposed method, the power purchased from main grid is
also less than the conventionalQ-learning in [21]. Terefore,
the dependency of the microgrid on main grid is also reduce
in the presented method.

5. Conclusion

Tis paper presented an intelligent multiagent EMS for a
smart microgrid in a stochastic environment. Due to the
complexity of the centralized method, the proposed method
is an entirely decentralized strategy using reinforcement
learning and stochastic games. Unlike many existing
methods that use stationary methods for multiagent
microgrid energy management, this paper proposed a
decentralized strategy compatible with microgrid stochastic
structure to manage the hourly electrical and thermal loads
of a microgrid. Tis method converges into an equilibrium
solution. Energy resources and consumers were considered

as independent and intelligent agents. Agents could learn
and can maximize their profts by choosing the right de-
cisions. Reinforcement learning agents discovered the op-
timal policy by using the feedback from their actions and
experiences. Due to the variable property of the output
power of RESs and the randomness of the demand, the
Markov game has been used to model the random behavior
of agents in the microgrid, and the optimal policy of the
agents was determined by the decentralized model-free Q-
learning. Finally, the results of the proposed method have
been compared with the conventional Q-learning algorithm
and the satisfactory performance of this method has been
shown using actual data of the power grid. In this paper,
energy management was considered at the third layer.
Implementation of EMS at other layers and adjust the
frequency and voltage level of the power grid are suggested
as future work. It is also suggested to apply the battery
degradation model to increase the efciency of the battery
and its lifetime.
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